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Abstract: Many species of tsetse flies (Diptera: Glossini-
dae) are infected with a virus that causes salivary gland
hypertrophy (SGH), and flies with SGH symptoms have a
reduced fecundity and fertility. The prevalence of SGH in
wild tsetse populations is usually very low (0.2%–5%), but
higher prevalence rates (15.2%) have been observed
occasionally. The successful eradication of a Glossina
austeni population from Unguja Island (Zanzibar) using an
area-wide integrated pest management approach with a
sterile insect technique (SIT) component (1994–1997)
encouraged several African countries, including Ethiopia,
to incorporate the SIT in their national tsetse control
programs. A large facility to produce tsetse flies for SIT
application in Ethiopia was inaugurated in 2007. To
support this project, a Glossina pallidipes colony originat-
ing from Ethiopia was successfully established in 1996,
but later up to 85% of adult flies displayed symptoms of
SGH. As a result, the colony declined and became extinct
by 2002. The difficulties experienced with the rearing of G.
pallidipes, epitomized by the collapse of the G. pallidipes
colony originating from Ethiopia, prompted the urgent
need to develop management strategies for the salivary
gland hypertrophy virus (SGHV) for this species. As a first
step to identify suitable management strategies, the virus
isolated from G. pallidipes (GpSGHV) was recently
sequenced and research was initiated on virus transmis-
sion and pathology. Different approaches to prevent virus
replication and its horizontal transmission during blood
feeding have been proposed. These include the use of
antiviral drugs such as acyclovir and valacyclovir added to
the blood for feeding or the use of antibodies against
SGHV virion proteins. In addition, preliminary attempts to
silence the expression of an essential viral protein using
RNA interference will be discussed.

Introduction

Tsetse flies (Glossina spp.) are the only cyclical vectors of two

debilitating diseases in Africa, sleeping sickness in humans (human

African trypanosomosis [HAT] caused by Trypanosoma brucei

gambiense and Trypanosoma brucei rhodesiense) and the cattle disease

nagana (African animal trypanosomosis [AAT] caused by T. b.

brucei, Trypanosoma congolense, and Trypanosoma vivax) [1,2]. Nagana,

and in certain areas also sleeping sickness, have been a major

obstacle to sub-Saharan African rural development and a severe

constraint to agricultural production [3]. Due to the lack of

effective vaccines and inexpensive drugs for HAT, and the

development of resistance of the AAT parasites against available

trypanocidal drugs [4], vector control remains the most efficient

strategy for the sustainable management of these diseases [5].

Successful eradication of Glossina austeni from the island of

Unguja, United Republic of Tanzania, was achieved using an

area-wide integrated pest management approach [6] that included

the release of sterile male flies [7]. As a consequence of this success,

programs were developed to apply this approach on the African

mainland and, in 1996, the government of Ethiopia embarked on

such a program with the aim of creating a zone free of Glossina

pallidipes in the Southern Rift Valley of Ethiopia [8,9]. This project

included the establishment of a laboratory colony of the target

species at the Insect Pest Control Laboratory (former Entomology

Unit) of the Joint FAO/IAEA Programme of Nuclear Techniques

in Food and Agriculture, Seibersdorf, Austria. Following its

successful establishment using pupae obtained from the target

field population in Ethiopia, the colony experienced a steady

decline over 2 years and finally became extinct. Investigations

revealed that up to 85% of both male and female flies had salivary

gland hypertrophy (SGH), a syndrome first described in wild

populations of G. pallidipes [10,11], but later detected in many

tsetse species from different African countries [12–19]. Jaenson

[20] was the first to identify a nuclear rod-shaped enveloped DNA

virus averaging 70 nm6640 nm in size as the causative agent.

This virus was also associated with testicular degeneration and

ovarian abnormalities [14,21–23] and affected the development,

survival, fertility, and fecundity of naturally [24] or experimentally

[25,26] infected flies. In tsetse field populations, mother-to-

offspring transmission, either trans-ovum or through infected milk

glands, is thought to be the most likely mode of transmission of the

virus (Figure 1) [15,23,27]. In laboratory-maintained flies,

horizontal transmission during in vitro feeding of blood provided

under a silicone membrane [28] was suspected to be a significant

route of virus infection, as each tray of blood may be used to feed

up to ten successive sets of fly cages. The complete genome of this

virus, now designated as the G. pallidipes salivary gland hypertro-

phy virus (GpSGHV), has been sequenced [29–32]. In order to

better understand the dynamics and mode of transmission of the

virus under laboratory rearing conditions, simple and reliable

PCR and qPCR methods were developed [33,34] and studies on

the dynamics of the virus in the laboratory colonies were initiated

[35].
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This paper reviews data on the biology, epidemiology,

transmission, and dynamics of the GpSGHV in field populations

and laboratory colonies and describes potential strategies to

manage the virus’ impact in tsetse laboratory colonies. The

limitations that hinder the use of this virus as a biological control

agent for tsetse control are likewise discussed.

Methodology

Articles were identified by searching Medline through PubMed

using various combinations of terms, including ‘‘Salivary gland

hypertrophy virus’’, ‘‘tsetse’’, ‘‘SIT’’, ‘‘RNAi’’, ‘‘Antibodies

neutralization’’, and ‘‘Antiviral drugs’’. Research papers and case

reports from African countries were retrieved. Additional articles

were obtained by citation tracking of review and original articles.

The review also drew on conference proceedings and original

research conducted by the authors.

Epidemiology of SGHV in Tsetse Fly Field
Populations

Since the first record of SGH in 1934 by Whitnall [36], several

observations have given insight into the epidemiology of SGHV: (i)

the SGH prevalence in wild tsetse populations was in general low

(0.5%) but could reach up to 15% [13,17,20,37,38], (ii) most of the

wild flies with SGH were young flies [39], (iii) some flies with SGH

contained blood in the gut, indicating their ability to fly and feed

[17], (iv) males with SGH were almost always sterile and females

with SGH were only partially fertile [20], and (v) flies with SGH

had a shortened life span and often had difficulties feeding that

might be caused by a potential reduction of salivary gland

secretion and anticoagulant activity [26]. Furthermore, we

recently showed that in laboratory colonies (i) flies without SGH

could be asymptomatically infected [33,34], (ii) all the progeny

from females with SGH developed SGH, had high virus loads, and

were sterile [35], and (iii) in experimental field cage (dimensions:

diameter 2.9 m, height 2.0 m) studies, males with SGH showed

reduced mating competitivness, but remating frequency of females

was very low irrespective of the SGH status of the males in the first

mating (unpublished data).

Based on these previous observations, we constructed a model of

the vertical transmission of the virus in tsetse populations (Figure 1).

In each population, three types of flies (males and/or females) can

be present with respect to SGHV infection status: (a) healthy

(uninfected) flies, (b) asymptomatic infected flies (low virus load),

and (c) symptomatic infected flies (SGH and high virus load). With

respect to vertical transmission within these populations, symp-

tomatic males or females produce no progeny or sterile progeny,

respectively. The reduced life span of symptomatic flies along with

the sterility of their progeny (symptomatic mothers) and the

absence of progeny (symptomatic fathers) explain their low

prevalence (0.5%) in wild populations. The only way for the virus

to propagate through vertical transmission in wild fly populations

is by mating of asymptomatic infected flies either amongst each

other or with a healthy partner. Since the transmission is either

trans-ovum or through the infected milk glands [27], the progeny

status will depend, most probably, on the infection status of the

mothers. Preliminary PCR analyses of sampled wild tsetse from

different African areas revealed a high prevalence of asymptomatic

infected flies (unpublished data).

We have recently demonstrated that the virus released by

infected flies during feeding on an in vitro membrane feeding

system is an important source of contamination under laboratory

conditions [35] (Figure 2A). Under field conditions, tsetse flies take

their blood meals by feeding on wild or domestic animals. The

virus inoculum injected into animal by symptomatic or asymp-

tomatic infected flies during blood feeding is probably rapidly

diluted in the blood stream, and the probability of healthy flies

becoming infected by taking their blood meal on the same animal

is consequently very low. Furthermore, we recently demonstrated

that rabbits used to feed hundreds of asymptomatic infected flies

per week in laboratory conditions developed virus-specific

antibodies (unpublished data; Figure 2B). Assuming that the

amount of virus inoculated by repeated blood meals of infected

flies on the same animal is sufficient to develop such antibodies,

the virus particles injected into this animal might be neutralized.

So far, no investigations have been carried out in Africa to detect

SGHV-specific antibodies in the blood of domestic or wild

mammals on which tsetse flies normally feed.

Epidemiology of SGHV in Tsetse Fly Laboratory
Colonies

In contrast to field conditions, the prevalence of SGH in tsetse

laboratory colonies can increase up to 85% in certain cases.

This high prevalence was responsible for the collapse in 1987 of

the G. pallidipes colony established in 1983 at the Insect Pest

Control Laboratory collected from a population in the Lambwe

Valley, Kenya, and in 2002 of a colony established in 1996 from

Arba Minch, Ethiopia. The collapse of these colonies prompted

research to understand the modalities of virus transmission

under laboratory conditions and to develop potential virus

management strategies [33]. These investigations have shed

light on some crucial points in the virus transmission and

dynamics in tsetse colonies. Although vertical transmission from

mother to progeny also occurs in laboratory colonies, horizontal

transmission through the membrane feeding system seems to be

the main source of virus propagation (Figure 2A). Quantitative

PCR analyses revealed that asymptomatic and especially

symptomatic flies release large amounts of virus into the blood

at each meal. The high concentration of flies (75 flies per cage)

feeding at the same time on a restricted blood volume and

membrane surface and the successive feeding on the same

membrane for economic reasons of up to ten cages of flies

explains why, in laboratory colonies, 100% of adult flies were

infected [33]. Furthermore, flies with SGH do not have to face

the feeding difficulties found under field conditions, and even

with a reduced life span, they represent an important source of

virus contamination by releasing more virus into the blood diet

during feeding, leading to a progressive increase of symptomatic

flies in the colony.

Figure 1. Vertical transmission pattern of the SGHV. Red,
hypertrophied; blue, infected but not hypertrophied; black, uninfected.
*: Not confirmed, as no virus free colony is available. X: No progeny
(sterile). {: In each generation, a small proportion of the progeny of
infected asymptomatic females develop SGH.
doi:10.1371/journal.pntd.0001220.g001
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SGHV of Tsetse: Hope or Hindrance for Tsetse
Control?

Many insect pathogenic viruses are currently used as biological

control agents, e.g., baculoviruses in lepidopteran hosts [40,41].

First investigations on SGHV led to the hypothesis that the virus

could be related to the baculovirus group [20], which raised the

possibility of its use as a biological control agent [42]. However,

further studies contradicted this view [29,30]. As mentioned

above, in wild tsetse populations the virus is essentially transmitted

vertically from mother to progeny and it is unlikely that horizontal

transmission plays a significant role during feeding on animal

hosts. Likewise, there is no evidence as yet for horizontal

transmission of the virus through contact between flies, mating,

or fecal contamination. These observations represent fundamental

limitations to using the virus as a biological control agent, which

requires an efficient way to deliver the virus to the target host.

From a purely practical point of view, the development of a

biopesticide to control tsetse flies based on SGHV faces several

technical challenges, a major one being the mass production of the

virus for field application and its formulation. Artificial infection of

healthy flies by feeding on contaminated blood is efficient, but the

symptoms of SGH corresponding to highest virus loads are

observed only in the next generation. Attempts to multiply the

SGHV in an alternative host (with a short life cycle and easy to

produce en masse, i.e., house flies) were not successful.

Furthermore, no in vitro system to multiply the virus in cell

culture is presently available. Finally, the formulation of a virus

suspension allowing the virus particles to retain their infectivity

under field conditions appears insuperable. Unlike baculoviruses,

SGHV does not produce occlusion bodies and the virus envelope

is extremely fragile. More than 90% of a purified virus suspension

looses its infectivity after 3 days at 4uC (unpublished data). These

difficulties make the use of this virus as a biological control agent

impractical.

Potential Virus Management Strategies

In view of our current understanding of the epidemiology of the

virus under laboratory conditions, two possible strategies to

manage the infection in a colony emerged: one based on the

reduction or inhibition of horizontal virus transmission, the other

on the reduction or inhibition of virus replication to avoid the

development of symptomatic infections in a colony. To mitigate

horizontal transmission in laboratory colonies, two approaches are

being explored: (a) changing the feeding protocol currently used in

colony rearing and/or (b) neutralizing the virus released during

blood feeding by adding virus-specific antibodies to the blood. To

reduce virus replication, two approaches have been tested: (c)

inhibiting replication with commercially available antiviral drugs

used to inhibit the DNA polymerase of similar viruses and (d)

developing RNA interference to silence essential virus specific

gene(s).

Development of a Virus Management System Based on
Modifying the Membrane Feeding Protocol

As mentioned above, the in vitro membrane feeding protocol

using successive feeds on the same membrane favors horizontal

virus transmission from infected to healthy colony flies. However,

feeding the flies on fresh, unused (i.e., clean) blood and membrane

at each meal (referred to as ‘‘clean feeding’’) resulted in a four log

reduction of the average virus load per fly (from 106 to 102 virus

Figure 2. Horizontal transmission of SGHV in G. pallidipes. (A) In vitro membrane feeding. (B) In vivo animal feeding. Red, flies with SGH; black,
uninfected flies.
doi:10.1371/journal.pntd.0001220.g002
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particles per fly) in three generations [35]. These results prompted

the establishment of a clean feeding colony by feeding the flies and

their progeny continuously on clean blood for more than 2 years.

Monitoring of the virus load and of the prevalence of SGH in this

colony showed a significant decrease of the virus load and an

absence of SGH syndrome in dissected flies (unpublished data).

Despite these very encouraging results, this approach is presently

too costly to be applied in large-scale mass rearing, and a

combination of clean feeding with other virus management

strategies is required. One potential option is using clean feeding

as a temporary filter to produce flies with low virus infection to be

used in large-scale rearing in combination with other virus

management methods [35].

Neutralizing Virus Infection by Mixing Virus-Specific
Antibodies with the Blood

Neutralizing antibodies are commonly used to control virus

infections in vertebrates [43–49] and also to protect shrimps

against a wispovirus [50]. Research on the use of neutralizing

antibodies produced against GpSGHV structural polypeptides to

potentially control horizontal transmission of the virus under in

vitro membrane feeding has been initiated. To that end, a

proteomic analysis of purified GpSGHV virus particles by liquid

chromatography tandem mass spectrometry (LC-MS/MS) was

undertaken. Sixty-one virion proteins were identified [51] and

SGHV-specific antibodies against envelope dominant proteins

were produced in rabbits by injecting purified recombinant

proteins or synthetic oligopeptides. Neutralizing tests of SGHV

infection using these antibodies are underway. After selecting the

antibody(ies) capable of neutralizing SGHV infection, the

corresponding protein(s) could be produced on large amounts

using bacterial or baculovirus expression systems and used to

produce antibodies in large animals. Appropriate concentrations

of neutralizing antibodies could then be added to the blood meal.

Combining the administration of antibodies with clean feeding or

other virus management methods could be effective in keeping the

virus infection at an acceptable level in tsetse colonies.

Blocking SGHV Replication Using Commercial Antiviral
Drugs

The discovery in the late 1970s that acyclic nucleoside analogs,

in particular acyclovir, could inhibit DNA replication of herpes

simplex virus (HSV) at concentrations far below those that affect

cellular DNA synthesis sparked a new era in antiviral chemother-

apy [52]. The underlying reason for the selectivity—that acyclovir

is specifically converted to the active metabolite by an HSV-

encoded thymidine kinase— was unexpected, but the potential for

exploiting viral enzymes to develop potent and specific antiviral

drugs was clearly demonstrated. Acyclovir subsequently became a

successful treatment for HSV-1 and HSV-2 [52,53]. After

completing the genome sequence of GpSGHV, the phylogenetic

analysis of its DNA polymerase amino acid sequence unexpectedly

revealed that it shares high similarity with herpes virus DNA

polymerase [29]. These similarities led us to speculate that

acyclovir might have an antiviral effect on GpSGHV replication.

Preliminary results indicated that per os treatment of flies by adding

acyclovir and valacyclovir to the blood meals significantly reduces

viral loads (unpublished data). Several other antiviral drugs are

currently available for DNA viruses that could be screened to

assess their impact on GpSGHV DNA replication. Several

parameters, such as (i) absence of any negative effect on fly

survival and productivity, (ii) significant reduction of virus loads,

(iii) suitable bioavailability when offered to the flies mixed with

blood, and (iv) affordable price will have to be considered for

selecting appropriate antiviral drugs for use in large-scale tsetse

rearing facilities. Administration of one or more antiviral drugs

could be combined with other methods of virus management.

Inhibiting SGHV Infection by Silencing Virus-Specific
Genes Using RNAi Technology

RNA interference (RNAi) has recently emerged as a powerful

tool for specific gene silencing in gene therapy [54,55]. Recent

studies have reported the successful use of dsRNAs produced in a

bacterial system as therapeutic agents for economically affordable

oral treatment of white spot syndrome disease of shrimps [56,57].

The potential of a similar approach based on the silencing of

essential GpSGHV gene(s) such as DNA polymerase, p74, or per os

infectivity factors to mitigate the SGHV infection is worth

evaluating.

In conclusion, the GpSGHV represents a threat to integrated

control programs against G. pallidipes that incorporate the release

Key Learning Points

N Tsetse salivary gland hypertrophy syndrome was report-
ed in wild tsetse populations from several species in
different countries with a prevalence of 0.5%–15%, while
in G. pallidipes laboratory colonies prevalence can reach
85%.

N Tsetse salivary gland hypertrophy virus (SGHV) cannot be
used as a biological control agent in tsetse control
program due to the virus characteristics, i.e., fragile
structure of virus particles and limited role of horizontal
virus transmission.

N GpSGHV seriously impedes rearing of G. pallidipes in
large-scale facilities by reducing fly productivity, which
hinders SIT programs for tsetse control.

N A virus management strategy based on reducing
horizontal virus transmission by changing the blood
feeding system currently used, neutralizing virus infec-
tion using virus-specific antibodies, and reducing virus
replication by administration of antiviral drugs or RNAi
technology is being developed.
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of sterile males because it reduces the productivity of G. pallidipes

colonies, which in certain circumstance has resulted in the collapse

of the colony. The virus cannot be used as a biological control

agent due to several limitations. So far the virus has been studied

from the point of view of its impact on G. pallidipes colonies in a

rearing facility, but the impact of the virus on release programs in

terms of competiveness, performance, and mating behavior of

symptomatic and asymptomatic infected male flies still requires

further study.
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