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We investigate a class of memristor-based shunting inhibitory cellular neural networks with leakage delays. By applying a new
Lyapunov functionmethod, we prove that the neural network which has a unique almost periodic solution is globally exponentially
stable.Moreover, the theoretical findings of this paper on the almost periodic solution are applied to prove the existence and stability
of periodic solution formemristor-based shunting inhibitory cellular neural networks with leakage delays and periodic coefficients.
An example is given to illustrate the effectiveness of the theoretical results. The results obtained in this paper are completely new
and complement the previously known studies of Wu (2011) and Chen and Cao (2002).

1. Introduction

It is common knowledge that shunting inhibitory cellular
neural networks (SICNNs) have a wide application in many
fields such as image processing, signal processing, pattern
recognition, psychophysics, speech, perception, robotics,
and vision [1–3]. Thus, the theoretical analysis and applied
research on SICNNs have attracted worldwide attention.
During the past decades, memristor which is a new circuit
element has received much attention due to its wide range
of applications in computer, physics, electronic engineering,
and so on [4, 5]. In particular, memristor has memory
function and nanometer dimensions. The former can help
us to deal with nanocomputing and the latter can provide a
very high density and is less power hungry. The memristor
can exhibit features as what the neurons in the human brain
possess [4].

In practical implementation, the time delays often occur
in neural networks due to the finite switching speed of
the neuron amplifiers and the finite signal transmission
velocity. Here, we would like to point out that a typical time
delay called leakage (or forgetting) delay may occur in the
negative feedback term of the neural networks and plays
an important role in characterizing the dynamical behavior
of neural networks [6–11]. For example, time delay in the

stabilizing negative feedback term may destabilize a system
[12]. Balasubramaniam et al. [13] argued that the existence
and uniqueness of the equilibrium point have nothing to do
with time delays and initial conditions. Thus, it is important
to study the leakage delays’ effect on the dynamical behavior
of memristor-based neural networks. In recent years, there is
some work on this topic. We refer the readers to [14–16].

As is known to us, periodic oscillation of neural networks
plays an important role in the daily life of human beings.
Periodic oscillation of neural networks has been widely
applied in many biological and cognitive activities. For
example, periodic oscillatory or chaotic phenomena often
occur in the human brain.Thus, some authors investigate the
periodic oscillatory dynamical behavior of neural networks
for grasping the mechanism of the human brain. We refer
the readers to [17–19]. However, in many cases, the periodic
parameters of neural networks may experience certain per-
turbations and then theymay be not periodic.Thus, it is more
reasonable to characterize the reality of neural networks with
almost periodic parameters. In recent years, many authors
consider the almost periodic oscillation of neural networks
with or without delay and numerous good results have been
available. For example, Liu et al. [20] focused on the almost
periodic solution of impulsive Hopfield neural networks with
finite distributed delays by applying fixed point theorems,
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Lyapunov functional, and some inequality techniques. Li
et al. [21] investigated the existence and global exponential
stability of almost periodic solution for high-order BAM
neural networks with delays on time scales. By using a
fixed point theorem and by constructing a suitable Lyapunov
functional, authors established some sufficient conditions to
ensure the existence and global exponential stability of almost
periodic solution for high-order bidirectional associative
memory neural networks with delays on time scales. Huang
[22] presented some sufficient conditions for the existence
and exponential stability of almost periodic solutions for
fuzzy cellular neural networks with time-varying delays. Li
et al. [23] established some sufficient conditions to ensure
the existence and stability of pseudo almost periodic solution
for neutral type high-order Hopfield neural networks with
delays in leakage terms on time scales bymeans of fixed point
theorem and the theory of calculus on time scales. For more
results on this aspect, we refer the readers to [24–34]. To the
best of our knowledge, there are no results on the existence
and stability of almost periodic solution of memristor-based
shunting inhibitory cellular neural networks with leakage
delays.

Inspired by the discussions above, in this article, we con-
sidered the following memristor-based shunting inhibitory
cellular neural networks with leakage delays:

𝑥̇𝑖𝑗 (𝑡) = −𝑎𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡)) 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))) 𝑥𝑖𝑗 (𝑡)
+ 𝐿 𝑖𝑗 (𝑡) ,

(1)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, 𝐶𝑖𝑗 represents the cell at
the (𝑖, 𝑗) position of the lattice, the 𝑟-neighborhood𝑁𝑟(𝑖, 𝑗) of𝐶𝑖𝑗 is

𝑁𝑟 (𝑖, 𝑗) = {𝐶𝑘𝑙𝑖𝑗 :
max (|𝑘 − 𝑙| , 󵄨󵄨󵄨󵄨𝑙 − 𝑗󵄨󵄨󵄨󵄨) ≤ 𝜄, 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛} ,

(2)

𝑥𝑖𝑗 is the activity of the cell 𝐶𝑖𝑗, 𝐿 𝑖𝑗(𝑡) is the external input to𝐶𝑖𝑗, the constant 𝑎𝑖𝑗 > 0 represents the passive decay rate of
the cell activity, the activation function 𝑓(𝑥𝑘𝑙) is a positive
continuous function representing the output or firing rate of
the cell 𝐶𝑖𝑗, 𝜎𝑖𝑗(𝑡) ≥ 0 and 𝜏𝑖𝑗(𝑡) ≥ 0 denote the leakage
delay and transmission delay at time 𝑡, 𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗(𝑡)) ≥ 0 is
memristive synaptic weights (which means the connection
or coupling strength of postsynaptic activity of the cell
transmitted to the cell 𝐶𝑖𝑗), which is defined as follows:

𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝜉) = {{{
𝐶𝑘𝑙∗𝑖𝑗 (𝑡) , ℎ𝑖𝑗 (𝜉) > 𝑇𝑖𝑗,
𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) , ℎ𝑖𝑗 (𝜉) < 𝑇𝑖𝑗, (3)

for 𝑡 ∈ 𝑅, 𝑎𝑖𝑗(𝑡, 𝑥) = 𝐶𝑘𝑙∗𝑖𝑗 (𝑡) or 𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) when ℎ𝑖𝑗(𝜉) = 𝑇𝑖𝑗,
when ℎ𝑖𝑗 : 𝑅𝑛+𝑚 → 𝑅 (𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚)
are threshold level functions, 𝑇𝑖𝑗 ∈ 𝑅 (𝑖 = 1, 2, . . . , 𝑛, 𝑗 =1, 2, . . . , 𝑚) are threshold level, and 𝐶𝑘𝑙∗𝑖𝑗 and 𝐶𝑘𝑙∗∗𝑖𝑗 are all
continuous functions.The initial states associated with (3) are
given by

𝑥𝑖𝑗 (𝑠) = 𝜑𝑖𝑗 (𝑠) ,
𝑠 ∈ (−𝛿, 0] , 𝜑𝑖𝑗 (𝑠) ∈ 𝐶 (−𝛿, 0] , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, (4)

where 𝛿 = max𝑡∈𝑅{𝜏𝑖𝑗(𝑡), 𝜂𝑖𝑗(𝑡)}.
The main purpose of this article is to investigate the

existence and exponential stability of the almost periodic
solutions for system (1). With the aid of new Lyapunov
function techniques, we establish some new sufficient criteria
which guarantee the existence, uniqueness, and exponen-
tial stability of the almost periodic solution of system (1).
Also, the derived results on the almost periodic solution
are applied to prove the existence and stability of periodic
solution for memristor-based shunting inhibitory cellular
neural networkswith leakage delays and periodic coefficients.
The obtained results of this article are new and complement
previously known publications.

The remainder of the paper is organized as follows. In
Section 2, some necessary definitions and lemmas are stated.
In Section 3, a set of sufficient criteria which guarantee
the global existence and boundedness of any solutions and
the existence and exponential stability of an almost peri-
odic solution of neural networks (1) are established. The
global exponential periodicity and stability of system (1)
are analyzed in Section 4. An example is given to show the
correctness of the theoretical predictions in Section 5. A brief
conclusion is drawn in Section 6.

2. Preliminaries

In this section, we list several definitions and notations.
Suppose 𝐸 ∈ 𝑅𝑛+𝑚; then 𝑥 → 𝐹(𝑥) is called a set-valued
map from 𝐸 to 𝑅𝑛+𝑚, if, for each point 𝑥 ∈ 𝐸, there exists
a nonempty set 𝐹(𝑥) ⊂ 𝑅𝑛+𝑚. A set-valued map 𝐹 with
nonempty values is said to be upper semicontinuous at 𝑥0 ∈𝐸, if, for any open set 𝑁 containing 𝐹(𝑥0), there exists a
neighborhood𝑀 of 𝑥0 such that 𝐹(𝑀) ⊆ 𝑁.The map 𝐹(𝑥)
is said to have a closed (convex, compact) image if, for each𝑥 ∈ 𝐸, 𝐹(𝑥) is closed (convex, compact). For 𝜑 ∈ 𝐶(−𝛿, 0],
let ‖𝜑‖ = sup𝑠∈(−𝛿,0]‖𝜑(𝑠)‖. Given the function 𝑉 : 𝑅𝑛+𝑚 →𝑅, ∇𝑉 denotes the gradient of 𝑉 and 𝜕𝑉 denotes Clarke’s
generalized gradient of 𝑉.

In (1), since 𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝜉) is discontinuous, the classical defi-
nition of the solution for differential equations cannot apply
here. To handle this problem, Filippov developed a solution
concept for the differential equation with a discontinuous
right-hand side. Based on this definition, a differential
equation with a discontinuous right-hand side has the same
solution set as a certain differential inclusion. In what follows,
we use this definition to discuss dynamical behavior of (1). Let
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the set-valued maps be as follows:

co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝜉))

=
{{{{{{{{{

𝐶𝑘𝑙∗𝑖𝑗 (𝑡) , ℎ𝑖𝑗 (𝜉) > 𝑇𝑖𝑗,
co {𝐶𝑘𝑙∗𝑖𝑗 (𝑡) , 𝐶𝑘𝑙∗∗𝑖𝑗 } (𝑡) , ℎ𝑖𝑗 (𝜉) = 𝑇𝑖𝑗,
𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) , ℎ𝑖𝑗 (𝜉) < 𝑇𝑖𝑗,

(5)

for 𝑡 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, where co denotes the
convex closure of a set. Obviously, co(𝑎𝑖𝑗(𝑡, 𝜉)) is all closed,
convex, and compact in 𝜉 for each 𝑡 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =1, 2, . . . , 𝑚. We define the Filippov solution of (1) as the
following.

Definition 1. A function 𝑥(𝑡) is said to be a solution of
(1) on [0, 𝑇) with initial condition (4), if 𝑥(𝑡) is absolutely
continuous on any compact interval of [0, 𝑇) and satisfies
differential inclusions
𝑑𝑥𝑖𝑗 (𝑡)𝑑𝑡 ∈ −𝑎𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡))) 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)))
⋅ 𝑥𝑖𝑗 (𝑡) + 𝐿 𝑖𝑗 (𝑡) ,

(6)

or, equivalently, there exist 𝐷𝑘𝑙𝑖𝑗 (𝑡) ∈ co(𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗(𝑡))) satisfy-
ing

𝑑𝑥𝑖𝑗 (𝑡)𝑑𝑡 = −𝑎𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− ∑
𝐷𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

𝐷𝑘𝑙𝑖𝑗 (𝑡) 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))) 𝑥𝑖𝑗 (𝑡) + 𝐿 𝑖𝑗 (𝑡) , (7)

for a.e. 𝑡 ∈ [0, 𝑇], 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.
Definition 2. A continuous function 𝑥(𝑡) : 𝑅 → 𝑅𝑛+𝑚 is said
to be almost periodic on 𝑅 if, for any 𝜀 > 0, it is possible to
find a real number 𝑙 = 𝑙(𝜀) > 0. For any interval with length𝑙, there exists a number 𝜔 = 𝜔(𝜀) in this interval, such that|𝑥(𝑡 + 𝜔) − 𝑥(𝑡)| < 𝜀 for all 𝑡 ∈ 𝑅.
Definition 3. A continuous function 𝑥(𝑡) : 𝑅 → 𝑅𝑛+𝑚 is said
to be asymptotically almost periodic on 𝑅 if, for any 𝜀 > 0,
there exist 𝑇 > 0, 𝑙 = 𝑙(𝜀), and 𝜔 = 𝜔(𝜀) in any interval with
the length of 𝑙, such that |𝑥(𝑡 + 𝜔) − 𝑥(𝑡)| < 𝜀 for all 𝑡 ≥ 𝑇.
Definition 4. Theneural networksmodel is said to be globally
exponentially almost periodic if the state 𝑥(𝑡, 𝜑) of the neural
networks model is globally exponentially convergent to an
almost periodic state 𝑥∗(𝑡, 𝜑); that is, there are constants𝑀 ≥1 and 𝜇 > 0 such that, for any 𝜑 ∈ 𝐶(−𝛿, 0], ‖𝑥(𝑡, 𝜑) −𝑥∗(𝑡, 𝜑)‖ ≤ 𝑀‖𝜑 − 𝜓‖𝑒−𝜇𝑡, 𝑡 ≥ 0. In addition, if 𝑥∗(𝑡, 𝜑) is
a periodic solution (equilibrium), then the neural networks
model is said to be globally exponentially periodic (stable).

Definition 5 (see [35]). 𝑉(𝑥) : 𝑅𝑛+𝑚 → 𝑅 is said to be regular,
if, for each 𝑥 ∈ 𝑅𝑛+𝑚 and ] ∈ 𝑅𝑛+𝑚,

(i) there exists the usual right or left directional deriva-
tive

𝐷+𝑉 (𝑥, ]) = lim
ℎ→0+

𝑉 (𝑥 + ℎ]) − 𝑉 (𝑥)ℎ ; (8)

(ii) the generalized directional derivative of 𝑉 at 𝑥 in the
direction ] ∈ 𝑅𝑛+𝑚 is defined as

𝐷++𝑉 (𝑥, ]) = lim
𝑦→𝑥,ℎ→0+

𝑉 (𝑦 + ℎ]) − 𝑉 (𝑦)
ℎ ; (9)

then𝐷+𝑉(𝑥, ]) = 𝐷++𝑉(𝑥, ]).
Definition 6. For a locally Lipschitz function 𝑉 : 𝑅𝑛+𝑚 → 𝑅,
one can define Clarke’s generalized gradient of 𝑉 at point 𝑥,
as follows:
𝜕𝑉 (𝑥)
= co [ lim

𝑘→∞
∇𝑉 (𝑥𝑘) : 𝑥𝑘 󳨀→ 𝑥, 𝑥𝑘 ∉ 𝑁, 𝑥𝑘 ∉ Ω] , (10)

where Ω ⊂ 𝑅𝑛+𝑚 is the set of points where 𝑉 is not
differentiable and𝑁 ⊂ 𝑅𝑛+𝑚 is an arbitrary set with measure
zero.

Lemma 7 (see [36]). If 𝑉(𝑥) : 𝑅𝑛+𝑚 → 𝑅 is Clarke’s regular
and 𝑥(𝑡) : [0, +∞) → 𝑅𝑛+𝑚 is absolutely continuous on any
compact interval of [0, +∞), then𝑥(𝑡) and𝑉(𝑥(𝑡)) : [0, +∞) ∈𝑅𝑛+𝑚 are differential for a.a. 𝑡 ∈ [0, +∞), and one will have𝑑V(𝑡)/𝑑𝑡 = 𝛾(𝑡)𝑇𝑥̇(𝑡), ∀𝛾(𝑡) ∈ 𝜕𝑉(𝑥(𝑡)), where 𝜕𝑉(𝑥(𝑡)) is
Clarke’s generalized gradient.

Lemma 8 (see [37]). Let matrix𝑀 = (𝑚𝑖𝑗)𝑛×𝑛 have nonposi-
tive off-diagonal elements.Then,𝑀 is a nonsingular𝑀-matrix
if and only if one of the following conditions holds:

(1) There exist 𝑛 positive constants 𝛼1, 𝛼2, . . . , 𝛼𝑛 such that
𝛼𝑖𝑚𝑖𝑖 − 𝑛∑

𝑗=1,𝑗 ̸=𝑖

𝛼𝑗 󵄨󵄨󵄨󵄨󵄨𝑚𝑗𝑖

󵄨󵄨󵄨󵄨󵄨 > 0, 𝑖 = 1, 2, . . . , 𝑛. (11)

(2) There exist 𝑛 positive constants 𝛽1, 𝛽2, . . . , 𝛽𝑛 such that
𝛽𝑖𝑚𝑖𝑖 − 𝑛∑

𝑗=1,𝑗 ̸=𝑖

𝛽𝑗 󵄨󵄨󵄨󵄨󵄨𝑚𝑖𝑗

󵄨󵄨󵄨󵄨󵄨 > 0, 𝑖 = 1, 2, . . . , 𝑛. (12)

Denote 𝑎+ = sup𝑡∈𝑅|𝑎(𝑡)|, 𝑎− = inf 𝑡∈𝑅|𝑎(𝑡)|, where 𝑎 :𝑅 → 𝑅 is a bounded continuous function.
Throughout this paper, we assume that the following

conditions are satisfied:
(H1) For 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, 𝐶𝑘𝑙∗𝑖𝑗 (𝑡), 𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡),𝐿 𝑖𝑗(𝑡), 𝑎𝑖𝑗(𝑡), 𝜎𝑖𝑗(𝑡), and 𝜏𝑖𝑗(𝑡) are continuous functions

and are almost periodic; that is, for any 𝜀 > 0, it is
possible to find a real number 𝑙 = 𝑙(𝜀) > 0; for any
interval with length 𝑙, there exists a number 𝜔 = 𝜔(𝜀)
in this interval, such that |𝐶𝑘𝑙∗𝑖𝑗 (𝑡 + 𝜔) − 𝐶𝑘𝑙∗𝑖𝑗 (𝑡)| <𝜀, |𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡 + 𝜔) − 𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡)| < 𝜀, |𝐿 𝑖𝑗(𝑡 + 𝜔) − 𝐿 𝑖𝑗(𝑡)| <𝜀, |𝑎𝑖𝑗(𝑡 + 𝜔) − 𝑎𝑖𝑗(𝑡)| < 𝜀, |𝜏𝑖𝑗(𝑡 + 𝜔) − 𝜏𝑖𝑗(𝑡)| < 𝜀,
and |𝜎𝑖𝑗(𝑡 + 𝜔) − 𝜎𝑖𝑗(𝑡)| < 𝜀 for all 𝑡 ∈ 𝑅.
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(H2) For 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, 𝜎𝑖𝑗(𝑡) is bounded
above and below by positive constants and 𝜎󸀠𝑖𝑗(𝑡) is a
bounded continuous function and 𝜎+𝑖𝑗𝑎+𝑖𝑗 < 1.

(H3) There exists constant 𝐿 > 0 such that |𝑓(𝑢) − 𝑓(V)| ≤𝐿|𝑢 − V| for 𝑢, V ∈ 𝑅.
(H4) There exist positive constants 𝛿11, 𝛿12, . . . , 𝛿1𝑚, 𝛿21,𝛿22, . . . , 𝛿𝑛𝑚 and 𝜍 such that

− [𝑎𝑖𝑗 (𝑡) (1 − 2𝑎+𝑖𝑗𝜎+𝑖𝑗)
− 󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗 (𝑡) − (1 − 𝜎󸀠𝑖𝑗 (𝑡)) 𝑎𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨] 𝛿𝑘𝑙1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

+ ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 𝐿(
𝛿𝑖𝑗 (󰜚/𝜍)1 − 𝑎+𝑖𝑗𝜎+𝑖𝑗)

2 < −𝜍,
(13)

for all 𝑡 > 0 and 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,
where (𝐶𝑘𝑙𝑖𝑗 )𝑢(𝑡) = max{|𝐶𝑘𝑙∗𝑖𝑗 (𝑡)|, |𝐶𝑘𝑙∗∗𝑖𝑗 |(𝑡)} and 󰜚 =
max1≤𝑖≤𝑛,1≤𝑗≤𝑚{𝛿𝑖𝑗((𝐶𝑘𝑙𝑖𝑗 )+)𝑢|𝑓(0)| + 𝐿+𝑖𝑗}.

(H5) There exists a nonempty subset Λ 𝑖𝑗 ⊂ 𝑅 (𝑖 = 1, 2,. . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚) satisfying the following prop-
erty: if ℎ𝑖𝑗(𝑥) ≤ 𝑇𝑖𝑗 ≤ ℎ𝑖𝑗(𝑦), then there exists 𝜆𝑖𝑗 ∈ Λ 𝑖𝑗

such that 𝑥𝑖𝑗 ≤ 𝜆𝑖𝑗 ≤ 𝑦𝑖𝑗 or 𝑦𝑖𝑗 ≤ 𝜆𝑖𝑗 ≤ 𝑥𝑖𝑗.
(H6) For 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, 𝑓(𝜆𝑖𝑗) = 0 for any𝜆𝑖𝑗 ∈ Λ 𝑖𝑗.

3. Boundedness and Almost Periodicity

In this section, we will prove the existence of bounded
solution and the exponential stability of almost periodic
solution for (1).

Theorem 9. Assume that assumptions (H1)–(H4) hold. Let𝑥(𝑡) be the solution of (1) with initial condition

𝑥𝑖𝑗 (𝑡) = 𝜑𝑖𝑗 (𝑡) ,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜑𝑖𝑗 (𝑡) − ∫
𝑡

𝑡−𝜎𝑖𝑗(𝑡)
𝑎𝑖𝑗 (𝑠) 𝜑𝑖𝑗 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 𝛿𝑖𝑗
󰜚𝜍 ,
𝑡 ∈ (−𝛿, 0] ,

(14)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and
󰜚 = max

1≤𝑖≤𝑛,1≤𝑗≤𝑚
{𝛿𝑖𝑗 ((𝐶𝑘𝑙𝑖𝑗 )+)𝑢 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 + 𝐿+𝑖𝑗} . (15)

Then, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑡) − ∫
𝑡

𝑡−𝜎𝑖𝑗(𝑡)
𝑎𝑖𝑗 (𝑠) 𝑥𝑖𝑗 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 𝛿𝑖𝑗
󰜚𝜍 , (16)

󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿𝑖𝑗 (󰜚/𝜍)1 − 𝑎+𝑖𝑗𝜎+𝑖𝑗 , (17)

where 𝑡 is in the interval of existence and 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =1, 2, . . . , 𝑚.

Proof. Let 𝑥(𝑡) be a solution of (1) with initial condition (14).
For 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, there exists 𝐷𝑘𝑙𝑖𝑗 (𝑡) ∈
co(𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗(𝑡))) satisfying

𝑥̇𝑖𝑗 (𝑡) = −𝑎𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− ∑
𝐷𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

𝐷𝑘𝑙𝑖𝑗 (𝑡) 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))) 𝑥𝑖𝑗 (𝑡)
+ 𝐿 𝑖𝑗 (𝑡) ,

(18)

for a.a. 𝑡 ∈ [0, 𝑇]. By (5) and (H3), we have

󵄨󵄨󵄨󵄨󵄨𝐷𝑘𝑙𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ max {󵄨󵄨󵄨󵄨󵄨𝐶𝑘𝑙∗𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨} ≤ (𝐶𝑘𝑙𝑖𝑗 )𝑢 ,󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖𝑗 (𝑡)) − 𝑓 (0)󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 ≤ 𝐿 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 .

(19)

For 𝑡 in the interval of existence and 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =1, 2, . . . , 𝑚, denote

𝑢𝑖𝑗 (𝑡) = 𝑥𝑖𝑗 (𝑡) − ∫𝑡
𝑡−𝜎𝑖𝑗(𝑡)

𝑎𝑖𝑗 (𝑠) 𝑥𝑖𝑗 (𝑠) 𝑑𝑠. (20)

Suppose (16) holds; then, for a given 𝑡∗ > 0 in the interval of
existence and 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, we get

󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑡∗)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑢𝑖𝑗 (𝑡∗)󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

𝑡∗

𝑡∗−𝜎𝑖𝑗(𝑡
∗)
𝑎𝑖𝑗 (𝑠) 𝑥𝑖𝑗 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝛿𝑖𝑗 󰜚𝜍 + 𝑎+𝑖𝑗𝜎+𝑖𝑗 sup

𝑠∈[−𝛿,𝑡∗]

󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨
(21)

for any 𝑡∗ ∈ (−𝛿, 𝑡]. Then,

sup
𝑠∈(−𝛿,𝑡∗]

󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 < 𝛿𝑖𝑗 󰜚𝜍 + 𝑎+𝑖𝑗𝜎+𝑖𝑗 sup
𝑠∈[−𝛿,𝑡∗]

󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 (22)

for any 𝑡∗ ∈ (−𝛿, 𝑡]. It follows from (22) that

󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿𝑖𝑗 (󰜚/𝜍)1 − 𝑎+𝑖𝑗𝜎+𝑖𝑗 . (23)

Therefore, (17) holds. Thus, it suffices to prove (16). Assume
that (16) does not hold. Then, there exist 𝑘 ∈ {1, 2, . . . , 𝑛}, 𝑙 ∈{1, 2, . . . , 𝑚}, and 𝑡0 > 0 such that |𝑢𝑘𝑙(𝑡0)| = 𝛿𝑘𝑙(󰜚/𝜍) and (16)
holds for all 𝑡 ∈ [−𝛿, 𝑡0] and 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚
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and hence𝐷−|𝑢𝑘𝑙(𝑡0)| ≥ 0. From system (1), we have𝑑𝑢𝑘𝑙 (𝑡)𝑑𝑡 = 𝑥󸀠𝑘𝑙 (𝑡) − [𝑎𝑘𝑙 (𝑡) 𝑥𝑘𝑙 (𝑡) − (1 − 𝜎󸀠𝑘𝑙 (𝑡))
⋅ 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡)) 𝑥𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))] = − [𝑎𝑘𝑙 (𝑡) 𝑥𝑘𝑙 (𝑡)− (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡)) 𝑥𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))]− 𝑎𝑘𝑙 (𝑡) 𝑥𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡)) − ∑

𝐷𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐷𝑘𝑙𝑖𝑗 (𝑡)
⋅ 𝑓 (𝑥𝑘𝑙 (𝑡 − 𝜏𝑘𝑙 (𝑡))) 𝑥𝑘𝑙 (𝑡) + 𝐿𝑘𝑙 (𝑡) = −𝑎𝑘𝑙 (𝑡)⋅ 𝑥𝑘𝑙 (𝑡) − [𝑎𝑘𝑙 (𝑡) − (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))]⋅ 𝑥𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡)) − ∑

𝐷𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐷𝑘𝑙𝑖𝑗 (𝑡)
⋅ 𝑓 (𝑥𝑘𝑙 (𝑡 − 𝜏𝑘𝑙 (𝑡))) 𝑥𝑘𝑙 (𝑡) + 𝐿𝑘𝑙 (𝑡) = −𝑎𝑘𝑙 (𝑡)
⋅ 𝑢𝑘𝑙 (𝑡) − 𝑎𝑘𝑙 (𝑡) ∫𝑡

𝑡−𝜎𝑘𝑙(𝑡)
𝑎𝑘𝑙 (𝑠) 𝑥𝑘𝑙 (𝑠) 𝑑𝑠

− [𝑎𝑘𝑙 (𝑡) − (1 − 𝜂󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))]⋅ 𝑥𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡)) − ∑
𝐷𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐷𝑘𝑙𝑖𝑗 (𝑡)
⋅ 𝑓 (𝑥𝑘𝑙 (𝑡 − 𝜏𝑘𝑙 (𝑡))) 𝑥𝑘𝑙 (𝑡) + 𝐿𝑘𝑙 (𝑡) .

(24)

It follows from (H3) that𝐷− 󵄨󵄨󵄨󵄨𝑢𝑘𝑙 (𝑡0)󵄨󵄨󵄨󵄨 ≤ −𝑎𝑘𝑙 (𝑡0) 󵄨󵄨󵄨󵄨𝑢𝑘𝑙 (𝑡0)󵄨󵄨󵄨󵄨 + 𝑎𝑘𝑙 (𝑡0)
⋅ ∫𝑡0

𝑡−𝜎𝑘𝑙(𝑡0)
𝑎𝑘𝑙 (𝑠) 󵄨󵄨󵄨󵄨𝑥𝑘𝑙 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 + 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙 (𝑡0)

− (1 − 𝜎󸀠𝑘𝑙 (𝑡0)) 𝑎𝑘𝑙 (𝑡0 − 𝜎𝑘𝑙 (𝑡0))󵄨󵄨󵄨󵄨󵄨⋅ 󵄨󵄨󵄨󵄨𝑥𝑘𝑙 (𝑡0 − 𝜎𝑘𝑙 (𝑡0))󵄨󵄨󵄨󵄨 + ∑
𝐷𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨𝐷𝑘𝑙𝑖𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑥𝑘𝑙 (𝑡0 − 𝜏𝑘𝑙 (𝑡0)))󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥𝑘𝑙 (𝑡0)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐿𝑘𝑙 (𝑡0)󵄨󵄨󵄨󵄨
≤ −𝑎𝑘𝑙 (𝑡0) 󵄨󵄨󵄨󵄨𝑢𝑘𝑙 (𝑡0)󵄨󵄨󵄨󵄨 + 𝑎𝑘𝑙 (𝑡0) ∫𝑡0

𝑡−𝜎𝑘𝑙(𝑡0)
𝑎𝑘𝑙 (𝑠)

⋅ 󵄨󵄨󵄨󵄨𝑥𝑘𝑙 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 + 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙 (𝑡0) − (1 − 𝜎󸀠𝑘𝑙 (𝑡0)) 𝑎𝑘𝑙 (𝑡0− 𝜎𝑘𝑙 (𝑡0))󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥𝑘𝑙 (𝑡0 − 𝜎𝑘𝑙 (𝑡0))󵄨󵄨󵄨󵄨 + ∑
𝐷𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨𝐷𝑘𝑙𝑖𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨
⋅ (𝐿 󵄨󵄨󵄨󵄨𝑥𝑘𝑙 (𝑡0 − 𝜏𝑘𝑙 (𝑡0))󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑘𝑙 (𝑡0)󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨𝐿𝑘𝑙 (𝑡0)󵄨󵄨󵄨󵄨 ≤ −𝑎𝑘𝑙 (𝑡0) 𝛿𝑘𝑙 󰜚𝜍 + 𝑎𝑘𝑙 (𝑡0) 𝑎+𝑘𝑙𝜂+𝑘𝑙
⋅ 𝛿𝑘𝑙 (󰜚/𝜍)1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

+ 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙 (𝑡0) − (1 − 𝜎󸀠𝑘𝑙 (𝑡0)) 𝑎𝑘𝑙 (𝑡0
− 𝜎𝑘𝑙 (𝑡0))󵄨󵄨󵄨󵄨󵄨 𝛿𝑘𝑙 (󰜚/𝜍)1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

+ ∑
𝐷𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨𝐷𝑘𝑙𝑖𝑗 (𝑡0)󵄨󵄨󵄨󵄨󵄨
⋅ (𝐿 𝛿𝑘𝑙 (󰜚/𝜍)1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

+ 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛿𝑘𝑙 (󰜚/𝜍)1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

+ 󵄨󵄨󵄨󵄨𝐿+𝑘𝑙󵄨󵄨󵄨󵄨
≤ {{{

− [𝑎𝑘𝑙 (𝑡0) (1 − 2𝑎+𝑘𝑙𝜎+𝑘𝑙)
− 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙 (𝑡0) − (1 − 𝜎󸀠𝑘𝑙 (𝑡0)) 𝑎𝑘𝑙 (𝑡0 − 𝜎𝑘𝑙 (𝑡0))󵄨󵄨󵄨󵄨󵄨]
⋅ 𝛿𝑘𝑙1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

+ ∑
𝐷𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

(𝐷𝑘𝑙𝑖𝑗 )𝑢 (𝑡0)󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 𝐿 ( 𝛿𝑘𝑙 (󰜚/𝜍)1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

)2}}}
󰜚𝜍 + 󰜚 < 0,

(25)

which is a contradiction and shows that (16) holds.The proof
of Theorem 9 is complete.

Lemma 10. Assume that (H3), (H5), and (H6) hold; then, for
any 𝑥 = (𝑥11, 𝑥12, . . . , 𝑥𝑛𝑚)𝑇, 𝑦 = (𝑦11, 𝑦12, . . . , 𝑦𝑛𝑚)𝑇 ∈ 𝑅𝑛𝑚,
one has
󵄨󵄨󵄨󵄨󵄨co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡))) 𝑓 (𝑥𝑖𝑗)
− co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑦𝑖𝑗 (𝑡))) 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ (𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡) 𝐿 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗
− 𝑦𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ,

(26)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.
Proof. For any given 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑗 ∈ {1, 2, . . . , 𝑚}, and𝑥𝑖𝑗, 𝑦𝑖𝑗 ∈ 𝑅𝑛+𝑚, we consider three cases.

If ℎ𝑖𝑗(𝑥), ℎ𝑖𝑗(𝑦) < 𝑇𝑖𝑗, then
󵄨󵄨󵄨󵄨󵄨co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡))) 𝑓 (𝑥𝑖𝑗)
− co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑦𝑖𝑗 (𝑡))) 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐶𝑘𝑙∗𝑖𝑗 (𝑡) 𝑓 (𝑥𝑖𝑗)
− 𝐶𝑘𝑙∗𝑖𝑗 (𝑡) 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ (𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡) 𝐿 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − 𝑦𝑖𝑗󵄨󵄨󵄨󵄨󵄨 .

(27)

If ℎ𝑖𝑗(𝑥), ℎ𝑖𝑗(𝑦) > 𝑇𝑖𝑗, then
󵄨󵄨󵄨󵄨󵄨co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡))) 𝑓 (𝑥𝑖𝑗)
− co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑦𝑖𝑗 (𝑡))) 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) 𝑓 (𝑥𝑖𝑗)
− 𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ (𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡) 𝐿 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗 − 𝑦𝑖𝑗󵄨󵄨󵄨󵄨󵄨 .

(28)

If ℎ𝑖𝑗(𝑥) ≤ 𝑇𝑖𝑗 ≤ ℎ𝑖𝑗(𝑦) or ℎ𝑖𝑗(𝑦) ≤ 𝑇𝑖𝑗 ≤ ℎ𝑖𝑗(𝑥), then it follows
from (H4) that there exists 𝜆𝑗 ∈ Λ 𝑗 such that 𝑥𝑖𝑗 ≤ 𝜆𝑖𝑗 ≤ 𝑦𝑖𝑗
or 𝑦𝑖𝑗 ≤ 𝜆𝑖𝑗 ≤ 𝑥𝑖𝑗. Let 𝑥𝑖𝑗 ≤ 𝜆𝑖𝑗 ≤ 𝑦𝑖𝑗. In this case, from (H5),
we get

󵄨󵄨󵄨󵄨󵄨co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡))) 𝑓 (𝑥𝑖𝑗)
− co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑦𝑖𝑗 (𝑡))) 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) 𝑓 (𝑥𝑖𝑗)
− 𝐶𝑘𝑙∗𝑖𝑗 (𝑡) 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖𝑗) − 𝑓 (𝜆𝑗)󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝐶𝑘𝑙∗𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓 (𝜆𝑗) − 𝑓 (𝑦𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ (𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡) 𝐿 󵄨󵄨󵄨󵄨󵄨𝑥𝑖𝑗
− 𝑦𝑖𝑗󵄨󵄨󵄨󵄨󵄨 .

(29)

Based on all the cases above, we can conclude that (26) holds.
The proof of Lemma 10 is complete.

Now, we state our main result.

Theorem 11. If (H1)–(H6) hold, then there exists a unique
almost periodic solution 𝑥∗(𝑡, 𝜓) for system (1) which is globally
exponentially stable; that is, for any other solution 𝑥(𝑡, 𝜓) of
system (1), there exist constants𝑀,𝜇 > 0 such that ‖𝑥(𝑡, 𝜑) −𝑥∗(𝑡, 𝜓)‖ ≤ 𝑀‖𝜑 − 𝜓‖𝑒−𝜇𝑡 for all 𝑡 > 0.
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Proof. First, we prove that any solution of (1) is asymptotically
almost periodic; that is, for any 𝜀 > 0, there exist 𝑇 > 0, 𝑙 =𝑙(𝜀), and 𝜔 = 𝜔(𝜀) in any interval with the length of 𝑙, such
that |𝑥(𝑡 + 𝜔) − 𝑥(𝑡)| ≤ 𝜀 for all 𝑡 ≥ 𝑇.

For any 𝜀 > 0, let 𝜔 = 𝜔(𝜀) and 𝑦𝑖𝑗(𝑡) = 𝑥𝑖𝑗(𝑡 + 𝜔) −𝑥𝑖𝑗(𝑡), 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and then we get

𝑑𝑦𝑖𝑗 (𝑡)𝑑𝑡 ∈ −𝑎𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡 + 𝜔 − 𝜎𝑖𝑗 (𝑡 + 𝜔)) + 𝐿 𝑖𝑗 (𝑡
+ 𝜔) − ∑

𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑡 + 𝜔, 𝑥𝑖𝑗 (𝑡 + 𝜔)))
⋅ 𝑓 (𝑥𝑖𝑗 (𝑡 + 𝜔 − 𝜏𝑖𝑗 (𝑡 + 𝜔))) 𝑥𝑖𝑗 (𝑡 + 𝜔) + 𝑎𝑖𝑗 (𝑡)
⋅ 𝑥𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡)) − 𝐿 𝑖𝑗 (𝑡)
+ ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡))) 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)))
⋅ 𝑥𝑖𝑗 (𝑡) = −𝑎𝑖𝑗 (𝑡) 𝑦𝑖𝑗 (𝑡) + 𝐴 𝑖𝑗 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
+ Θ𝑖𝑗 (𝑡, 𝜔) ,

(30)

where 𝐴 𝑖𝑗(𝑡, 𝑥(𝑡), 𝑦(𝑡)) and Θ𝑖𝑗(𝑡, 𝜔) are defined as follows:

𝐴 𝑖𝑗 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) = co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑢 + V)) 𝑓 (𝑢 + V)
− co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑢)) 𝑓 (𝑢) ,

(31)

for all 𝑢, V ∈ 𝑅𝑛+𝑚 and

Θ𝑖𝑗 (𝑡, 𝜔) = − (𝑎𝑖𝑗 (𝑡 + 𝜔) − 𝑎𝑖𝑗 (𝑡 + 𝜔 − 𝜎𝑖𝑗 (𝑡)))
+ 𝐿 𝑖𝑗 (𝑡 + 𝜔) − 𝐿 𝑖𝑗 (𝑡) + ∑

𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡)))
⋅ 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))) 𝑥𝑖𝑗 (𝑡)
− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑡 + 𝜔, 𝑥𝑖𝑗 (𝑡 + 𝜔)))
⋅ 𝑓 (𝑥𝑖𝑗 (𝑡 + 𝜔 − 𝜏𝑖𝑗 (𝑡 + 𝜔))) 𝑥𝑖𝑗 (𝑡 + 𝜔) .

(32)

In view of (H1) and the boundedness of 𝑥(𝑡), we can conclude
that, for any 𝜀 > 0, there exist 𝑙 = 𝑙(𝜀) > 0, and 𝜔 = 𝜔(𝜀) in
any interval with the length of 𝑙, such that, for anyΘ∗(𝑡, 𝜔) ∈
co(Θ(𝑡, 𝜔)), |Θ∗(𝑡, 𝜔)| < 𝑁𝜀/2 for all 𝑡 ≥ 0, where𝑁 > 0 is a
constant. Let

𝑑𝑦𝑖𝑗 (𝑡)𝑑𝑡 = −𝑎𝑖𝑗 (𝑡) 𝑦𝑖𝑗 (𝑡) + 𝐴∗𝑖𝑗 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
+ Θ∗𝑖𝑗 (𝑡, 𝜔) ,

(33)

where 𝐴∗𝑖𝑗(𝑡, 𝑥(𝑡), 𝑦(𝑡)) ∈ co(𝐴 𝑖𝑗(𝑡, 𝑥(𝑡), 𝑦(𝑡))) and Θ∗(𝑡, 𝜔) ∈
co(Θ(𝑡, 𝜔)) (𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚).

In view of (H3), we can choose 𝑟 > 0 and 𝜍 > 0 such that

− [(𝑎𝑘𝑙 (𝑡) − 𝑟) (1 − 2𝑎+𝑘𝑙𝜎+𝑘𝑙)
− 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙 (𝑡) − (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))󵄨󵄨󵄨󵄨󵄨] 𝛿𝑘𝑙1 − 𝑎+

𝑘𝑙
𝜎+
𝑘𝑙

+ ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 𝑒𝑟𝜏𝑖𝑗(𝑡)𝐿( 𝛿𝑘𝑙 (󰜚/𝜍)1 − 𝑎+
𝑘𝑙
𝜎+
𝑘𝑙

)2 < −𝜍.
(34)

Let 𝑇0 ≥ max{0, 𝜔}. For 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 and𝑡 ∈ 𝑅, denote
𝑈𝑖𝑗 (𝑡) = 𝑒𝑟𝑡𝑦𝑖𝑗 (𝑡) − ∫𝑡

𝑡−𝜎𝑖𝑗(𝑡)
𝑎𝑖𝑗 (𝑠) 𝑒𝑟𝑠𝑦𝑖𝑗 (𝑠) 𝑑𝑠. (35)

Then, for 𝑡 ≥ 𝑇0 and 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, we have
𝑑𝑈𝑖𝑗 (𝑡)𝑑𝑡 = 𝑟𝑒𝑟𝑡𝑦𝑖𝑗 (𝑡) + 𝑒𝑟𝑡𝑦󸀠𝑖𝑗 (𝑡) − 𝑎𝑖𝑗 (𝑡) 𝑒𝑟𝑡𝑦𝑖𝑗 (𝑡) + (1
− 𝜎󸀠𝑖𝑗 (𝑡)) 𝑎𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡)) 𝑒𝑟(𝑡−𝜎𝑖𝑗(𝑡))𝑦𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
= − (𝑎𝑖𝑗 (𝑡) − 𝑟) 𝑒𝑟𝑡𝑦𝑖𝑗 (𝑡) + 𝑒𝑟𝑡 {− [𝑎𝑖𝑗 (𝑡)
− (1 − 𝜎󸀠𝑖𝑗 (𝑡)) 𝑎𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡)) 𝑒−𝑟𝜎𝑖𝑗(𝑡)] × 𝑦𝑖𝑗 (𝑡
− 𝜎𝑖𝑗 (𝑡)) + 𝐴∗𝑖𝑗 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) + Θ∗𝑖𝑗 (𝑡, 𝜔)}
= − (𝑎𝑖𝑗 (𝑡) − 𝑟)𝑈𝑖𝑗 (𝑡) − (𝑎𝑖𝑗 (𝑡) − 𝑟) ∫𝑡

𝑡−𝜎𝑖𝑗(𝑡)
𝑎𝑖𝑗 (𝑠)

⋅ 𝑒𝑟𝑠𝑦𝑖𝑗 (𝑠) 𝑑𝑠 + 𝑒𝑟𝑡 {− [𝑎𝑖𝑗 (𝑡)
− (1 − 𝜎󸀠𝑖𝑗 (𝑡)) 𝑎𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡)) 𝑒−𝑟𝜎𝑖𝑗(𝑡)] × 𝑦𝑖𝑗 (𝑡
− 𝜎𝑖𝑗 (𝑡)) + 𝐴∗𝑖𝑗 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) + Θ∗𝑖𝑗 (𝑡, 𝜔)} .

(36)

Now, we define a candidate Lyapunov function as follows:

𝑊1 (𝑡)
= max{

󵄨󵄨󵄨󵄨󵄨𝑈𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨𝛿𝑖𝑗 , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚} ,
𝑊∗
1 (𝑡) = sup

𝑠≤𝑡
𝑊1 (𝑠) .

(37)

Obviously,𝑊∗
1 (𝑡) is nondecreasing. It follows that

𝑒𝑟𝜌 󵄨󵄨󵄨󵄨󵄨𝑦𝑖𝑗 (𝜌)󵄨󵄨󵄨󵄨󵄨 𝛿−1𝑖𝑗
≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒

𝑟𝜌𝑦𝑖𝑗 (𝜌) − ∫𝜌
𝜌−𝜎𝑖𝑗(𝜌)

𝑎𝑖𝑗 (𝑠) 𝑒𝑟𝑠𝑦𝑖𝑗 (𝑠) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛿

−1
𝑖𝑗

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝜌

𝜌−𝜎𝑖𝑗(𝜌)
𝑎𝑖𝑗 (𝑠) 𝑒𝑟𝑠𝑦𝑖𝑗 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛿
−1
𝑖𝑗

≤ 𝑊∗
1 (𝑡) + 𝑎+𝑖𝑗𝜎+𝑖𝑗sup

𝑠≤𝑡
𝑒𝑟𝑠 󵄨󵄨󵄨󵄨󵄨𝑦𝑖𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝛿−1𝑖𝑗

(38)
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for all 𝜌 ≤ 𝑡, where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. By (H3),
we have

𝑒𝑟𝜌 󵄨󵄨󵄨󵄨󵄨𝑦𝑖𝑗 (𝜌)󵄨󵄨󵄨󵄨󵄨 𝛿−1𝑖𝑗 ≤ 𝑊∗
1 (𝑡)1 − 𝑎+𝑖𝑗𝜎+𝑖𝑗 (39)

for all 𝑡 ≥ 0, 𝜌 ≤ 𝑡, where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. For
any given 𝑡 ≥ 0, there exist 𝑘 ∈ {1, 2, . . . , 𝑛}, 𝑙 ∈ {1, 2, . . . , 𝑚}
such that

𝑊1 (𝑡) =
󵄨󵄨󵄨󵄨𝑈𝑘𝑙 (𝑡)󵄨󵄨󵄨󵄨𝛿𝑘𝑙 . (40)

Calculating the derivative 𝑑𝑊1(𝑡)/𝑑𝑡 along the positive half
trajectory of (1) yields

𝑑𝑊1 (𝑡)𝑑𝑡 ≤ − (𝑎𝑘𝑙 (𝑡) − 𝑟)𝑊1 (𝑡) + 1𝛿𝑘𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨− (𝑎𝑘𝑙 (𝑡) − 𝑟)

⋅ ∫𝑡
𝑡−𝜎𝑘𝑙(𝑡)

𝑎𝑘𝑙 (𝑠) 𝑒𝑟𝑠𝑦𝑘𝑙 (𝑠) 𝑑𝑠 + 𝑒𝑟𝑡 {− [𝑎𝑘𝑙 (𝑡)
− (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡)) 𝑒−𝑟𝜎𝑘𝑙(𝑡)] × 𝑦𝑘𝑙 (𝑡
− 𝜎𝑘𝑙 (𝑡)) + 𝐴∗𝑘𝑙 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) + Θ∗𝑘𝑙 (𝑡, 𝜔)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ − (𝑎𝑘𝑙 (𝑡) − 𝑟)𝑊1 (𝑡) + (𝑎𝑘𝑙 (𝑡) − 𝑟) 𝜎+𝑘𝑙𝑎+𝑘𝑙
⋅ 𝑊∗

1 (𝑡)1 − 𝜎+
𝑘𝑙
𝑎+
𝑘𝑙

+ 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙 (𝑡) 𝑒𝑟𝜎𝑘𝑙(𝑡) − (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡
− 𝜎𝑘𝑙 (𝑡))󵄨󵄨󵄨󵄨󵄨 𝑊

∗
1 (𝑡)1 − 𝜎+
𝑘𝑙
𝑎+
𝑘𝑙

+ 1𝛿𝑘𝑙 ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 𝐿𝑒𝑟𝜏𝑘𝑙(𝑡) ( 𝑊∗

1 (𝑡)1 − 𝑎+
𝑘𝑙
𝜎+
𝑘𝑙

)2 + 𝑒𝑟𝑡 󵄨󵄨󵄨󵄨Θ∗𝑘𝑙 (𝑡, 𝜔)󵄨󵄨󵄨󵄨

≤ 𝑒𝑟𝑡𝛿𝑘𝑙
󵄨󵄨󵄨󵄨Θ∗𝑘𝑙 (𝑡, 𝜔)󵄨󵄨󵄨󵄨 − {{{

[(𝑎𝑘𝑙 (𝑡) − 𝑟) (1 − 2𝜎+𝑘𝑙𝑎+𝑘𝑙)
− 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙𝑒𝑟𝜎𝑘𝑙(𝑡) − (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))󵄨󵄨󵄨󵄨󵄨]
⋅ 𝛿𝑘𝑙1 − 𝜎+

𝑘𝑙
𝑎+
𝑘𝑙

− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨

⋅ 𝐿𝑒𝑟𝜏𝑘𝑙(𝑡) ( 𝛿𝑘𝑙1 − 𝑎+
𝑘𝑙
𝜎+
𝑘𝑙

)2}}}
𝑊1 (𝑡)𝛿𝑘𝑙 ≤ 𝑒𝑟𝑡𝛿𝑘𝑙

󵄨󵄨󵄨󵄨Θ∗𝑘𝑙 (𝑡, 𝜔)󵄨󵄨󵄨󵄨
≤ 𝑁𝜀2𝛿min

𝑒𝑟𝑡

(41)

when𝑊∗
1 (𝑡) ≤ 𝑊1(𝑡).Thus,

𝑑𝑊∗
1 (𝑡)𝑑𝑡 ≤ 𝑁𝜀2𝛿min

𝑒𝑟𝑡, ∀𝑡 ∈ [0, 𝑇) . (42)

Then, for all 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, we have
󵄨󵄨󵄨󵄨󵄨𝑦𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿𝑖𝑗𝑊

∗
1 (𝑡) 𝑒𝑟𝑡1 − 𝜎+𝑖𝑗𝑎+𝑖𝑗

≤ 𝛿𝑖𝑗𝑊∗
1 (0) 𝑒𝑟𝑡

min1≤𝑖≤𝑛,1≤𝑗≤𝑚 {1 − 𝜎+𝑖𝑗𝑎+𝑖𝑗} +
𝛿𝑖𝑗𝑁𝜀2𝛿min

.
(43)

Thus, there exists a constant 𝑇 > 0 such that, for any 𝑡 > 𝑇,
󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑁𝜀𝑟𝛿min

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝛿𝑖𝑗. (44)

Taking 0 < 𝑁 < 𝑟𝛿min/∑𝑛𝑖=1 𝛿𝑖, we have ‖𝑦(𝑡)‖ < 𝜀 for any𝑡 > 𝑇. Namely, for any 𝑇 > 0, there exist 𝑇 > 0, 𝑙 = 𝑙(𝜀) > 0,
and 𝜔 = 𝜔(𝜀) in any interval with the length of 𝑙, such that‖𝑥(𝑡 + 𝜔) − 𝑥(𝑡)‖ < 𝜀 for all 𝑡 ≥ 𝑇.Therefore, any solution𝑥(𝑡) of (1) with initial condition (14) is asymptotically almost
periodic.

Next, we prove that there exists at least one almost
periodic solution of (1).

Let 𝑥(𝑡) be any solution of (1) with initial conditions
(4) and (14). It is easy to see that, for any sequence {𝑡𝑘}𝑘∈𝑁
satisfying lim𝑡→𝑡𝑘

= +∞, the sequence {𝑥(𝑡 + 𝑡𝑘)}𝑘∈𝑁 is
equicontinuous and uniformly bounded. In view of Arzela-
Ascoli theorem and diagonal selection principle, we can select
a subsequence of {𝑡𝑘} (still denoted by {𝑡𝑘}), such that 𝑥(𝑡+𝑡𝑘)
uniformly converges to a continuous function 𝑥∗(𝑡) on any
compact set of 𝑅.We next prove that 𝑥∗(𝑡) is a solution of (1).

Let 𝑧𝑖𝑗(𝑡, 𝑡𝑘) = 𝑥𝑖𝑗(𝑡 + 𝑡𝑘) − 𝑥∗𝑖𝑗(𝑡) and
Θ𝑖𝑗 (𝑡, 𝑡𝑘) = Θ𝑖𝑗 (𝑡, 𝑡𝑘) − 𝑎𝑖𝑗 (𝑡) 𝑧𝑖𝑗 (𝑡, 𝑡𝑘)

+ co (𝐴 𝑖𝑗 (𝑡, 𝑥∗𝑖𝑗 (𝑡) , 𝑧𝑖𝑗 (𝑡, 𝑡𝑘))) ; (45)

then

󵄨󵄨󵄨󵄨󵄨co (Θ𝑖𝑗 (𝑡, 𝑡𝑘))󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨co (Θ𝑖𝑗 (𝑡, 𝑡𝑘))󵄨󵄨󵄨󵄨󵄨 + 𝑎+𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑧𝑖𝑗 (𝑡, 𝑡𝑘)󵄨󵄨󵄨󵄨󵄨
+ ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

((𝐶𝑘𝑙𝑖𝑗 )+)𝑢 󵄨󵄨󵄨󵄨󵄨𝑧𝑖𝑗 (𝑡, 𝑡𝑘)󵄨󵄨󵄨󵄨󵄨 . (46)

In view of the boundedness of𝑥(𝑡), we can select the sequence{𝑡𝑘} satisfying |Θ∗𝑖𝑗(𝑡, 𝑡𝑘)| ≤ 1/𝑘 for anyΘ∗𝑖𝑗(𝑡, 𝑡𝑘) ∈ co(Θ𝑖𝑗) and
all 𝑡 ≥ 0. From this and (48), we have lim𝑘→+∞co(Θ𝑖𝑗(𝑡, 𝑡𝑘)) =0 for all 𝑡 ≥ 0 and 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. Applying
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Lebesgue’s dominated convergence theorem, we have

𝑥∗ (𝑡 + 𝑓) − 𝑥∗ (𝑡) = lim
𝑘→∞

(𝑥 (𝑡𝑘 + 𝑓) − 𝑥∗ (𝑡𝑘))

= lim
𝑘→∞

∫𝑡+𝑓
𝑡
𝑥̇ (𝑠 + 𝑡𝑘) 𝑑𝑠 ∈ lim

𝑘→∞
∫𝑡+𝑓
𝑡

[
[
−𝑎𝑖𝑗 (𝑠

+ 𝑡𝑘) 𝑥𝑖𝑗 (𝑠 + 𝑡𝑘 − 𝜎𝑖𝑗 (𝑠 + 𝑡𝑘))
− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑠 + 𝑡𝑘, 𝑥𝑖𝑗 (𝑠 + 𝑡𝑘)))

⋅ 𝑓 (𝑥𝑖𝑗 (𝑠 + 𝑡𝑘 − 𝜏𝑖𝑗 (𝑠 + 𝑡𝑘))) × 𝑥𝑖𝑗 (𝑠 + 𝑡𝑘)

+ 𝐿 𝑖𝑗 (𝑠 + 𝑡𝑘)]]
𝑑𝑠

∈ ∫𝑡+𝑓
𝑡

[
[
lim
𝑘→∞

co (Θ∗𝑖𝑗 (𝑡, 𝑡𝑘)) − 𝑎𝑖𝑗 (𝑠) 𝑥∗𝑖𝑗 (𝑡

− 𝜎𝑖𝑗 (𝑠)) − ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑠, 𝑥∗𝑖𝑗 (𝑠)))

⋅ 𝑓 (𝑥∗𝑖𝑗 (𝑠𝜏𝑖𝑗 (𝑠))) + 𝐿 𝑖𝑗 (𝑠)]]
𝑑𝑠

= ∫𝑡+𝑓
𝑡

[
[
−𝑎𝑖𝑗 (𝑠) 𝑥∗𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑠))

− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑠, 𝑥∗𝑖𝑗 (𝑠))) 𝑓 (𝑥∗𝑖𝑗 (𝑠𝜏𝑖𝑗 (𝑠)))

+ 𝐿 𝑖𝑗 (𝑠)]]
𝑑𝑠

(47)

for all 𝑡 ∈ 𝑅 and 𝑓 ∈ 𝑅. Thus, 𝑥∗(𝑡) is a solution of (1).
Here, we will prove that 𝑥∗(𝑡) is the almost periodic

solution of (1). By the proof of the above step, for any 𝜀 > 0,
there exist 𝑇 > 0, 𝑙 = 𝑙(𝜀), and 𝜔 = 𝜔(𝜀) in any interval
with the length of 𝑙, such that |𝑥(𝑡 + 𝜔) − 𝑥(𝑡)| ≤ 𝜀 for all𝑡 ≥ 𝑇. Hence, there exists sufficiently large constant 𝐾 > 0
such that |𝑥(𝑡 + 𝑡𝑘 + 𝜔) − 𝑥(𝑡 + 𝑡𝑘)| ≤ 𝜀 for all 𝑡 ∈ 𝑅
and 𝑘 > 𝐾. Let 𝑘 → +∞, and then it is easy to obtain
that |𝑥∗(𝑡 + 𝜔) − 𝑥∗(𝑡)| ≤ 𝜀 for all 𝑡 ∈ 𝑅; that is, 𝑥∗(𝑡) is
the almost periodic solution of (1). Finally, we mainly prove
that the almost periodic solution of (1) is unique and globally
exponentially stable.

Let 𝑥(𝑡) be any solution of (1) with initial conditions (4)
and (14), and let 𝑥∗(𝑡) be an almost periodic solution of (1);

that is,
𝑑𝑥𝑖𝑗 (𝑡)𝑑𝑡 ∈ −𝑎𝑖𝑗 (𝑡) 𝑥𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡))) 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)))
⋅ 𝑥𝑖𝑗 (𝑡) + 𝐿 𝑖𝑗 (𝑡) ,

(48)

𝑑𝑥∗𝑖𝑗 (𝑡)𝑑𝑡 ∈ −𝑎𝑖𝑗 (𝑡) 𝑥∗𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

co (𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥∗𝑖𝑗 (𝑡))) 𝑓 (𝑥∗𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)))
⋅ 𝑥∗𝑖𝑗 (𝑡) + 𝐿 𝑖𝑗 (𝑡) .

(49)

Let 𝑤𝑖𝑗(𝑡) = 𝑥𝑖𝑗(𝑡) − 𝑥∗𝑖𝑗(𝑡), and then

𝑑𝑢𝑖𝑗 (𝑡)𝑑𝑡
∈ −𝑎𝑖𝑗 (𝑡) 𝑤∗𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− co (𝐴 𝑖𝑗 (𝑡, 𝑥∗𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)) , 𝑤𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)))) ,

(50)

where 𝐴 𝑖𝑗(𝑡, 𝑥∗𝑗 (𝑡), 𝑢𝑗(𝑡)) is defined by (31). Let

𝑑𝑢𝑖𝑗 (𝑡)𝑑𝑡
= −𝑎𝑖𝑗 (𝑡) 𝑤∗𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡))
− co (𝐴 𝑖𝑗 (𝑡, 𝑥∗𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)) , 𝑤𝑖𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡)))) ,

(51)

where 𝐴 𝑖𝑗(𝑡, 𝑥𝑖𝑗(𝑡 − 𝜏𝑖𝑗(𝑡)), 𝑢𝑖𝑗(𝑡 − 𝜏𝑖𝑗(𝑡))) ∈ co(𝐴 𝑖𝑗(𝑡, 𝑥𝑖𝑗(𝑡 −𝜏𝑖𝑗(𝑡)), 𝑢𝑖𝑗(𝑡 − 𝜏𝑖𝑗(𝑡)))) 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.
For 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 and 𝑡 ∈ 𝑅, denote
𝑊𝑖𝑗 (𝑡) = 𝑒𝑟𝑡𝑤𝑖𝑗 (𝑡) − ∫𝑡

𝑡−𝜎𝑖𝑗(𝑡)
𝑎𝑖𝑗 (𝑠) 𝑒𝑟𝑠𝑤𝑖𝑗 (𝑠) 𝑑𝑠. (52)

Then, for 𝑡 ≥ 𝑇0 and 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, we have𝑑𝑊𝑖𝑗 (𝑡)𝑑𝑡 = − (𝑎𝑖𝑗 (𝑡) − 𝑟)𝑊𝑖𝑗 (𝑡) − (𝑎𝑖𝑗 (𝑡) − 𝑟)
⋅ ∫𝑡

𝑡−𝜎𝑖𝑗(𝑡)
𝑎𝑖𝑗 (𝑠) 𝑒𝑟𝑠𝑤𝑖𝑗 (𝑠) 𝑑𝑠 + 𝑒𝑟𝑡 {− [𝑎𝑖𝑗 (𝑡)

− (1 − 𝜎󸀠𝑖𝑗 (𝑡)) 𝑎𝑖𝑗 (𝑡 − 𝜎𝑖𝑗 (𝑡)) 𝑒−𝑟𝜎𝑖𝑗(𝑡)] × 𝑤𝑖𝑗 (𝑡
− 𝜎𝑖𝑗 (𝑡)) + 𝑒𝑟𝑡𝐴 𝑖𝑗 (𝑡, 𝑥∗ (𝑡) , 𝑤 (𝑡))} .

(53)

We define another candidate Lyapunov function as follows:

𝑉2 (𝑡)
= max{

󵄨󵄨󵄨󵄨󵄨𝑊𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨𝛿𝑖𝑗 , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚} ,
𝑉∗2 (𝑡) = sup

𝑠≤𝑡
𝑉2 (𝑠) .

(54)
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Obviously, 𝑉∗2 (𝑡) is nondecreasing. It follows that
𝑒𝑟𝜌 󵄨󵄨󵄨󵄨󵄨𝑤𝑖𝑗 (𝜌)󵄨󵄨󵄨󵄨󵄨 𝛿−1𝑖𝑗
≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒

𝑟𝜌𝑤𝑖𝑗 (𝜌) − ∫𝜌
𝜌−𝜎𝑖𝑗(𝜌)

𝑎𝑖𝑗 (𝑠) 𝑒𝑟𝑠𝑤𝑖𝑗 (𝑠) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛿

−1
𝑖𝑗

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝜌

𝜌−𝜎𝑖𝑗(𝜌)
𝑎𝑖𝑗 (𝑠) 𝑒𝑟𝑠𝑤𝑖𝑗 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛿
−1
𝑖𝑗

≤ 𝑊∗
1 (𝑡) + 𝑎+𝑖𝑗𝜎+𝑖𝑗sup

𝑠≤𝑡
𝑒𝑟𝑠 󵄨󵄨󵄨󵄨󵄨𝑤𝑖𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝛿−1𝑖𝑗

(55)

for all 𝜌 ≤ 𝑡, where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. By (H3),
we have

𝑒𝑟𝜌 󵄨󵄨󵄨󵄨󵄨𝑤𝑖𝑗 (𝜌)󵄨󵄨󵄨󵄨󵄨 𝛿−1𝑖𝑗 ≤ 𝑊∗
2 (𝑡)1 − 𝑎+𝑖𝑗𝜎+𝑖𝑗 . (56)

For any given 𝑡 ≥ 0, there exist 𝑘 ∈ {1, 2, . . . , 𝑛} and 𝑙 ∈{1, 2, . . . , 𝑚} such that

𝑉2 (𝑡) =
󵄨󵄨󵄨󵄨𝑊𝑘𝑙 (𝑡)󵄨󵄨󵄨󵄨𝛿𝑘𝑙 . (57)

Calculating the derivative 𝑑𝑉2(𝑡)/𝑑𝑡 along the positive half
trajectory of (1) yields

𝑑𝑉2 (𝑡)𝑑𝑡 ≤ − (𝑎𝑘𝑙 (𝑡) − 𝑟)𝑉2 (𝑡) + 1𝛿𝑘𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

𝑡

𝑡−𝜎𝑘𝑙(𝑡)
𝑎𝑘𝑙 (𝑠)

⋅ 𝑒𝑟𝑠𝑤𝑘𝑙 (𝑠) 𝑑𝑠 + 𝑒𝑟𝑡 {− [𝑎𝑘𝑙 (𝑡)
− (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡)) 𝑒−𝑟𝜎𝑘𝑙(𝑡)] × 𝑤𝑘𝑙 (𝑡
− 𝜎𝑘𝑙 (𝑡)) + 𝐴𝑘𝑙 (𝑡, 𝑥∗ (𝑡) , 𝑤 (𝑡))}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ − (𝑎𝑘𝑙 (𝑡) − 𝑟)
⋅ 𝑉2 (𝑡) + (𝑎𝑘𝑙 (𝑡) − 𝑟) 𝜎+𝑘𝑙𝑎+𝑘𝑙 𝑉

∗
2 (𝑡)1 − 𝜎+
𝑘𝑙
𝑎+
𝑘𝑙

+ 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙 (𝑡)
⋅ 𝑒𝑟𝜎𝑘𝑙(𝑡) − (1 − 𝜎󸀠𝑘l (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))󵄨󵄨󵄨󵄨󵄨 𝑉

∗
2 (𝑡)1 − 𝜎+
𝑘𝑙
𝑎+
𝑘𝑙

+ 1𝛿𝑘𝑙 ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 𝐿𝑒𝑟𝜏𝑘𝑙(𝑡) ( 𝑉∗2 (𝑡)1 − 𝑎+
𝑘𝑙
𝜎+
𝑘𝑙

)2

≤ −{{{
[(𝑎𝑘𝑙 (𝑡) − 𝑟) (1 − 2𝜎+𝑘𝑙𝑎+𝑘𝑙) − 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑙𝑒𝑟𝜎𝑘𝑙(𝑡)

− (1 − 𝜎󸀠𝑘𝑙 (𝑡)) 𝑎𝑘𝑙 (𝑡 − 𝜎𝑘𝑙 (𝑡))󵄨󵄨󵄨󵄨󵄨] 𝛿𝑘𝑙1 − 𝜎+
𝑘𝑙
𝑎+
𝑘𝑙

− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶𝑘𝑙𝑖𝑗 )𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 𝐿𝑒𝑟𝜏𝑘𝑙(𝑡) ( 𝛿𝑘𝑙1 − 𝑎+
𝑘𝑙
𝜎+
𝑘𝑙

)2}}}
⋅ 𝑉2 (𝑡)𝛿𝑘𝑙 ≤ 𝜍𝑉2 (𝑡)𝛿𝑘𝑙 < 0

(58)

when𝑊∗
2 (𝑡) ≤ 𝑊2(𝑡).Thus,

𝑑𝑉∗2 (𝑡)𝑑𝑡 ≤ 0, ∀𝑡 ∈ 𝑅. (59)

Then, for all 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 and for any 𝑡 > 0,
we have

󵄨󵄨󵄨󵄨󵄨𝑤𝑖𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿𝑖𝑗𝑉
∗
2 (𝑡) 𝑒−𝑟𝑡1 − 𝜎+𝑖𝑗𝑎+𝑖𝑗 ≤ 𝛿𝑖𝑗𝑉∗2 (0) 𝑒−𝑟𝑡1 − 𝜎+𝑖𝑗𝑎+𝑖𝑗 . (60)

Thus, for any 𝑡 > 0, we have
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑥∗ (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑀󵄩󵄩󵄩󵄩𝜑 − 𝜓󵄩󵄩󵄩󵄩 𝑒−𝑟𝑡, (61)

where

𝑀 = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝛿𝑖𝑗
(1 − 𝜎+𝑖𝑗𝑎+𝑖𝑗) 𝛿min

(62)

and 𝑥(𝑡) = 𝑥(𝑡, 𝜑) and 𝑥∗(𝑡) = 𝑥∗(𝑡, 𝜓). The proof of
Theorem 11 is complete.

4. Periodicity and Stability

In this section, we will analyze the global exponential period-
icity and stability of (1). ByTheorem 11, we have the following
results.

Theorem 12. In addition to (H1)–(H6), if 𝐶𝑘𝑙∗𝑖𝑗 (𝑡), 𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡),𝐿 𝑖𝑗(𝑡), 𝑎𝑖𝑗(𝑡), 𝜏𝑖𝑗(𝑡), and 𝜎𝑖𝑗(𝑡) are 𝜔-periodic functions, then
there exists a unique 𝜔-periodic solution 𝑥∗(𝑡, 𝜓) for (1) which
is globally exponentially stable.

Next, we consider the following special form of (1):

𝑥̇𝑖𝑗 (𝑡) = −𝑎𝑖𝑗𝑥𝑖𝑗 (𝑡 − 𝜎𝑖𝑗)
− ∑
𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝑥𝑖𝑗 (𝑡)) 𝑓 (𝑥𝑖𝑗 (𝑡 − 𝜏𝑖𝑗)) 𝑥𝑖𝑗 (𝑡)
+ 𝐿 𝑖𝑗,

(63)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 and 𝐶𝑘𝑙∗𝑖𝑗 , 𝐶𝑘𝑙∗∗𝑖𝑗 , 𝐿 𝑖𝑗,𝑎𝑖𝑗, and 𝜏𝑖𝑗 are all constants and
𝐶𝑘𝑙𝑖𝑗 (𝑡, 𝜉) = {{{

𝐶𝑘𝑙∗𝑖𝑗 (𝑡) , ℎ𝑖𝑗 (𝜉) > 𝑇𝑖𝑗,
𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) , ℎ𝑖𝑗 (𝜉) < 𝑇𝑖𝑗, (64)

for 𝑡 ∈ 𝑅, 𝑎𝑖𝑗(𝑡, 𝑥) = 𝐶𝑘𝑙∗𝑖𝑗 (𝑡) or 𝐶𝑘𝑙∗∗𝑖𝑗 (𝑡) when ℎ𝑖𝑗(𝜉) = 𝑇𝑖𝑗. Let𝐸∗ = (𝑒𝑖𝑗)𝑛×𝑛, where
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𝑒𝑖𝑗 =
{{{{{{{{{{{

11 − 𝑎+𝑖𝑗𝜎+𝑖𝑗 [[
𝑎𝑖𝑗 (1 − 2𝑎𝑖𝑗𝜎𝑖𝑗) − ∑

𝐶𝑘𝑙∈𝑁𝜄(𝑖,𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶𝑘𝑙𝑖𝑗 )𝑢󵄨󵄨󵄨󵄨󵄨󵄨 𝐿]]
for 𝑖 = 𝑗,

− 11 − 𝑎+𝑖𝑗𝜎+𝑖𝑗 ∑
𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

(𝐶𝑘𝑙𝑖𝑗 )𝑢 𝐿 for 𝑖 ̸= 𝑗. (65)

ByTheorem 11 and Lemma 8, we have the following result.

Theorem 13. In addition to (H1)–(H6), further assume that
the matrix 𝐸∗ is a nonsingular𝑀-matrix. Then, there exists a
unique equilibrium 𝑥∗ for (63) which is globally exponentially
stable; namely, for any other solution 𝑥(𝑡, 𝜑) of (63), there exist
constants𝑀, 𝑟 > 0 such that ‖𝑥(𝑡, 𝜑) − 𝑥∗‖ ≤ 𝑀‖𝜑 − 𝜓‖𝑒−𝑟𝑡
for all 𝑡 > 0.
Remark 14. In [1], Wu investigated the pseudo almost peri-
odic solution of shunting inhibitory cellular neural networks
with time-varying delay (without leakage delay). In [2],
Chen and Cao studied the almost periodic solution of
shunting inhibitory cellular neural networks with constant
delay. In this paper, we study the almost periodic solutions
for memristor-based shunting inhibitory cellular neural net-
works with leakage delays which is different from the work
of [1, 2]. All the obtained results in [1, 2] cannot be applied
to system (1) to obtain the exponential stability of almost
periodic solutions for memristor-based shunting inhibitory
cellular neural networks (1), which implies that our results
obtained in this paper are completely new and complement
the previous studies to some extent.

5. Examples
In this section, we present an example to verify the analyt-
ical predictions obtained in the previous section. Consider
the following memristor-based shunting inhibitory cellular
neural networks:𝑥̇11 (𝑡) = −𝑎11 (𝑡) 𝑥11 (𝑡 − 𝜎11 (𝑡))

− ∑
𝐶𝑘𝑙∈𝑁1(1,1)

𝐶𝑘𝑙11 (𝑡, 𝑥11 (𝑡)) 𝑓 (𝑥11 (𝑡 − 𝜏11 (𝑡)))
⋅ 𝑥11 (𝑡) + 𝐿11 (𝑡) ,

𝑥̇12 (𝑡) = −𝑎12 (𝑡) 𝑥12 (𝑡 − 𝜎12 (𝑡))
− ∑
𝐶𝑘𝑙∈𝑁1(1,2)

𝐶𝑘𝑙12 (𝑡, 𝑥12 (𝑡)) 𝑓 (𝑥12 (𝑡 − 𝜏12 (𝑡)))
⋅ 𝑥12 (𝑡) + 𝐿12 (𝑡) ,

𝑥̇21 (𝑡) = −𝑎21 (𝑡) 𝑥21 (𝑡 − 𝜎21 (𝑡))
− ∑
𝐶𝑘𝑙∈𝑁1(2,1)

𝐶𝑘𝑙21 (𝑡, 𝑥21 (𝑡)) 𝑓 (𝑥21 (𝑡 − 𝜏21 (𝑡)))
⋅ 𝑥21 (𝑡) + 𝐿21 (𝑡) ,

𝑥̇22 (𝑡) = −𝑎22 (𝑡) 𝑥22 (𝑡 − 𝜎22 (𝑡))
− ∑
𝐶𝑘𝑙∈𝑁1(2,2)

𝐶𝑘𝑙22 (𝑡, 𝑥22 (𝑡)) 𝑓 (𝑥22 (𝑡 − 𝜏22 (𝑡)))
⋅ 𝑥22 (𝑡) + 𝐿22 (𝑡) ,

(66)

where 𝑔𝑓(𝑥) = tanh(|𝑥| − 1), 𝑎11(𝑡) = 1/10, 𝑎12(𝑡) =1/12, 𝑎21(𝑡) = 1/15, 𝑎22(𝑡) = 1/20, 𝐿11(𝑡) = 0.2(cos√2𝑡 +
sin√5𝑡), 𝐿12(𝑡) = 0.1(cos√3𝑡 + sin√7𝑡), 𝐿21(𝑡) =0.6(cos√11𝑡 + sin√3𝑡), 𝐿22(𝑡) = 0.4(cos√11𝑡 +
sin√13𝑡), 𝜏11(𝑡) = cos2𝑡/18, 𝜏12(𝑡) = sin2𝑡/15, 𝜏21(𝑡) =
sin2𝑡/17, 𝜎22(𝑡) = sin2𝑡/15, 𝜎11(𝑡) = sin2𝑡/7, 𝜎12(𝑡) =
cos2𝑡/9, 𝜎21(𝑡) = cos2𝑡/23, 𝜎22(𝑡) = cos2𝑡/19, and

𝐶𝑘𝑙11 (𝑡, 𝜉) =
{{{{{{{

0.4 cos 𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 > 1,
unchanged, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 = 1,0.3 sin 𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 < 1,

𝐶𝑘𝑙12 (𝑡, 𝜉) =
{{{{{{{

cos√5𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 > 1,
unchanged, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 = 1,
sin√3𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 < 1,

𝐶𝑘𝑙21 (𝑡, 𝜉) =
{{{{{{{

0.1 cos√3𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 > 1,
unchanged, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 = 1,0.4 sin√5𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 < 1,

𝐶𝑘𝑙22 (𝑡, 𝜉) =
{{{{{{{

cos√7𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 > 1,
unchanged, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 = 1,0.2 sin 𝑡, 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 < 1.

(67)

Then,
Ł = 1,

max
1≤𝑖≤𝑛,1≤𝑗≤𝑚

{𝑎+𝑖𝑗𝜎+𝑖𝑗} ≤ 170 < 1.
(68)

Let 𝛿11 = 0.2, 𝛿12 = 0.3, 𝛿21 = 0.32, 𝛿22 = 0.41, and 𝜍 = 0.3.
Then, − [𝑎11 (𝑡) (1 − 2𝑎+11𝜎+11)

− 󵄨󵄨󵄨󵄨󵄨𝑎11 (𝑡) − (1 − 𝜎󸀠11 (𝑡)) 𝑎11 (𝑡 − 𝜎11 (𝑡))󵄨󵄨󵄨󵄨󵄨]
⋅ 𝛿111 − 𝑎+11𝜎+11 + ∑

𝐶11∈𝑁1(1,1)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶1111)𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 𝐿 ( 𝛿11 (󰜚/𝜍)1 − 𝑎+11𝜎+11)

2 = −0.3089 < −0.3 = −𝜍,
− [𝑎12 (𝑡) (1 − 2𝑎+12𝜎+12)
− 󵄨󵄨󵄨󵄨󵄨𝑎12 (𝑡) − (1 − 𝜎󸀠12 (𝑡)) 𝑎12 (𝑡 − 𝜎12 (𝑡))󵄨󵄨󵄨󵄨󵄨]
⋅ 𝛿121 − 𝑎+12𝜎+12 + ∑

𝐶12∈𝑁1(1,2)

(𝐶1212)𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 𝐿 ( 𝛿12 (󰜚/𝜍)1 − 𝑎+12𝜎+12)

2 = −0.4125 < −0.3 = −𝜍,
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Figure 1:The state trajectory (𝑡, 𝑥11(𝑡)) of system (66)with the initial
values (0.1, 0.2, 0.5, 0.3), (0.6, 0.2, 0.2, 0.9), and (0.3, 0.8, 0.9, 0.7).

− [𝑎21 (𝑡) (1 − 2𝑎+21𝜎+21)
− 󵄨󵄨󵄨󵄨󵄨𝑎21 (𝑡) − (1 − 𝜎󸀠21 (𝑡)) 𝑎21 (𝑡 − 𝜎21 (𝑡))󵄨󵄨󵄨󵄨󵄨]
⋅ 𝛿211 − 𝑎+21𝜎+21 + ∑

𝐶21∈𝑁1(2,1)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶2121)𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 𝐿 ( 𝛿21 (󰜚/𝜍)1 − 𝑎+21𝜎+21)

2 = −0.3907 < −0.3 = −𝜍,
− [𝑎22 (𝑡) (1 − 2𝑎+22𝜎+22)
− 󵄨󵄨󵄨󵄨󵄨𝑎22 (𝑡) − (1 − 𝜎󸀠22 (𝑡)) 𝑎22 (𝑡 − 𝜎22 (𝑡))󵄨󵄨󵄨󵄨󵄨]
⋅ 𝛿221 − 𝑎+22𝜎+22 + ∑

𝐶22∈𝑁1(2,2)

󵄨󵄨󵄨󵄨󵄨󵄨(𝐶2222)𝑢 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 𝐿 ( 𝛿22 (󰜚/𝜍)1 − 𝑎+22𝜎+22)

2 = −0.5128 < −0.3 = −𝜍.
(69)

Thus, all the conditions in Theorem 11 are satisfied. Then, we
can conclude that system (66) has a unique almost periodic
solution 𝑥∗(𝑡), which is globally exponentially stable. These
results are shown in Figures 1–4.

6. Conclusions

In the article, we have investigated a class of memristor-
based shunting inhibitory cellular neural networks with
leakage delays. Using the concept of the Filippov solution
and differential inclusion, we study the dynamical nature
of the memristor-based shunting inhibitory cellular neural
networks with leakage delays. Applying a new Lyapunov
function technique, a set of sufficient criteria which ensure
the existence, uniqueness, and global exponential stability of
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Figure 2: The state trajectory (𝑡, 𝑥12(𝑡)) of system (66) with the ini-
tial values (0.1, 0.2, 0.5, 0.3), (0.6, 0.2, 0.2, 0.9), and (0.3, 0.8, 0.9, 0.7).
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Figure 3: The state trajectory (𝑡, 𝑥21(𝑡)) of system (66) with the ini-
tial values (0.1, 0.2, 0.5, 0.3), (0.6, 0.2, 0.2, 0.9), and (0.3, 0.8, 0.9, 0.7).
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Figure 4: The state trajectory (𝑡, 𝑥22(𝑡)) of system (66) with the ini-
tial values (0.1, 0.2, 0.5, 0.3), (0.6, 0.2, 0.2, 0.9), and (0.3, 0.8, 0.9, 0.7).
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almost periodic solution of the neural networks are estab-
lished. The obtained results on the almost periodic solution
are applied to prove the existence and stability of periodic
solution for this neural network with periodic coefficients
and leakage delays. An example is presented to illustrate the
effectiveness of the theoretical findings. The almost periodic
fluctuations can help us process visual information and
predict pathological brain states. At present, pseudo almost
periodic solutions of neural networks have also been paid
more attention bymany authors.However, very few results on
pseudo almost periodic solutions of memristor-based neural
networks with leakage delays have been reported, which
might be our future research topic.
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