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The role of obesity, type 2
diabetes, and metabolic factors
in gout: A Mendelian
randomization study

Yang Yang, Wei Xian, Dide Wu, Zijun Huo, Shubin Hong,
Yanbing Li and Haipeng Xiao*

Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University,
Guangzhou, China
Background: Several epidemiological studies have reported a possible

correlation between risk of gout and metabolic disorders including type 2

diabetes, insulin resistance, obesity, dyslipidemia, and hypertension. However,

it is unclear if this association is causal.

Methods: We used Mendelian randomization (MR) to evaluate the causal

relation between metabolic conditions and gout or serum urate

concentration by inverse-variance-weighted (conventional) and weighted

median methods. Furthermore, MR-Egger regression and MR-pleiotropy

residual sum and outlier (PRESSO) method were used to explore pleiotropy.

Genetic instruments for metabolic disorders and outcome (gout and serum

urate) were obtained from several genome-wide association studies on

individuals of mainly European ancestry.

Results: Conventional MR analysis showed a robust causal association of

increasing obesity measured by body mass index (BMI), high-density

lipoprotein cholesterol (HDL), and systolic blood pressure (SBP) with risk of

gout. A causal relationship between fasting insulin, BMI, HDL, triglycerides (TG),

SBP, alanine aminotransferase (ALT), and serum urate was also observed. These

results were consistent in weighted median method and MR-PRESSO after

removing outliers identified. Our analysis also indicated that HDL and serum

urate as well as gout have a bidirectional causal effect on each other.

Conclusions: Our study suggested causal effects between glycemic traits,

obesity, dyslipidemia, blood pressure, liver function, and serum urate as well

as gout, which implies that metabolic factors contribute to the development of

gout via serum urate, as well as potential benefit of sound management of

increased serum urate in patients with obesity, dyslipidemia, hypertension, and

liver dysfunction.

KEYWORDS

gout, urate, Mendelian randomization, causal relationship, metabolic factors
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.917056/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.917056/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.917056/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.917056/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.917056&domain=pdf&date_stamp=2022-08-05
mailto:xiaohp@mail.sysu.edu.cn
https://doi.org/10.3389/fendo.2022.917056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.917056
https://www.frontiersin.org/journals/endocrinology


Yang et al. 10.3389/fendo.2022.917056
Introduction

Gout is a disorder of purine metabolism which results from

monosodium urate crystals in and around the joints caused by

long-standing hyperuricemia (1). In developed countries, the

prevalence of gout in men and women is 3%–6% and 1%–2%,

respectively, which increases with age but stabilizes after the age

of 70 (2). The concentration of uric acid is affected not only by

environmental factors but also by inheritance. Several genome-

wide association studies (GWAS) determined the relationship

between SLC2A9, ABCG2, and SLC17A3 gene polymorphisms

and uric acid concentration as well as gout (3, 4). Although the

major cause of gout is well known, the understanding of its

pathogenesis is still incomplete (5).

Several epidemiological studies have repeatedly indicated

that gout is associated with obesity (6, 7). In addition, it has been

reported that several metabolic diseases and factors including

type 2 diabetes mellitus (T2DM), insulin resistance,

dyslipidemia, and hypertension were associated with increased

risk of gout or serum urate (8–10). Moreover, general obesity in

women and hypertriglyceridemia in men may potentiate a

hyperuricemia effect for gout development (11). Evidence

indicated that hyperuricemia is associated with increased

prevalence, incidence, and disease severity of non-alcoholic

fatty liver disease (NAFLD), while NAFLD can predict

hyperuricemia as well (12). Although these metabolic diseases

and factors have been associated with gout or elevated serum

urate in epidemiological studies, whether these associations are

causal remains unclear because the associations may be

confounded by an unhealthy diet or other behavioral or

environmental risk factors.

To clarify the causal relationships between the observed

associations, a Mendelian randomization is performed (13).

There are three key assumptions for Mendelian randomization

(MR) analysis: first, the genetic variants used as instrumental

variables [single-nucleotide polymorphisms (SNPs)] should be

robustly associated with the risk factor of interest (relevance

assumption); second, the used genetic variants should not be

associated with potential confounders (independent

assumption); and third, the genetic variants should affect the

risk of the outcome only through the risk factor, not via

alternative pathways (exclusion restriction assumption) (14).

In that way, MR evaluates the causal effect of an exposure on

the outcome of interest by using genetic variants.

In the current study, we performed a two-sample

Mendelian randomization analysis to investigate the causal

relationship between metabolic exposures (including T2DM,

obesity, blood lipid, blood pressure, and liver function) and

serum urate or gout in individuals of mainly European

ancestry. For this, summary level data from the GWAS on

obesity, T2DM, metabolic factors, gout, and serum urate were

included (13, 15–19).
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Materials and methods

Study design and data sources

We investigate whether predisposition to metabolic traits

[T2DM, fasting glucose, fasting insulin, body mass index (BMI),

waist-to-hip ratio adjusted for body mass index (WHRadjBMI),

blood lipid, blood pressure, and liver function] is likely to have

an impact on gout and serum urate level, using MR.

A meta-analysis combining three GWAS data sets of

European ancestry (62,892 T2DM and 596,424 controls) was

used to identify genetic loci for T2DM (19). Results from the

MAGIC (the Meta-Analyses of Glucose and Insulin-related

traits Consortium) consortium were used to identify genetic

proxies for glycemic traits (fasting glucose, fasting insulin)

including 133,010 and 108,557 non-diabetic individuals of

European ancestry, respectively (17). Summary statistics on

BMI and WHRadjBMI were extracted from the Genetic

Investigation of ANthropometric Traits consortium (GIANT)

including 322,154 and 210,088 European ancestry individuals,

respectively (15, 18).

Data (joint analysis of Metabochip and GWAS data) from

the GWAS of Global Lipids Genetic Consortium (GLGC) were

used to identify genetic loci for blood lipids [high-density

lipoprotein cholesterol (HDL), low-density lipoprotein

cholesterol (LDL), total cholesterol (TC), triglycerides (TG)]

including 188,577 individuals mostly of European ancestry

(20). Summary statistics for the association between SNP and

blood pressure traits (systolic, diastolic, pulse pressure) were

extracted from the largest genetic association study over one

million people of European ancestry (13). Genetic instruments

for liver function were identified from a recent genetic analysis in

European-ancestry individuals (16).

The genetic data of outcomes (gout and serum urate) were

derived from the Global Urate Genetics Consortium (GUGC).

These data included 2,115 cases and 67,259 normal individuals

from 14 European studies (21).
Selection of instrumental variables

SNPs for each exposure trait were selected as instrumental

variables (IV) according to the fundamental principle of MR.

Each IV was independently [linkage disequilibrium (LD) r2 <

0.01] associated with the exposure traits at a genome-wide

significance threshold (P < 5 × 10-8) in a previously published

GWAS. Suitable proxy SNPs were chosen with the linkage

disequilibrium (r2 > 0.8) to ensure that proxy SNP and target

SNP have a strong correlation (22). Instrument strength in MR

was evaluated with the F statistic derived from a measure of the

exposure variance explained by each SNP. SNPs with

instrument strengths (F) larger than 10 were selected (23).
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According to the principle mentioned above, we finally selected

multiple independent SNPs strongly associated with each

exposure trait and details of the included traits are displayed

in Table 1.
Statistical analysis

In the main Mendelian randomization analyses, the inverse-

variance-weighted (IVW) method was used to assess the causal

associations (24). The Cochran Q test was used to assess

heterogeneity between instrumental variables in the MR. We

used random-effect models if the p value of the Cochran Q test

was less than 0.05; otherwise, fixed-effect models were used (25).

MR-Egger and the weighted median method were conducted to

supplement the result of IVW. The MR-Egger method provided

an estimate of horizontal pleiotropy from the intercept of a

linear regression of SNP–outcome and SNP–exposure

association estimate (26). In addition to the MR-Egger

intercept, the MR-pleiotropy residual sum and outlier

(PRESSO) method was also used to evaluate pleiotropy (27).

Furthermore, MR-PRESSO is able to identify outlier variants

based on their observed distance from the regression line and

estimate results after correction of outliers (27). To control for

false positive findings due to multiple testing, a conservative

Bonferroni correction adjusted for the number of primary

exposures analyzed in the study was applied, and P-values less

than 0.003 were considered statistically significant. P values

between 0.003 and 0.05 were deemed suggestive evidence of
Frontiers in Endocrinology 03
possible associations. Statistical analysis was conducted by R

version 4.0.5. The R package “TwoSampleMR” version 0.5.6 and

“MRPRESSO” were applied.
Results

Genetic association of type 2 diabetes
and glycemic traits with gout and urate

The individual instrument-exposure (T2DM, fasting

glucose, and fasting insulin) is shown in Supplementary

Table 1. IVW MR using associated instrumental SNPs

indicated that T2DM (b = 0.027, 95% CI: -0.007-0.061, P =

0.116) was not causally associated with serum urate level and

gout, which was also supported by weighted median and MR-

Egger analysis (Figures 1, 2 and Supplementary Figure 1).

However, post-removal of outliers identified by MR-PRESSO

suggested a significance of the association between T2DM and

increased serum urate (b = 0.652, 95% CI: 0.029–0.080, P <

0.001) (Table 2).

In the IVW analysis, fasting insulin-associated SNPs in

Europeans showed no causal effect on increased serum urate

and risk of gout (P = 0.287 and P = 0.635, respectively). After

removing rs780094 in the GCKR gene according to leave-one-

out analysis, recalculating the main IVW estimate suggested a

causal effect of fasting insulin on increased serum urate (b =

0.802, 95% CI: 0.514–1.090, P < 0.001) and risk of gout (OR =

3.293, 95% CI: 1.030–10.532, P = 0.045) (Figures 1, 2 and
TABLE 1 Related information of included traits in the Mendelian randomization analyses.

Trait Variable type Consortium Ancestry

Type 2 diabetes Exposure eQTLGen European

Fasting glucose Exposure MAGIC European

Fasting insulin Exposure MAGIC European

Body mass index Exposure GIANT European

Waist-to-hip ratio Exposure GIANT European

High-density cholesterol Exposure GLGC Trans-ancestry

Low-density cholesterol Exposure GLGC Trans-ancestry

Triglycerides Exposure GLGC Trans-ancestry

Total cholesterol Exposure GLGC Trans-ancestry

Systolic blood pressure Exposure ICBP European

Diastolic blood pressure Exposure ICBP European

Pulse pressure Exposure ICBP European

Alkaline phosphatase Exposure UK Biobank European

Alanine aminotransferase Exposure UK Biobank European

Gout Disease outcome GUGC European

Serum urate Continuous outcome GUGC European
f

MAGIC, The Meta-Analyses of Glucose and Insulin-related traits Consortium; GIANT, Genetic Investigation of ANthropometric Traits consortium; ICBP, International Consortium for
Blood Pressure; GLGC, Global Lipids Genetic Consortium; GUGU, Global Urate Genetics Consortium.
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FIGURE 1

Forest plot of Mendelian randomization analyses for the genetical associations of glycemic traits, obesity, blood lipid, blood pressure, and liver
function with increased serum urate. CI, confidence interval; SNP, single-nucleotide polymorphism.
FIGURE 2

Forest plot of Mendelian randomization analyses for the genetical associations of glycemic traits, obesity, blood lipid, blood pressure, and liver
function with risk of gout. CI, confidence interval; SNP, single-nucleotide polymorphism; OR, odds ratio.
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Supplementary Figure 2). In addition, weighted median

analysis suggested a causal effect of fasting insulin on

increased serum urate (b = 0.891, 95% CI: 0.603–1.179, P <

0.001). The MR estimate after removing outliers identified by

MR-PRESSO showed similar results (b = 0.813, 95% CI: 0.577–

1.049, P < 0.001) (Table 2). To further investigate the

relationship between serum urate and fasting insulin, we

performed bidirectional MR analyses assessing the effects of

genetically predicted serum urate on fasting insulin. We

observed no causal effects of serum urate on fasting insulin

(Supplementary Table 2).

The relationship between fasting glucose and serum urate was

also investigated. IVW analysis revealed that fasting glucose was not

associated with serum urate and gout (Figures 1, 2 and

Supplementary Figure 3). There was no evidence of horizontal

pleiotropy influencing the estimates in that the MR-Egger intercept

was not significant (Table 2). Leave-one-variant-out analysis was

conducted to identify variants with exaggerated influence on the

combined effect estimate (Supplementary Table 3).
Frontiers in Endocrinology 05
Genetic association of obesity with gout
and urate

The individual instrument-exposure (BMI and WHRadjBMI)

is shown in Supplementary Table 4. Using the IVW analysis, BMI

was associated with an increase in the level of serum urate (b =

0.317, 95% CI: 0.234–0.400, P < 0.001) and risk of gout (OR =

2.040, 95% CI:1.483–2.806, P < 0.001) based on all SNPs in

Europeans, with similar and significant results for weighted

median analysis (Figures 1, 2 and Supplementary Figure 4). In

the MR-Egger analysis, BMI was associated with an increase in

serum urate level, with a similar but non-significant result in gout.

MR-Egger did not show evidence of horizontal pleiotropy. The

MR-PRESSO test showed pleiotropy in serum urate (P < 0.001),

but not in gout (P = 0.874). The MR-PRESSO distortion test was

significant for BMI on serum urate after removing outliers (b =

0.341, 95% CI: 0.266–0.416, P < 0.001) (Table 3). Moreover, MR

analyses about the effects of genetically predicted serum urate and

gout on BMI were also conducted. IVW analysis revealed that
TABLE 2 Mendelian randomization estimates of glycemic traits on serum urate or gout.

Outcome Exposure Method Estimate 95% CI P-value MR-Egger intercept (P-value)

Serum urate T2DM IVW MR 0.027 -0.007-0.061 0.116 0.004 (0.112)

Weighted median 0.029 -0.001-0.059 0.058

MR-Egger -0.029 -0.104-0.046 0.456

MR-PRESSO 0.052 0.029-0.080 <0.001

FBG IVW MR -0.089 -0.382-0.204 0.551 0.005 (0.494)

Weighted median -0.028 -0.170-0.115 0.702

MR-Egger -0.268 -0.854-0.318 0.377

MR-PRESSO 0.017 -0.116-0.15 0.802

FI IVW MR 0.802 0.514-1.090 <0.001 0.005 (0.723)

Weighted median 0.891 0.603-1.179 <0.001

MR-Egger 0.483 -1.272-2.237 0.597

MR-PRESSO 0.813 0.577-1.049 <0.001

Gout T2DM IVW MR 0.925 0.835-1.026 0.140 0.002 (0.816)

Weighted median 1.001 0.836-1.199 0.988

MR-Egger 0.903 0.719-1.135 0.383

MR-PRESSO 0.943 0.855-1.040 0.240

FBG IVW MR 0.680 0.334-1.385 0.288 <0.001 (0.993)

Weighted median 1.056 0.467-2.389 0.896

MR-Egger 0.676 0.159-2.870 0.599

MR-PRESSO 0.888 0.478-1.647 0.708

FI IVW MR 3.293 1.030-10.532 0.045 -0.002 (0.968)

Weighted median 4.106 0.952-17.705 0.058

MR-Egger 3.803 0.789-18.324 0.716

MR-PRESSO 3.293 1.030-10.532 0.062
T2DM, type 2 diabetes; FBG, fasting glucose; FI, fasting insulin.
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serum urate and gout were not associated with BMI

(Supplementary Table 3).

IVW MR using 36 associated instrumental SNPs indicated

that WHRadjBMI was not causally associated with serum urate

level (b = 0.042, 95% CI: -0.066–0.150, P = 0.444) and gout

(OR = 0.952, 95% CI: 0.717–1.263, P = 0.731) (Figures 1, 2 and

Supplementary Figure 5). As shown in Table 3, the MR-Egger

intercepts did not provide evidence of horizontal pleiotropy in

any analysis, and neither did MR-PRESSO identify outliers. For

both serum urate and gout, leave-one-variant-out analysis did

not identify variants with exaggerated influence on the

combined effect estimate (Supplementary Table 5).
Genetic association of serum lipid with
gout and urate

The individual instrument-exposure (HDL, LDL, TG, and

TC) is shown in Supplementary Table 6. In the IVW analysis,

HDL-associated SNPs had a causal effect on decreased serum

urate (b = -0.012, 95% CI:-0.188–0.053, P < 0.001) and risk of

gout (OR = 0.747, 95% CI: 0.612–0.912 P = 0.004) (Figures 1, 2

and Supplementary Figure 6). The MR-Egger test precluded the

possibility of horizontal pleiotropy of instrument variables. After

Bonferroni correction, the result was deemed suggestive

evidence of a possible association between HDL and risk of

gout (0.003 < P < 0.05). To explain this association more

accurately, weighted median and MR-PRESSO analyses were

conducted. Although possible outlier SNPs were identified in
Frontiers in Endocrinology 06
serum urate using the MR-PRESSO test, the effect estimate of the

association between genetically predicted HDL and serum urate

did not change markedly after outlier correction (b = -0.139,

95% CI: -0.184–0.095, P < 0.001) (Table 4). When setting HDL

as the outcome, serum urate and gout were causally associated

with HDL, as shown in Supplementary Table 3.

Using 55 associated SNPs as instrumental variables, IVWMR

analysis evaluated that the level of TG had a significant effect on

increased serum urate (b = 0.196, 95% CI: 0.110–0.282, P < 0.001)

(Figures 1, 2 and Supplementary Figure 7). After Bonferroni

correction, TG and risk of gout were not causally associated (P =

0.015). MR-Egger did not show evidence of horizontal pleiotropy.

After removal of outliers, the magnitude and significance of the

association between TG and serum urate remained in the MR-

PRESSO analysis (Table 4). When setting serum urate as the

exposure, serum urate was causally associated with TG, as shown

in Supplementary Table 3. Leave-one-variant-out analysis was

performed to identify variants with exaggerated influence on the

combined-effect estimate (Supplementary Table 7). However,

instruments for the other lipid traits, including LDL and TC, did

not indicate an effect on serum urate and gout (Figures 1, 2 and

Supplementary Figure 8, 9).
Genetic association of blood pressure
with gout and urate

The individual instrument-exposure [systolic blood pressure

(SBP), diastolic blood pressure (DBP), pulse pressure (PP)] is
TABLE 3 Mendelian randomization estimates of obesity on serum urate or gout.

Outcome Exposure Method Estimate 95% CI P-value MR-Egger intercept (P-value)

serum urate BMI IVW MR 0.317 0.234-0.400 <0.001 0.001 (0.805)

weighted median 0.350 0.260-0.441 <0.001

MR-Egger 0.288 0.043-0.533 0.024

MR-PRESSO 0.341 0.266-0.416 <0.001

WHRadjBMI IVW MR 0.042 -0.066-0.150 0.444 -0.002 (0.842)

weighted median 0.026 -0.098-0.149 0.684

MR-Egger 0.097 -0.449-0.642 0.730

MR-PRESSO 0.042 -0.066-0.150 0.449

gout BMI IVW MR 2.040 1.483-2.806 <0.001 0.003 (0.833)

weighted median 2.076 1.295-3.328 0.002

MR-Egger 1.858 0.740-4.664 0.191

MR-PRESSO 2.039 1.521-2.734 <0.001

WHRadjBMI IVW MR 0.952 0.717-1.263 0.731 -0.029 (0.184)

weighted median 1.040 0.710-1.522 0.841

MR-Egger 2.257 0.628-8.112 0.221

MR-PRESSO 0.952 0.720-1.258 0.730
BMI, Body mass index ; WHRadjBMI, Waist-to-hip ratio adjusted for body mass index.
frontiersin.org

https://doi.org/10.3389/fendo.2022.917056
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2022.917056
shown in Supplementary Table 8. In the IVW analysis, SBP-

associated SNPs in Europeans had a causal effect on increased

serum urate (b = 0.015, 95% CI: 0.005–0.024, P = 0.003) and risk

of gout (OR = 1.064, 95% CI: 1.021–1.108, P = 0.003), which was

also supported by weighted median analysis (Figures 1, 2 and

Supplementary Figure 10). MR-Egger did not show evidence of

horizontal pleiotropy. The MR-PRESSO test showed pleiotropy

in serum urate (P < 0.001), but not in gout (P = 0.512). Although

possible outlier SNPs were identified in serum urate using the

MR-PRESSO test, the effect estimate of the association between
Frontiers in Endocrinology 07
genetically predicted SBP and serum urate did not change

markedly after outlier correction (b = 0.017, 95% CI: 0.008–

0.026, P < 0.001) (Table 5). When setting SBP as the outcome,

genetically determined serum urate and gout were not associated

with SBP (Supplementary Table 3). IVWMR using 65 associated

instrumental SNPs indicated that PP was causally associated

with gout (OR = 1.089, 95% CI: 1.024–1.158, P = 0.006) and the

weighted-median method also produced a similar result (OR =

1.100, 95% CI: 1.005–1.204, P = 0.039), which were not

significant after Bonferroni correction (Figures 1, 2 and
TABLE 4 Mendelian randomization estimates of blood lipid on serum urate or gout.

Outcome Exposure Method Estimate 95% CI P-value MR-Egger intercept (P-value)

Serum urate HDL IVW MR -0.120 -0.188- -0.053 <0.001 -0.007 (0.015)

Weighted median -0.094 -0.150- -0.038 <0.001

MR-Egger 0.013 -0.111-0.136 0.841

MR-PRESSO -0.139 -0.184- -0.095 <0.001

LDL IVW MR -0.032 -0.087-0.022 0.243 -0.004 (0.125)

Weighted median -0.009 -0.055-0.036 0.691

MR-Egger 0.020 -0.065-0.105 0.654

MR-PRESSO -0.012 -0.050-0.027 0.555

TG IVW MR 0.196 0.110-0.282 <0.001 0.009 (0.376)

Weighted median 0.095 0.031-0.159 0.024

MR-Egger 0.162 0.025-0.299 0.034

MR-PRESSO 0.127 0.067-0.186 <0.001

TC IVW MR -0.030 -0.109-0.049 0.461 -0.005 (0.176)

Weighted median -0.047 -0.103-0.010 0.106

MR-Egger 0.068 -0.093-0.228 0.411

MR-PRESSO -0.035 0.081-0.012 0.149

Gout HDL IVW MR 0.747 0.612-0.912 0.004 -0.013 (0.121)

Weighted median 0.873 0.653-1.167 0.359

MR-Egger 0.960 0.662-1.391 0.829

MR-PRESSO 0.759 0.626-0.920 0.006

LDL IVW MR 0.894 0.744-1.075 0.235 -0.003 (0.710)

Weighted median 0.971 0.753-1.253 0.821

MR-Egger 0.934 0.697-1.249 0.645

MR-PRESSO 0.888 0.742-1.062 0.198

TG IVW MR 1.370 1.064-1.765 0.015 0.009(0.376)

Weighted median 1.006 0.723-1.401 0.971

MR-Egger 1.189 0.795-1.778 0.404

MR-PRESSO 1.370 1.064-1.765 0.015

TC IVW MR 0.895 0.729-1.098 0.288 -0.006 (0.532)

Weighted median 0.809 0.609-1.073 0.143

MR-Egger 1.007 0.661-1.522 0.975

MR-PRESSO 0.882 0.728-1.069 0.206
HDL, high-density cholesterol; LDL, low-density cholesterol; TG, triglycerides; TC, total cholesterol.
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Supplementary Figure 11). The MR-Egger intercepts did not

provide evidence of horizontal pleiotropy, and neither did MR-

PRESSO identify outliers. Instruments for the DBP did not

indicate an effect on serum urate and gout (Table 5 and

Supplementary Figure 12). Leave-one-variant-out analysis did

not identify variants with exaggerated influence on the

combined effect estimate (Supplementary Table 9).
Genetic association of liver function with
gout and urate

The individual instrument-exposure [alkaline phosphatase

(ALP) and alanine aminotransferase (ALT)] is shown in

Supplementary Table 10. Using 85 associated SNPs as

instrumental variables, IVW MR analysis evaluated that the

level of ALT had a significant effect on increased serum urate

(b = 0.974, 95% CI: 0.388–1.561, P = 0.001) in Europeans

(Figures 1, 2 and Supplementary Figure 13). The result was

similar with that in weighted median analysis (Table 6). The
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MR-Egger intercepts showed evidence of horizontal pleiotropy in

serum urate (MR-Egger intercept = 0.009, P = 0.004). The MR

estimate after removing six outliers identified by MR-PRESSO

suggested a significance of the association between ALT and

increased serum urate (b = 0.879, 95% CI: 0.355–1.404, P =

0.002) (Table 6). Leave-one-variant-out analysis did not identify

variants with exaggerated influence on the combined effect

estimate (Supplementary Table 11). To investigate the

relationship between serum urate, gout, and fasting insulin,

bidirectional MR analyses were conducted to indicate that

genetically determined serum urate and gout were not

associated with ALT (Supplementary Table 3). Instruments for

the ALP did not indicate an effect on serum urate and gout

(Figures 1, 2 and Supplementary Figure 14).
Discussion

We have used data from large GWASs to evaluate the causal

relevance of metabolic disorders and gout or serum urate using
TABLE 5 Mendelian randomization estimates of blood pressure on serum urate or gout.

Outcome Exposure Method Estimate 95% CI P-value MR-Egger intercept (P-value)

Serum urate SBP IVW MR 0.015 0.005-0.024 0.003 -0.002 (0.717)

Weighted median 0.016 0.006-0.027 0.002

MR-Egger 0.024 -0.029-0.076 0.376

MR-PRESSO 0.017 0.008-0.026 <0.001

DBP IVW MR 0.014 -0.007-0.035 0.183 0.001 (0.790)

Weighted median 0.010 -0.011-0.030 0.365

MR-Egger 0.005 -0.068-0.077 0.896

MR-PRESSO 0.007 -0.011-0.024 0.450

PP IVW MR 0.005 -0.010-0.019 0.518 -0.009 (0.076)

Weighted median 0.002 -0.014-0.018 0.773

MR-Egger 0.061 -0.002-0.125 0.061

MR-PRESSO 0.011 -0.002-0.023 0.099

Gout SBP IVW MR 1.064 1.021-1.108 0.003 0.007 (0.783)

Weighted median 1.063 1.060-1.123 0.031

MR-Egger 1.031 0.821-1.294 0.793

MR-PRESSO 1.061 1.020-1.104 0.005

DBP IVW MR 1.017 0.927-1.116 0.721 -0.001 (0.963)

Weighted median 1.018 0.910-1.138 0.759

MR-Egger 1.025 0.743-1.413 0.883

MR-PRESSO 1.001 0.943-1.063 0.966

PP IVW MR 1.089 1.024-1.158 0.006 -0.020 (0.334)

Weighted median 1.100 1.005-1.204 0.039

MR-Egger 1.242 0.946-1.630 0.123

MR-PRESSO 1.091 1.032-1.153 0.003
SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure.
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the MR method. Our analysis showed that genetically predicted

fasting insulin, BMI, TG, blood pressure, and ALT were robust

associated with gout or serum urate. Further research indicated

that HDL and serum urate as well as gout have a bidirectional

causal effect on each other.

A meta-analysis of 23 observational studies with 575,284

gout patients showed that the incidence of diabetes in gout

population increased as age increased (28). A case–control

study indicated that the relative risk for incident gout among

diabetes patients, as compared with individuals with no

diabetes, was 0.67 (29). Pan et al.’s research came to similar

conclusions (30). Using different types of drugs to treat

diabetes would affect the risk of gout. A cohort study showed

that adults with T2DM prescribed a sodium-glucose

cotransporter-2 (SGLT2) inhibitor had a lower rate of gout

than those prescribed a glucagon-like peptide-1 (GLP1 agonist)

(31). For T2DM, we found no evidence of a causal relationship

with serum urate and gout. We speculate that T2DMmay affect

uric acid metabolism by affecting other metabolic indicators,

rather than directly increasing serum urate via genetic variants.

In addition, we also studied the other glycemic traits, including

fasting glucose and fasting insulin. A study conducted in

economically developing regions of northwest China found

that participants with higher fasting blood glucose had higher

levels of serum uric acid (9). Furthermore, urinary uric acid

clearance appears to decrease in proportion to increases in

insulin resistance in normal volunteers, leading to an increase

in serum uric acid concentration (32). Our results confirm that

the associations between fasting insulin and serum urate are
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causal, but not gout. Gout is caused by long-standing

hyperuricemia, and although fasting insulin can genetically

elevate in serum urate, the concentration or duration of the

elevated serum urate is not sufficient to cause gout.

Previous epidemiological studies have suggested that general

obesity measured by BMI may be a risk factor for gout and serum

urate (33, 34). Zhou et al. reported that once the BMI was higher

than 19.12 kg/m2 for men or 21.3 kg/m2 for women, each 1-kg/m2

increase in BMI was related to a 5.10-fold increment for men and

a 3.93-fold increment for women in serum urate levels (35).

Moreover, a prospective study showed that women with general

obesity were more likely to progress from hyperuricemia to gout

(11). In the current study, we found a positive association with

gout or serum urate for genetically predicted BMI in European-

ancestry individuals but not for abdominal adiposity as measured

by WHR adjusted for BMI. Our results are consistent with a

previous Mendelian analysis which is a trans-ancestry study, while

we only studied the European population, suggesting that BMI

may be related to gout in different ancestries (36).

In terms of serum lipid, we observed decreased HDL as a

causal risk factor of gout and increased serum urate. This is similar

to the results reported in observational studies (11, 37). Studies

have shown that patients with gout have elevated blood lipid

levels, and Mendelian analysis found that high serum urate levels

were associated with increased risk of hypercholesterolemia (11,

38). Compared with MR analysis published previously, MR-

PRESSO was conducted in our research to evaluate pleiotropy

and identify outlier variants based on their observed distance from

the regression line and estimate results after correction of outliers.
TABLE 6 Mendelian randomization estimates of liver function on serum urate or gout.

Outcome Exposure Method Estimate 95% CI P-value MR-Egger intercept (P-value)

Serum urate ALP IVW MR 0.335 -0.350-1.020 0.338 0.002 (0.821)

Weighted median -0.088 -0.806-0.630 0.811

MR-Egger 0.147 -1.106-1.401 0.818

MR-PRESSO 0.304 -0.181-0.789 0.222

ALT IVW MR 0.974 0.388-1.561 0.001 0.009 (0.004)

Weighted median 0.627 0.042-1.211 0.036

MR-Egger -0.757 -2.032-0.517 0.247

MR-PRESSO 0.879 0.355-1.404 0.002

Gout ALP IVW MR 1.982 0.205-19.203 0.555 0.001 (0.727)

Weighted median 2.917 0.081-105.098 0.558

MR-Egger 1.107 0.010-119.384 0.196

MR-PRESSO 1.985 0.249-15.807 0.835

ALT IVW MR 2.743 0.400-18.799 0.304 0.001 (0.821)

Weighted median 1.737 0.095-31.740 0.710

MR-Egger 1.751 0.023-132.749 0.800

MR-PRESSO 2.734 0.406-18.387 0.304
ALP, alkaline phosphatase; ALT, alanine aminotransferase.
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It may exclude the pleiotropy of an instrumental variable to a

greater extent. Our analysis showed that HDL and serum urate as

well as gout have a bidirectional causal effect on each other good

management of one is potentially beneficial to the other. However,

in this article we did not discover the relationship of causality

between LDL, TC, and serum urate as well as gout.

Also, the causal relationship between blood pressure, liver

function, and gout or serum urate was investigated. A prospective

cohort study including 6,424 hyperuricemia-free participants

proved positive relationships between hypertension and

hyperuricemia (39). A meta-analysis including 10 articles showed

that hypertensive individuals were more likely to develop gout

compared with normotensive individuals (33). In terms of blood

pressure, epidemiological studies indicated that patients with

hyperuricemia and gout had higher SBP, DBP, and PP (40, 41).

In the current study, we found that higher SBP was causally

associated with risk of gout or serum urate concentrations.

Increased evidence indicates that hyperuricemia and gout are

associated with increased prevalence and disease severity of non-

alcoholic fatty liver disease (NAFLD), and NAFLD can predict

hyperuricemia aswell (42).Although thereare few studies about the

effect of liver dysfunction on gout and serum urate, we found that

elevated circulating ALT was related with increased serum urate

through MR analysis.

There were also some limitations in our study. Although this

article mainly selected the European population as the object for

study, the GWAS on lipid included a part of the non-European

population. Moreover, we used MR-Egger and MR-PRESSO to

control pleiotropy. However, the possibility that pleiotropy may

have influenced the results cannot entirely be ruled out as in any

Mendelian randomization study. MR analysis assumes a linear

relation between each genetic instrument and the risk factor of

interest, as well as a log-linear association between the risk factors

and outcomes. The estimated effects may not be representative of

the effects of the traits in the extremes of their distributions.
Conclusions

In conclusion, our findings from the genetic study provide

support that metabolic factors including BMI, HDL, and SBP are

causally associated with serum urate levels and gout risk. Among

the above metabolic factors, HDL and serum urate as well as

gout have a bidirectional causal effect. In addition, our study

demonstrates that variations in fasting insulin, TG, and ALT

only have a positive causal effect on serum urate concentrations.
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SUPPLEMENTARY FIGURE 1

The relationship between type 2 diabetes mellitus (T2DM)-associated
single nucleotide polymorphisms (SNPs) and risk of increased serum

urate and gout. Three different methods [inverse variance weighted
(IVW) approach, MR-Egger, and weighted median] were used. (A) The
scattered plot of SNPs associated with T2DM and their risk on increased
serum urate. (B) The scattered plot of SNPs associated with T2DM and

their risk on gout.

SUPPLEMENTARY FIGURE 2

The relationship between fasting insulin-associated single nucleotide

polymorphisms (SNPs) and risk of increased serum urate and gout.
Three different methods [inverse variance weighted (IVW) approach,
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MR-Egger, and weighted median] were used. (A) The scattered plot of
SNPs associated with fasting insulin and their risk on increased serum

urate. (B) The scattered plot of SNPs associated with fasting insulin and
their risk on gout.

SUPPLEMENTARY FIGURE 3

The relationship between fasting glucose-associated single nucleotide
polymorphisms (SNPs) and risk of increased serum urate and gout. Three

differentmethods [inversevarianceweighted (IVW)approach,MR-Egger,and

weightedmedian] were used. (A) The scattered plot of SNPs associatedwith
fastingglucoseand their risk on increased serumurate. (B)The scatteredplot
of SNPs associated with fasting glucose and their risk on gout.

SUPPLEMENTARY FIGURE 4

The relationship between body mass index (BMI)-associated single

nucleotide polymorphisms (SNPs) and risk of increased serum urate and

gout. Three different methods [inverse variance weighted (IVW) approach,
MR-Egger, and weighted median] were used. (A) The scattered plot of

SNPs associated with BMI and their risk on increased serum urate. (B) The
scattered plot of SNPs associated with BMI and their risk on gout.

SUPPLEMENTARY FIGURE 5

The relationship between waist-to-hip ratio adjusted for body mass index

(WHRadjBM)-associated single nucleotide polymorphisms (SNPs) and risk
of increased serum urate and gout. Three different methods [inverse

variance weighted (IVW) approach, MR-Egger, and weighted median]
were used. (A) The scattered plot of SNPs associated with WHRadjBM

and their risk on increased serum urate. (B) The scattered plot of SNPs
associated with WHRadjBM and their risk on gout.

SUPPLEMENTARY FIGURE 6

The relationship between high-density lipoprotein cholesterol (HDL)-

associated single nucleotide polymorphisms (SNPs) and risk of
increased serum urate and gout. Three different methods [inverse

variance weighted (IVW) approach, MR-Egger, and weighted median]
were used. (A) The scattered plot of SNPs associated with HDL and

their risk on increased serum urate. (B) The scattered plot of SNPs

associated with HDL and their risk on gout.

SUPPLEMENTARY FIGURE 7

The relationship between triglycerides (TG)-associated single nucleotide

polymorphisms (SNPs) and risk of increased serum urate and gout. Three
different methods [inverse variance weighted (IVW) approach, MR-Egger,

and weighted median] were used. (A) The scattered plot of SNPs

associated with TG and their risk on increased serum urate. (B) The
scattered plot of SNPs associated with TG and their risk on gout.

SUPPLEMENTARY FIGURE 8

The relationship between low-density lipoprotein cholesterol (LDL)-
associated single nucleotide polymorphisms (SNPs) and risk of

increased serum urate and gout. Three different methods [inverse

variance weighted (IVW) approach, MR-Egger, and weighted median]
were used. (A) The scattered plot of SNPs associated with LDL and their
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risk on increased serum urate. (B) The scattered plot of SNPs associated
with LDL and their risk on gout.

SUPPLEMENTARY FIGURE 9

The relationship between total cholesterol (TC)-associated single
nucleotide polymorphisms (SNPs) and risk of increased serum urate and

gout. Three different methods [inverse variance weighted (IVW) approach,
MR-Egger, and weighted median] were used. (A) The scattered plot of

SNPs associated with TC and their risk on increased serum urate. (B) The
scattered plot of SNPs associated with TC and their risk on gout.

SUPPLEMENTARY FIGURE 10

The relationship between systolic blood pressure (SBP)-associated

single nucleotide polymorphisms (SNPs) and risk of increased serum
urate and gout. Three different methods [inverse variance weighted

(IVW) approach, MR-Egger, and weighted median] were used. (A) The
scattered plot of SNPs associated with SBP and their risk on increased
serum urate. (B) The scattered plot of SNPs associated with SBP and

their risk on gout.

SUPPLEMENTARY FIGURE 11

The relationship between pulse pressure (PP)-associated single

nucleotide polymorphisms (SNPs) and risk of increased serum urate and

gout. Three different methods [inverse variance weighted (IVW) approach,
MR-Egger, and weighted median] were used. (A) The scattered plot of

SNPs associated with PP and their risk on increased serum urate. (B) The
scattered plot of SNPs associated with PP and their risk on gout.

SUPPLEMENTARY FIGURE 12

The relationship between diastolic blood pressure (DBP)-associated

single nucleotide polymorphisms (SNPs) and risk of increased serum
urate and gout. Three different methods [inverse variance weighted

(IVW) approach, MR-Egger, and weighted median] were used. (A) The
scattered plot of SNPs associated with DBP and their risk on increased

serum urate. (B) The scattered plot of SNPs associated with DBP and their
risk on gout.

SUPPLEMENTARY FIGURE 13

The relationship between alanine aminotransferase (ALT)-associated

single nucleotide polymorphisms (SNPs) and risk of increased serum
urate and gout. Three different methods [inverse variance weighted

(IVW) approach, MR-Egger, and weighted median] were used. (A) The
scattered plot of SNPs associated with ALT and their risk on increased

serum urate. (B) The scattered plot of SNPs associated with ALT and their

risk on gout.

SUPPLEMENTARY FIGURE 14

The relationship between alkaline phosphatase (ALP)-associated single

nucleotide polymorphisms (SNPs) and risk of increased serum urate and
gout. Three different methods [inverse variance weighted (IVW) approach,

MR-Egger, and weighted median] were used. (A) The scattered plot of

SNPs associated with ALP and their risk on increased serum urate. (B) The
scattered plot of SNPs associated with ALP and their risk on gout.
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