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Introduction

Coronaviruses (CoVs) belong to the family 
Coronaviridae and are enveloped, single-stranded, 
positive-sense RNA viruses1. The CoVs are seen to be 
distributed in mammals as well as in humans causing 
mild infections. However, the severe acute respiratory 
syndrome CoV (SARS-CoV) and the  Middle East 
respiratory syndrome CoV (MERS-CoV) from 
zoonotic sources in 2002 and 2012, respectively, were 
responsible for high infection and mortality rates2. A  
novel CoV named as SARS-CoV-2, causative agent 

of the CoV disease 2019 (COVID-19), has caused 
750,890 confirmed cases globally with 36,405 reported 
mortalities3. The SARS-CoV-2 belongs to the beta 
CoV genus which also includes the SARS-CoV-1 and 
the MERS-CoV. The lack of approved effective drug 
therapeutic protocols for CoVs would be a challenge 
for the treatment of the newly emerged COVID-19 
infections worldwide.

Drug repurposing, which is defined as identifying 
alternative uses for approved or investigational drugs 
outside their defined indication, could be a possible 
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The newly emerged 2019 novel coronavirus (CoV), named as severe acute respiratory syndrome CoV-2 
(SARS-CoV-2), like SARS-CoV (now, SARS-CoV-1) and Middle East respiratory syndrome CoV 
(MERS-CoV), has been associated with high infection rates with over 36,405 deaths. In the absence 
of approved marketed drugs against coronaviruses, the treatment and management of this novel CoV 
disease (COVID-19) worldwide is a challenge. Drug repurposing that has emerged as an effective drug 
discovery approach from earlier approved drugs could reduce the time and cost compared to de novo 
drug discovery. Direct virus-targeted antiviral agents target specific nucleic acid or proteins of the virus 
while host-based antivirals target either the host innate immune responses or the cellular machineries 
that are crucial for viral infection. Both the approaches necessarily interfere with viral pathogenesis. 
Here we summarize the present status of both virus-based and host-based drug repurposing perspectives 
for coronaviruses in general and the SARS-CoV-2 in particular.
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way to overcome the time limitation of research and 
development needed to design a therapeutic drug 
to combat the pathogen4. Apart from having a lower 
risk of failure, most repurposed drugs have cleared 
phase I trials and require lower investment, but above 
all, the drug repurposing strategy drastically reduces 
the time frame for development5. The drug repurposing 
or repositioning approach thus can facilitate prompt 
clinical decisions at lower costs than de novo drug 
development. Though drug repurposing is sometimes 
based on chance observations, target-based repurposing 
of drugs depends on prior understanding of the precise 
molecular or cellular element that is recognized by the 
proposed drug6,7. The target may or may not essentially 
have the same mechanism of action in both the diseased 
states. Antivirals that can target the viral proteins 
or the key events in the viral life cycle, including 
virus-host cell interactions, replication, assembly and 
egress, would belong to this class. Drug repurposing 
to identify candidate drug compounds centred on the 
target-based criteria can thus be generally distinguished 
into virus- and host-based therapeutics. This review 
outlines the present status of both virus-based and 
host-based drug repurposing evaluations against the 
CoVs. The focus would be on the Food and Drug 
Administration (FDA)-approved marketed drugs or 
those under clinical trials against the CoVs in general, 
and the SARS-CoV-2 in particular.

Virus-based drug repurposing for coronaviruses

Virus-based antiviral agents target specific proteins 
of the virus. The major open reading frame, ORF1ab, 
of the SARS-CoV genome encodes the large replicase 
polyprotein pp1ab which forms the non-structural 
proteins, nsp1-16, while the structural proteins include 
S, E, M and N8-10. The viral replication is facilitated 
by a replicase complex that involves processing of 
pp1ab by two cysteine proteases, namely the main 
protease (Mpro) or the 3C-like protease (3CLpro) 
and the secondary papain-like protease 2 (PL2pro)11,12 
(Figs 1 and 2). Mpro cleaves at 11 sites in the central 
and C-terminal regions, while PL2pro cleaves at three 
sites in the N-terminal regions of the polyprotein. 
Majority of the proteins and enzymes of CoVs vital for 
the replication process are potential drug targets.

Main protease (Mpro)/ 3CLpro inhibitors - Lopinavir 
and/or lopinavir-ritonavir, cinanserin, herbacetin, 
rhoifolin and pectolinarin

The Mpro is a promising viral target for the design 
of drugs against SARS/MERS, as the polyprotein 

cleavage by the Mpro facilitates the formation of 
the RNA-dependent RNA polymerase (RdRp) and 
the helicase which are the major proteins of viral 
replication8,11,12,22,23. Various classes of protease 
inhibitors, such as halomethylketones, phthalhydrazide 
ketones, α, β-epoxyketones, glutamic acid and 
glutamine peptides with a trifluoromethylketone 
group, zinc or mercury conjugates, C2-symmetric 
diols, peptidomimetic-α, β-unsaturated esters, 
aldehydes, anilides, nitriles, pyrimidinone and pyrazole 
analogues, benzotriazole, N-phenyl-2-acetamide and 
biphenyl sulphone, are reported to inhibit the SARS-
CoV-1 Mpro/ 3CLpro24,25 (Fig. 2). Of these prospective 
Mpro inhibitors, the common FDA-approved ones 
are well-known HIV-1 protease inhibitors26. Among 
these, lopinavir and/or a ritonavir-boosted form of 
lopinavir has been reported to have anti-CoV activity 
in vitro and also has shown improved outcomes in non-
human primates infected with MERS-CoV and in non-
randomized trials with SARS patients27. Both lopinavir 
and ritanovir are under phase II/III clinical trials for 
MERS-CoV (NCT02845843)28. These are also reported 
to have activity against HCoV-229E, HCoV-NL63 and 
animal CoVs29.

Cinanserin (SQ 10,643) a serotonin antagonist, 
demonstrated antiviral activity against SARS-
CoV-1, and the inhibition of replication was probably 
by blocking the activity of Mpro14. Flavonoids, 
herbacetin, rhoifolin and pectolinarin that are known 
to possess antioxidant effects associated with diseases 
such as cancer, Alzheimer’s disease and atherosclerosis 
were also noted to efficiently inhibit SARS-CoV-1 
Mpro15.

Papain-like protease (PLpro) inhibitor - Disulfiram

Disulfiram, which is an approved drug for the 
treatment of alcohol dependence, demonstrated 
in vitro inhibition of the PL2pro enzyme of SARS and 
MERS30. The study also provided future directions 
for the development of fragment-linked inhibitors for 
improving its potency31.

RNA-dependent RNA polymerase (RdRp) inhibitors 
- Ribavirin, immucillin-A/ galidesivir, remdesivir and 
acyclovir

The RdRp which is critical for CoV transcription 
and replication is involved in producing the genomic 
and subgenomic RNAs. Nucleoside analogues such 
as favipiravir, ribavirin, penciclovir, remdesivir 
and galidesivir are well-known RdRp inhibitors. 
A guanosine analogue, ribavirin, showed broad-
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spectrum antiviral activity against several viruses 
including respiratory syncytial virus, hepatitis C 
and E viruses  (HCV, HEV), chikungunya and viral 
haemorrhagic fevers32,33. Though the mechanism of 
action is not fully understood, it is hypothesized that 
the drug may be involved in the inhibition of mRNA 
capping or viral RNA synthesis. The in vitro antiviral 
activity of ribavirin was demonstrated against SARS-
CoV-1 and MERS-CoV34 and in rhesus monkeys 
infected with MERS-CoV35. The drug has been used in 
the treatment of SARS and MERS patients, though the 
benefits are ambiguous. Further, in severely infected 
CoV patients, there could be side effects associated 
with high doses36.

Immucillin-A (galidesivir), an adenosine 
analogue, has been shown recently as a broad-
spectrum RdRp inhibitor against several RNA viruses, 
such as paramyxoviruses, flaviviruses, togaviruses, 
bunyaviruses, arenaviruses, picornaviruses, filoviruses 
and also against SARS/MERS-CoVs37. Though it 
has been reported as a treatment option during the 
2014-2016 West Africa Ebola virus epidemic, no 
data for animal/human were reported for CoVs until 
recently for the SARS-CoV-216.

Sheahan et al38 showed that another nucleoside 
analogue, remdesivir (GS-5734), presently under 
clinical trials for the Ebola virus, demonstrated 
inhibition of the replication of SARS-CoV-1 and 

Fig. 1. Schematic representation of the genomic organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in comparison 
with bat-CoV RaTG 13, SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV). Below are the modelled three-
dimensional structures of the major virus based antiviral targets [3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp) and 
papain-like protease (PL2pro)] based on SARS-CoV-1 templates obtained from Protein Data Bank. Also depicted is structure of the spike 
glycoprotein of SARS-CoV-2 released recently (6VSB.pdb). Per cent identity between coding regions of the specific viral genomes depicted 
was calculated using p-distance method of MEGA software v7.0 (https://www.megasoftware.net/). Source: Refs 9, 13.
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MERS-CoV in primary human airway epithelial 
cells. They also demonstrated broad-spectrum anti-
CoV activity against bat-CoVs and human CoVs 
in primary human lung cells17,38. In another recent 
study, remdesivir was shown to possess better in vitro 
antiviral efficacy against MERS-CoV in comparison 
to lopinavir and ritanovir17,39. In mice, remdesivir 
improved pulmonary function with lower viral 
loads in the lungs both as a prophylactic and as a 
therapeutic17,40.

Another nucleoside analogue, acyclovir that was 
modified by incorporating fleximers to increase its 
binding affinity has been reported to be effective 

in vitro against MERS-CoV and HCoV-NL6339,41, 
though to the best of our knowledge, no animal or 
human data are available.

Inhibitors of spike glycoprotein - Griffithsin

CoVs possess a surface structural spike 
glycoprotein (S) which is vital for interaction with 
the host cell receptor and subsequent virus entry into 
the cell. The S protein constitutes two subunits, the 
S1 (receptor-binding) and the S2 (membrane fusion) 
domains40. Griffithsin, a lectin extract red algae, 
has been reported to bind to oligosaccharides on the 
surface of various viral glycoproteins, including HIV 
glycoprotein 120 and SARS-CoV glycoproteins41.

Fig. 2. Schematic representation of the coronavirus replication cycle depicting the potential therapeutics against different virus-based (red) 
and host-based (blue) targets for coronavirus drug repurposing. The drugs effective against the various targets are mentioned in the brackets. 
3CLpro, cysteine-like protease; PL2pro, papain-like protease; nsp, non-structural protein; RdRp, RNA-dependent RNA polymerase; pp1ab, 
polyprotein ab; M, membrane protein; E, envelope protein; S, spike protein; N, nucleocapsid protein; UTR, untranslated region; ORF, open 
reading frame; MPA, mycophenolic acid; ERK-MAPK, extracellular signal-regulated kinase mitogen-activated protein kinase; poly(I:C), 
polyinosinic: polycytidylic acid; NAAE, N-(2-aminoethyl)-1-aziridine-ethanamine; YS110, a recombinant humanized IgG1 anti-DPP4 mAb; 
DPP4, dipeptidyl peptidase 4; CYP, cyclophilin. Source: Refs 8, 10, 14-21.



164  INDIAN J MED RES, FEBRUARY & MARCH 2020

Other inhibitors with unknown site of action - 
Resveratrol, amodiaquine, mefloquine, loperamide

Resveratrol, a natural compound from grape, which 
is in a clinical phase for heart and other diseases, was 
also reported to effectively inhibit MERS-CoV in vitro 
by downregulation of the apoptosis induced by the 
virus42. The possible site of action was suggested to be 
the nucleocapsid protein. Amodiaquine and mefloquine, 
antimalarial drugs, were also found to be effective 
against MERS-CoV43. Loperamide, an antidiarrhoeal 
agent that was identified by the screening of an FDA-
approved compound library, showed in vitro antiviral 
activity against MERS44.

Inhibitors of viral nucleic acids - Mycophenolic acid

Viral nucleic acids are mainly composed of 
nucleosides and nucleotides. The drugs that target these 
have mycophenolic acid (MPA) as the active compound 
and inhibit inosine monophosphate dehydrogenase 
and guanine monophosphate synthesis45. Broad-
spectrum activity has been reported by MPA against a 
broad range of viruses including orthohepadnaviruses  
(hepatitis B), flaviviruses (HCV), arboviruses and 
CoVs. MPA possessed anti-MERS-CoV activity 
in vitro, though it was shown to result in a worsened 
outcome in the marmoset primate model26. Treatment 
of renal transplant recipients with MPA resulted in 
severe MERS46. Combination therapy with interferon 
beta-1b (IFN-β-1b) was, however, reported to be 
synergistic in vitro47, implying that monotherapy with 
the drug might not be useful for treating CoVs.

Host-based drug repurposing for coronaviruses

Specific host factors are utilized by CoVs for entry 
and replication. The anti-CoV potential of monoclonal 
antibodies (mAbs) evoked against the receptor binding 
domain (RBD) of S1 subunit and fusion inhibitors 
which target the S2 subunit has been reported in in vitro 
and/or in vivo studies48-50. SARS-CoVs and HCoV-
NL63 preferably utilize the angiotensin-converting 
enzyme 2 (ACE2) host receptor while dipeptidyl 
peptidase 4 (DPP4) is used by MERS-CoV51,52 for 
entry. The further entry of CoVs into host cells includes 
the cell surface and/or endosomal pathways which are 
via host proteases such as transmembrane protease 
serine 2 (TMPRSS2) that cleave and activate viral S 
protein53. Inhibitors of these host proteases can prevent 
this proteolytic cleavage, partially blocking cell entry. 
Further, a group of drugs can target the endocytosis or 
cell entry44 (Fig. 2).

The innate IFN response of the host also has 
therapeutic potential as it controls viral replication after 
infection18,54. Additional pathways of cell signalling 
have also been noted as possible therapeutic targets for 
CoVs55. These classes of inhibitors are discussed below.

Inhibitors targeting endocytosis or cell entry - 
Chlorpromazine, ouabain, bufalin, chloroquine

Chlorpromazine, an antipsychotic/tranquilizer 
drug, is also known to affect the assembly of clathrin-
coated pits at the plasma membrane44. It showed broad-
spectrum in vitro activity against viruses such as HCV, 
alphaviruses, SARS-CoV-1 and MERS-CoV. Ouabain 
and bufalin, examples of a class of steroids which bind 
sodium- or potassium-transporting ATPase subunit α1, 
also inhibited the endocytosis of MERS-CoV mediated 
by clathrin56. However, very high EC50/Cmax (half-
maximal effective concentration value/peak serum 
concentration level) ratios at the typical dosages or 
toxicity, limit the clinical use of these endocytosis 
inhibitors. Acidification of the endosome can also affect 
endocytosis. Chloroquine, an antimalarial drug, can 
increase the intracellular pH by directing protons into 
the lysosomes57. It possesses broad-spectrum in vitro 
antiviral activities against flaviviruses, HIV, Ebola, 
Nipah and numerous CoVs58. However, it did not show 
activity in SARS-CoV-infected mice59. The anti-CoV 
activity of different endocytosis inhibitors thus need 
further in vivo evaluation.

Inhibitors of host receptor mediated viral entry - 
N-(2-aminoethyl)-1-aziridine-ethanamine (NAAE), 
peptides, mAb YS110

Specific peptide inhibitors and monoclonal or 
polyclonal antibodies can be used to target the host 
receptor48. N-(2-aminoethyl)-1-aziridine-ethanamine, a 
small-molecule inhibitor and synthetic ACE2-derived 
peptides showed inhibition of ACE2 activity and cell 
fusion via the S protein of SARS-CoV-1 in vitro60,61. 
However, these inhibitors have not been tested in 
CoV patients. Monoclonal antibodies (mAbs) such 
as anti-dipeptidyl peptidase 4 (DPP-4) have also 
been reported to block cell entry of MERS-CoV in 
vitro62. YS110, an anti-DPP4 recombinant humanized 
IgG1 mAb, used in a phase I clinical trial, was 
found to be well tolerated in patients with advanced 
malignancies19. However, considering that host cell 
receptor usage differs in different CoVs, the anti-CoV 
activity of these agents may be narrow-spectrum. 
Further, based on the vital biological functions of 
these receptors, the risks of immunopathology such as 
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blood pressure regulation, glucose metabolism etc., 
would need assessment52.

Inhibitors of host proteases used for viral entry - 
Camostat mesylate, nafamostat

Camostat mesylate, a synthetic serine protease 
inhibitor, that is used to treat patients with chronic 
pancreatitis, works against the serine protease 
TMPRSS263,64. It has shown broad-spectrum activity 
against enveloped RNA viruses such as CoVs and 
paramyxoviruses. Camostat mesylate is reported 
to inhibit SARS and MERS in ex vivo studies and 
improves the survival of mice infected with SARS64,65. 
Nafamostat, another serine protease inhibitor used 
to treat disseminated intravascular coagulation and 
pancreatitis, blocked MERS-CoV infection by inhibiting 
TMPRSS2 in human airway epithelial Calu-3 cells65,66.

Enhancers of host innate immune response - 
Interferons, polyinosinic: polycytidylic acid [poly(I:C)] 
and nitazoxanide

Though on viral infection suppression of the 
IFN response is an integral part for immune evasion, 
several viruses and CoVs are noted to be susceptible 
to IFN treatment. The effectiveness of recombinant 
IFN-β over IFN-α has been demonstrated by in vitro 
studies against both SARS and MERS67. IFN-α 
mediated reduction of viral titres was observed 
in SARS-CoV-infected in vivo models35,59, while 
IFN-β administration via different routes was found 
to be effective in MERS-CoV in vivo models26. 
Combinations of IFN-α/β, ribavirin and lopinavir/
ritonavir-boosted lopinavir for treatment of SARS/
MERS patients, demonstrated varying benefits33,36,68.

Another type I IFN enhancer, polyinosinic: 
polycytidylic acid [poly(I:C)], a dsRNA synthetic 
analogue, demonstrated reduction in viral load in 
MERS-CoV-infected BALB/c mice69. In phase II 
clinical trials, poly (I:C) was shown to be beneficial for 
patients suffering from malignant gliomas70.

Nitazoxanide, a synthetic derivative of 
nitrothiazolyl-salicylamide which is used as a 
treatment for parasitic infections, is an effective type I 
IFN inducer71. It has been shown to exhibit antiviral 
activities against several viral families and canine 
CoVs. Nitazoxanide was found to be safe in phase II 
and III clinical trials against HCV and influenza72.

Inhibitors of signaling pathways involved in viral 
replication - Cyclosporine, trametinib and others

Drugs interfering with the viral replication 
signaling pathways are noted to have broad spectrum 
activity against several viruses such as HCV, 
HIV, vesicular stomatitis virus, human papilloma 
virus, vaccinia virus and CoVs55. Cyclosporine, a 
calcineurin pathway inhibitor, inhibited a broad 
range of CoVs in vitro by interacting with the nsp1 
protein and modulating immune response mediated 
by T cells73. The clinical application of this drug is, 
however, restricted due to immune-suppressive effects 
and a higher EC50/Cmax ratio at standard dose levels. 
Other calcineurin inhibitors such as alisporivir, have 
demonstrated activity against HCoV-NL6320.

The extracellular signal-regulated kinase 
(ERK) pathway mediates intracellular signals from 
membrane-associated Ras to the cytoplasmic kinase 
cascade Raf, Mek and Erk74. The kinase signaling 
pathway inhibitors, such as trametinib (Mek inhibitor), 
selumetinib (Erk inhibitor), everolimus, rapamycin, 
dasatinib and imatinib have also demonstrated anti-
CoV effects through inhibition of early viral entry or 
post-entry events75. However, their toxicities may be a 
concern in severe infections.

Targeting viral translation - Silvestrol

Initiation of translation in many viruses happens 
through the usage of the host eukaryotic initiation 
factors (eIFs)76. The helicase eIF4A unwinds 
5′-untranslated region of the mRNA, facilitating 
assembly of the translation pre-initiation complexes. 
A natural compound, silvestrol, being an inhibitor 
of eIF4A and reported to show anti-cancer activity77, 
demonstrated inhibition of MERS-CoV and HCoV-
229E translation and replication in MRC-5 lung 
fibroblast cells78.

Current perspectives for COVID-2019 

Comparison of the coding regions of SARS-
CoV-2 showed that it possessed a similar genomic 
organization when compared to bat-SL-CoVZC45 
and SARS-CoV-19 (Fig. 2). Sequence analysis 
further revealed good sequence identity with the bat 
and human CoVs in the different coding regions. 
Except for the spike glycoprotein of SARS-CoV-2 
that differs from the other CoVs including SARS-
CoV-1 spike protein13,79,  the catalytic pockets in the 
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CoV-2 using recombinant IFNs (NCT04251871, 
ChiCTR2000029638)19. In another study, an artificial 
intelligence-based knowledge graph comprising 
systematically curated medical data, was searched for 
approved drugs against SARS-CoV-285. Baricitinib, 
a janus kinase inhibitor, that was consequently 
identified, is a high-affinity AP2-associated protein 
kinase 1-binding drug which also interacts with a 
kinase regulator of endocytosis. Baricitinib has thus 
been suggested as a potential treatment for COVID-19 
disease as it has the ability to reduce viral infection in 
lung cells.

Molecular docking studies undertaken

We analyzed the binding potential of HIV-1 
protease inhibitors, lopinavir and ritanovir against the 
3CLpro of SARS-CoV-2, using computational docking 
studies. This would help gain insight into the molecular 
mode of action of these drugs which are under clinical 
trials against the SARS-CoV-2 and also estimate the 
comparative inhibitory potency of the FDA-approved 
HIV protease inhibitors to the SARS-CoV-2.

The Mpro of CoVs cleaves substrates by 
recognizing the sequence motif (small)-X-(L/F/M)-
Q↓(G/A/S)-X (X → any amino acid; ↓ cleavage site) 
and specifically the P1 site of the substrate requires 
a Gln (Q)86,87. The X-ray structure of SARS-CoV-1 
3CLPro dimer bound with aza peptide epoxide 
(APE) as an inhibitor, (2A5K.pdb) was used for 
the modelling studies. The peptide showed major 
specificity to the S2 subsite and partial specificity 
to the S4 subsite of 3CLpro12. We detached the APE 
from the crystal structure complex and re-docked it 
computationally using the same protocol as for the 
two selected study inhibitors to obtain the docking 
score and it was found to be −8.27 Kcal/mol. The two 
inhibitors in this study had better binding potential 
(Fig. 3) when compared to APE. Comparison of the 
docked poses reveals that lopinavir occupies the 
S1’ and S1 subsites with excellent complementarity 
while ritanovir occupies the S3 and S4 subsites with 
excellent complementarity through the benzene and 
2’ isopropyl thiozole groups respectively. These 
structural features indicate the possible mechanism 
by which these inhibitors can block the function of 
the SARS-CoV-2 3CLpro. The peptide substrate 
cleavage sites for SARS-CoV 3CLpro are noted to 
be at P1↓ P1’ and P3↓P488,89, the occupancy at the 
respective active site cavities would be crucial for 
competitive inhibition of the polyprotein substrate. 

major non-structural viral enzymes are conserved at 
both the sequence and protein structural level across 
CoVs. Hence, repurposing of the promising MERS 
and SARS inhibitors for SARS-CoV-2 is a practical 
strategy16.

In vitro evaluations to test the antiviral potency of 
marketed drugs ribavirin, penciclovir, nitazoxanide, 
nafamostat, chloroquine and broad-spectrum RdRp 
inhibitors, remdesivir (GS-5734) and favipiravir 
(T-705) against SARS-CoV-2 were recently 
undertaken80. The findings have shown that remdesivir 
and chloroquine are more efficacious in comparison 
to the others. A patient from USA with COVID 
2019 who was treated with remdesivir intravenously 
was reported to have recovered81. Phase III trials 
(NCT04252664, NCT04257656) of intravenous 
remdesivir are currently ongoing to assess the 
efficacy in patients with SARS-CoV-2. Chloroquine 
is under an open-label trial for SARS-CoV-2 
(ChiCTR2000029609). In addition, randomized 
clinical trials have been initiated for SARS-CoV-2 
with favipiravir (ChiCTRChiCTR2000029544, 
ChiCTR2000029600) and ribavirin in combination 
with pegylated IFN (ChiCTR2000029387).

Results following rapid sequencing of the SARS-
CoV-2, combined with molecular modelling based 
on homologous templates82 have identified certain 
compounds along with lopinavir and ritonavir that 
may be efficacious. Phase III clinical trials have also 
been initiated to test the HIV protease inhibitors 
including lopinavir (NCT04252274, NCT04251871, 
NCT04255017, ChiCTR2000029539), ritonavir 
(NCT04251871, NCT04255017, NCT04261270), 
darunavir and cobicistat (NCT04252274) in patients 
infected with SARS-CoV-221.  Another HIV protease 
inhibitor, ASC09F, in combination with oseltamivir 
is also in phase III clinical trial for SARS-CoV-2 
(NCT04261270).

Arbidol (Umifenovir), a wide-spectrum antiviral 
drug inhibiting several flaviviruses and influenza 
viruses, whose mechanism of action is based on 
blocking crucial steps in virus- host cell interactions83, 
is under phase IV clinical trial for SARS-CoV-2 
(NCT04260594, NCT04254874, NCT04255017). 
Oseltamivir, an influenza neuraminidase inhibitor84 
is also under phase IV trial  for SARS-CoV-2 
(NCT04255017).

In the direction of host-based treatment 
strategies, randomized trials are underway for SARS-
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Based on this requirement, the findings are suggestive 
that ritonavir and lopinavir may have good potential 
for repurposing as SARS-CoV-2 protease inhibitors. 
Molecular dynamics simulation studies for the 
complexes obtained in this study would be essential 
to identify specific interactions between the enzyme 
and drug in the stable complexes and observe the 
hydrogen bond pattern, especially in the presence 
of solvent molecules. Additionally, studies need to 
be undertaken for the binding analyses of the other 
protease inhibitors, specific RdRp inhibitors and 
inhibitors of other enzymatic targets. The results 
would help gain an in-depth understanding of the  
relative binding affinity and design of derivatives 
with greater binding potential at the enzyme active 
site.

Conclusions

This review presented the information with 
respect to repurposing of FDA-approved drugs as 
well as those under clinical trials for SARS-CoV-1 
and MERS-CoVs, wherein a lot of effort had gone 
in during the last decade or more. This knowledge 
has in fact, formed the basis for efforts towards 
drug repurposing for the SARS-CoV-2 as well. As 
highlighted in this review, phase III clinical trials of 
a few drugs have been initiated, though most of these 
are notably targeting the virus directly, essentially 
the RdRp or the chymotrypsin-like protease 3CLpro. 

The spike glycoprotein also needs be explored as a 
target for the SARS-CoV-2 as the S1 domain of this 
virus deviates from the other human CoVs. It is thus 
important that the spike protein should be considered 
as a potential SARS-CoV-2 therapeutic target. On the 
other hand, considering that the strategy of targeting 
viral proteins is vulnerable to the emergence of 
viral resistance, other coronavirus targets such as 
the papain-like protease, helicase etc., also need to 
be attempted for drug repurposing. Further, several 
more of the potential SARS and/or MERS host-based 
inhibitors should be assessed against SARS-CoV-2. 
The ongoing vigorous efforts would help develop 
broad-spectrum anti-CoV agents against SARS-
CoV-2.
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Fig. 3. Docking interaction analysis of HIV inhibitors in the substrate binding cavity of modelled severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) main protease (3C-like protease). (A) ritonavir (Docking score = −11.29 kcal/mol); (B) lopinavir (Docking score = −9.6 
kcal/mol). The P4–P1’ side chains of the inhibitor are labelled. Comparison of the docked poses of the inhibitors reveals that the occupancy at 
the respective active site cavity subsites corresponding to P1’ and P1 for lopinavir and P3 and P4 for ritanovir that are crucial for competitive 
inhibition of the polyprotein substrate, are good.
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