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scriptome datasets. Severe patients molecular phenotypes presented traits asso-
ciated with immunosuppressive states and extramedullary erythropoiesis signa-
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Abstract
Biomarkers to assess the risk of developing severe respiratory syncytial virus
(RSV) infection are needed. We conducted a meta-analysis of 490 unique pro-
files from six public RSV blood transcriptome datasets. A repertoire of 382
well-characterized transcriptional modules was used to define dominant host
responses to RSV infection. The consolidated RSV cohort was stratified accord-
ing to four traits: “interferon response” (IFN), “neutrophil-driven inflammation”
(Infl), “cell cycle” (CC), and “erythrocytes” (Ery). We identified eight prevalent
blood transcriptome phenotypes, of which three Ery+ phenotypes comprised
higher proportions of patients requiring intensive care. This finding confirms
on a larger scale data from one of our earlier reports describing an association
between an erythrocyte signature and RSV disease severity. Further contextual
interpretation made it possible to associate this signature with immunosuppres-
sive states (late stage cancer, pharmacological immunosuppression), and with a
population of fetal glycophorin A+ erythroid precursors. Furthermore, we posit
that this erythrocyte cell signature may be linked to a population of immunosup-
pressive erythroid cells previously described in the literature, and that overabun-
dance of this cell population in RSV patients may underlie progression to severe
disease. These findings outline potential priority areas for biomarker develop-
ment and investigations into the immune biology of RSV infection. The approach
that we developed and employed here should also permit to delineate prevalent
blood transcriptome phenotypes in other settings.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics
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1 INTRODUCTION

Respiratory syncytial virus (RSV) infection is the leading
cause of hospitalization and the second cause of infant
mortality worldwide.1 There are well-characterized pop-
ulations at risk for severe disease, but most infants who
develop a severe RSV infection have no underlying health
conditions.2,3 The mechanisms underlying RSV morbidity
are poorly understood, but studies suggest that immature
or underdeveloped lungs and/or a dysregulated immune
response might have a role.4
Several groups of researchers, including us, have under-

taken blood transcriptome profiling studies of patients
with RSV infection.5–13 This approach involves measur-
ing the abundance of blood leukocyte transcripts on a
genome-wide scale.14,15 Whole blood comprises a hetero-
geneous mix of leukocyte populations; thus, changes in
transcript abundance might be attributable to either gene
expression regulation or relative changes in cell abun-
dance. Regardless, blood transcriptome profiling remains
one of the most straightforward approaches to implement
in clinical settings and on a large scale.15 Among the
RSV blood transcriptome studies, several aimed to iden-
tify factors associated with severe disease. For example, we
reported an increase in abundance of neutrophil, inflam-
mation, and erythrocyte genes in severe pediatric cases.7
Brand et al pinpointed that an increase in abundance of
transcripts coding for olfactomedin 4, a factor involved in
inflammatory responses, is strongly associated with dis-
ease severity.10 More recently, Do et al linked RSV dis-
ease severity with follicular T-helper-cell development and
BCL6-dependant inflammation.9
Building consensus around biomarker signatures and

finding a path to clinical utility may involve performing
meta-analyses that regroup datasets derived from multi-
ple independent studies.16 Work that permitted the devel-
opment of novel diagnostic products for sepsis provides a
good example.17,18 An obvious benefit of consolidating data
from multiple studies is that it permits to achieve larger
sample sizes. Arguably, heterogeneity of the patient popu-
lations and clinical settings could also help to improve the
robustness of the resulting biomarker signatures.16 Chal-
lenges include the presence of important technical vari-
ability between studies, such as in the sampling methods,
the profiling platformused, or data preprocessing. Another
potential limitation is the varying depth and lack of harmo-
nization of sample or subject information available from
one study to another.
Suchmeta-analyses tend to focus on the identification of

consensus biomarker signatures where the deliverable is a
set of differentially expressed genes or predictors of a given
clinical outcome. In the present work, we endeavored to
identify discrete molecular traits (eg, “interferon = IFN,”

“inflammation = Inf,” “erythrocytes” = Ery”) underlying
interindividual differences among patientswithRSV infec-
tion. We used such traits to define blood transcriptome
phenotypes and to stratify patient cohorts on the basis of
their individual status of each trait: increased, decreased,
or unchanged versus the uninfected comparators (eg, of
a given phenotype being IFN+ Infl0 Ery−). The next key
step was to assess the clinical relevance of such a classifi-
cation, for instance in terms of differences in the degrees of
RSV disease severity. We finally endeavored to investigate
biological basis of the interindividual variation being mea-
sured, especially for the traits showing the highest degree
of association with severe presentations.
A fixed repertoire of transcriptional modules formed the

basis for this work. This repertoire consists of a collection
of coexpressed gene sets. Coexpression was determined in
a collection of reference datasets encompassing 16 distinct
immunological states19 (see Section 4). This 382-module
repertoire is “fixed” in the sense that it serves as a reusable
framework to analyze and interpret transcriptome data. As
such, transcriptionalmodules are not re-formed every time
a new dataset is analyzed. Reducing the number of vari-
ables by using said modules permits the selection of dis-
crete molecular traits. These traits can in turn be used for
patient phenotyping and cohort stratification. The fact that
this module repertoire is fixed and reused across studies
also justifies investing more time for its functional charac-
terization thanwould be customary. Extensive annotations
frameworks such as the one we have developed can in turn
prove especially valuable when attempting to discern the
biological significance of patient blood transcriptome phe-
notypes.
In summary, we present here a meta-analysis of six

RSV blood transcriptome datasets that include 490 unique
subject profiles. Specifically, we aimed to: (a) measure
interindividual variability and molecularly stratify RSV
patients; (b) identify the associations between patient
molecular phenotypes, clinical parameters, and outcomes;
and (c) identify and interpret the immunobiological pro-
cesses associated with each molecular phenotype.

2 RESULTS

2.1 A collection of RSV blood
transcriptome datasets can be assembled
from earlier submissions to public
repositories

Several researchers investigating the host responses to RSV
infection have made their blood transcriptome datasets
public. We consolidated the datasets contributed by six
independent studies,5–7,20–22 and performedmeta-analyses
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to delineate distinct blood transcriptome phenotypes
among RSV subjects. A criterion for including studies in
this meta-analysis was the availability of uninfected con-
trols: this point is important because control groups serve
as a common denominator between studies and provide
the basis for data normalization. Thus, public datasets
for which such controls were unavailable could not be
included in this meta-analysis.
As each study had different goals and designs, it was

first important to identify the key differences so that they
are accounted for when interpreting the meta-analysis
results. Information about the six studies is summarized
in Table 1. The most notable outlier in this collection was
the dataset from Liu et al (GSE7307221), as it consisted
of samples from adult subjects collected before and after
experimental exposure to RSV. We decided to retain this
dataset as it met our initial screening criterion (availabil-
ity of uninfected control samples), and would help us to
maximize the sample size, which was our priority. Impor-
tantly, downstream analyses revealed that the RSV disease
signature in this adult population was largely consistent
with that observed in pediatric cohorts. This observation
carries notable implications that we elaborate on later in
Section 3. All other studies comprised pediatric subjects
with community-acquired RSV infection and a separate
group of uninfected controls. Among the latter, the study
by Mejias et al addressed the question of disease severity
most directly (GSE389007), while the work of de Steenhui-
jsen Piters et al (GSE770876) examined the effects of micro-
biome composition on the disease course and blood tran-
scriptome signatures. Rodriguez-Fernandez et al examined
the influence of RSV genotypes on blood transcriptional
signatures (GSE1038425), while McDonald et al focused
on identifying pathways involved in disease pathogenesis
(GSE8017922). In the study by Herberg et al (GSE4202620),
the RSV dataset was used as a comparator in a study focus-
ing on responses to H1N1 influenza. The latter two stud-
ies were conducted in Europe, while all others were con-
ducted in the United States of America. Finally, in terms of
technical variables, samples from the adult exposure study
were run using Affymetrix GeneChips, while the others
were run on Illumina BeadArrays. The sample types were
otherwise homogenous across all studies and consisted of
RNA-stabilized whole blood. The studies used one of two
popular commercial sample collection tubes for this type
of application: PAXgene blood RNA tubes (three studies)
or Tempus tubes (three studies).
Altogether, the consolidated dataset collection that was

constituted for this meta-analysis encompassed 490 pro-
files, of which 319 were from subjects with RSV infection.
We hypothesized that this expanded sample size should
permit us to define blood transcriptome phenotypes, and
stratify patient cohorts more effectively than each individ-
ual study could.

2.2 Comparing the changes in
transcript abundance across module
aggregates identifies a consensus RSV
signature

Meta-analyses are compounded by a high degree of tech-
nical variation existing between independent studies. To at
least partly address such challenges, we used a fixed reper-
toire of transcriptional modules19 as a framework for data
analysis and interpretation. In brief, this repertoire com-
prises 382 modules, each formed by a set of genes grouped
together based on patterns of coexpression across a refer-
ence collection of 16 blood transcriptomedatasets. This col-
lection was comprised of 985 unique transcriptome pro-
files and spanned 16 different immunologically relevant
pathological or physiological states (see Methods section).
Dimensions were further reduced by organizing, in turn,
themodules into 38 “aggregates” (designatedA1-A38). This
grouping was based on similarities in patterns of transcript
abundance, determined this time at the module level and
across the 16 reference datasets. Each aggregate comprised
between 1 and 42 modules (27 of the 38 aggregates com-
prised two modules or more).
Here, we mapped the changes in transcript abundance

for each dataset against this modular framework. This pro-
cess consists of determining the percentage of transcripts
constituting a given module that is significantly changed.
This procedure is repeated in turn for each module and
across each one of the six datasets comprised in our col-
lection. This approach made it possible to assess, as a
first step, the degree of consistency in the RSV response
signatures across the datasets. To facilitate interpretation,
we represented the changes at the least granular level by
showing on a heat map the abundance profiles for each
of the six RSV datasets (columns) across 27 module aggre-
gates (rows) (Figure 1A). From this highly reduced set of
variables, we could pinpoint the most conserved molec-
ular signatures across the six datasets. These included
seven aggregates showing consistent increases in tran-
script abundance (observed in at least 5/6 datasets: A26,
A27, A28, A33, A35, A37, A38), and two aggregates showing
consistent decreases (A1, A3). We also observed changes
for another set of modules but in only three of six RSV
datasets (A15, A16, A29, A30, A34, A36). Technical or bio-
logical parameters (Table 1) did not yield an obvious expla-
nation for the differences between these two groups of
studies. The amplitude of the changes in other aggre-
gates was minimal. Notably, the dataset from Liu et al
(GSE7307221) that comprised adults infected experimen-
tally with RSV did not behave as an outlier in this analysis.
At the module aggregate level patterns of transcript abun-
dance was most similar to that of two pediatric datasets
(GSE103842, GSE77087), which together clustered away
from the remaining three pediatric datasets (Figure 1A).
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F IGURE 1 Modular repertoire changes in patients with respiratory syncytial virus (RSV) infection versus uninfected controls. A, Fin-
gerprint heat map comparing the module aggregate level patterns of transcript abundance across six RSV datasets. The summarized module
aggregate level values on this heat map are arranged in rows and the datasets in columns. The datasets are grouped via hierarchical clustering,
according to similarities in patterns of transcript abundance across module aggregates. B, Fingerprint grid for GSE77087. Modules are assigned
a fixed position on the grid, with each row corresponding to a “module aggregate” constituted of modules following similar patterns of change
in transcript abundance. The number of constitutive modules for each aggregate ranges from two (A16) to 42 (A2). Aggregates comprising a
single module are not represented on this map (A9-A14; A19-A23). The percentage of constitutive transcripts for a given module showing an
increase in abundance in RSV patients over controls is indicated by a red spot. The percentage of constitutive transcripts showing a decrease
in abundance for a given module is indicated by a blue spot. The color key at the bottom indicates the functions that have been associated with
some of the modules on the grid
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TABLE 2 Links to module aggregates annotation pages

Aggregate Function Link
A1 Lymphocytic https://prezi.com/view/sxap39tKxkmCNTTNIlVO/
A2 TBD https://prezi.com/view/96GWajx5mZjuRS4B6gjA/
A3 TBD https://prezi.com/view/OWFVI51FND0WWwNgsgJZ/
A4 TBD https://prezi.com/view/2Zbq8ZDYbO4hbUd4r2KF/
A5 Lymphocytic https://prezi.com/view/62tgA5E6roOlk5DRNvS1/
A6 Lymphocytic https://prezi.com/view/Uks2Nd4lvizNNFVPtBEy/
A7 TBD https://prezi.com/view/kKfergNj0SkLXyFtm0Dg/
A8 TBD https://prezi.com/view/Y4uk1RPJyNcSndJYnFX6/
A15 TBD https://prezi.com/view/jgYehQ9QhyADAttEsdoI/
A16 TBD https://prezi.com/view/SKzHeA0XYdLYvy2sY8gP/
A17 TBD https://prezi.com/view/FS7sE1Vqew5g8EKOM1AM/
A18 TBD https://prezi.com/view/aZMLflMNVrV7JnVaIILm/
A24 Oxidative phosphorylation https://prezi.com/view/eiXvf2LNBLFRgrtaeCuM/
A25 TBD https://prezi.com/view/pwyojaU62Z7GT102ZYwM/
A26 TBD https://prezi.com/view/9CErpW3NwpN2HgRS3Hzf/
A27 Cell cycle https://prezi.com/view/GgIiA0K9kSFHbpVj2I85/
A28 Interferon https://prezi.com/view/E34MhxE5uKoZLWZ3KXjG/
A29 TBD https://prezi.com/view/W4TShTd32dEJx0XPOF1U/
A30 TBD https://prezi.com/view/kl7VHoJTWug0sn7TgXut/
A31 TBD https://prezi.com/view/GqtUO22JJlSf16zMJKbB/
A32 TBD https://prezi.com/view/qlbG9VFzegOndQKD8aiy/
A33 Inflammation https://prezi.com/view/VBqKqHuLWCra3OJOIZRR/
A34 TBD https://prezi.com/view/HcSgIEGP3TJjTSpaPCxv/
A35 Inflammation https://prezi.com/view/7Q20FyW6Hrs5NjMaTUyW/
A36 Erythroid https://prezi.com/view/M7dnztl2h61gXrKFQeB2/
A37 Erythroid https://prezi.com/view/YyQs4WiXSNf0YXE79lfS/
A38 Erythroid https://prezi.com/view/0KUlPICKUZGeUjb206R5/

Taken together, this step permitted the mapping of
transcriptional changes measured across different RSV
datasets using the same transcriptional module frame-
work. This was useful in relating changes observed
between the studies and pinpointing signatures that seem
to be most robustly associated with RSV infection.

2.3 Changes in transcript abundance
can be mapped to a fixed transcriptional
module repertoire to facilitate functional
interpretation

To functionally interpret the conserved signatures
observed across RSV datasets, a more granular level of
information is needed. We thus examined transcriptomic
changes at the level of the modules forming the 27 aggre-
gates mentioned above. We represented the changes in
transcript abundance as grid plots for each of the RSV
datasets (Figure 1B, Figure S1). A first vertical reading of

the grid across the rows provides a sense of the changes
at the aggregate level already summarized in the heat
map that was presented earlier (Figure 1A). A second
horizontal reading across the columns provides a sense of
the changes occurring at the module level within each of
the aggregates.
Because the positions on the grid are fixed, it is possi-

ble to overlay other information, such as functional anno-
tations (color-coded grid in Figure 1B). We found that
some of the conserved signatures that were increased
during RSV infection comprised modules preferentially
associated with interferon responses (A28), inflammation
(A33, A35), erythrocytes (A37, A38), and cell cycle (A27),
while those that were decreased were associated with
lymphocytic responses (A1, A3). Some of these responses
are further interpreted below, and all details are acces-
sible via interactive web presentations for modules con-
stituting each aggregate (web links are listed in Table 2).
The presentations include reports from functional pro-
filing analyses carried out using different tools. Heat
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https://prezi.com/view/SKzHeA0XYdLYvy2sY8gP/
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https://prezi.com/view/E34MhxE5uKoZLWZ3KXjG/
https://prezi.com/view/W4TShTd32dEJx0XPOF1U/
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maps representing the patterns of abundance for tran-
scripts constituting each module across reference datasets
are also available. Furthermore, a dedicated web appli-
cation was developed in support of the work presented
here and permits users to access the fingerprint grid
plots and to generate other types of plots that are pre-
sented throughout this manuscript. This resource can be
accessed via this link: https://drinchai.shinyapps.io/RSV_
Meta_Module_analysis/. A video demonstration can be
accessed here: https://youtu.be/htNSMreM8es.
In summary, we mapped the conserved RSV signa-

tures identified to a well-annotated modular framework.
This mapping made it relatively straightforward to assign
each signature to a predetermined functional category. The
added granularity and available online resources make it
possible to further dissect these signatures in subsequent
analyses, as we exemplify below.

2.4 Blood transcriptional signature
presents a high level of interindividual
variability among cohorts of RSV patients

Blood transcriptome profiling provides a means to mea-
sure interindividual differences with a high degree of
resolution. Understanding the biological and clinical sig-
nificance of this variability is important but requires the
study of large patient cohorts. The collective reanalysis of
the six datasets assembled here provides a unique oppor-
tunity to investigate interindividual differences among
patients with RSV infection at the molecular level.
The approach that we used next to map changes in

transcript abundance for individual patients against the
repertoire of transcriptional modules is very similar to
that described above for groups of patients. We expressed
the changes for each individual RSV patient as a percent-
age of the constitutive genes for which the abundance
was increased or decreased compared to the respective
control group (see Section 4 for details). As an illustra-
tion, we generated a heat map (Figure 2) of the results
obtained for subjects comprising the de Steenhuijsen Piters
dataset (Figure 1B). The patterns in the changes in abun-
dance are only shown for the modules constituting the
nine aggregates deemed to be conserved across the col-
lection of RSV datasets (highlighted in Figure 1). We gen-
erated similar plots for each of the remaining datasets
(Supporting File, and https://drinchai.shinyapps.io/RSV_
Meta_Module_analysis/).
From the heat maps, we observed that interindividual

variability exists even for signatures that at the group level
were well conserved across the six datasets (Figure 1A).
In reality, only a minority of patients in this illustrative
dataset (11/81) matched the prototypical pattern defined

above at the group level based on conserved changes
observed for nine module aggregates (i.e., A1− A3− A27+
A28+ A33+ A35+ A37+ A38+; Figure 2). This finding
highlights the importance when conducting such analy-
ses of delineating the extent and nature of interindividual
variations that may exist among patients. Here, the degree
of interindividual variability differed from one module
aggregate to another. For example, in the modules form-
ing aggregates A1 (lymphocytic) or A33 (inflammation),
changes in abundance only varied in amplitude without,
for the most part, showing an inversion of trends. In other
modules, inverted trends were much more common, as
exemplified by A37 (erythrocytes).
Taken together, examining the changes in transcript

abundance at the level of individuals revealed a significant
degree of heterogeneity among cohorts of RSV patients.
This paradigm was also true for signatures deemed to be
conserved when carrying out comparisons at the group
level.

2.5 Distinct blood transcriptome
phenotypes are identified among a
consolidated cohort of RSV patients

The fact that the consensus disease signature defined ear-
lier was not reflected at the level of individual patient,
highlighted the need to characterize distinct RSV blood
transcriptome phenotypes. For this, we used the combined
set of patients from the six public transcriptome datasets.
First, we generated PCA plots to evaluate the sources
of variance among this composite set of samples (Fig-
ure S2A). The results indicated the absence of study bias
when abundancemeasures were normalized to the respec-
tive control group and reduced to module level summa-
rized values. This finding was largely confirmedwhen rep-
resenting interindividual differences on a tSNE plot (Fig-
ure S2B).23 One dataset did show partial separation from
the others, but this only concerned a minority of subjects
and could also be attributable to biological sources. The
same shift was observed on the PCA plot but only along
PC3, which accounts for only 9% of the overall variance.
Next, we selected parameters (or “traits”) that would

be used for defining the RSV blood transcriptome pheno-
types. As a first step, we sought to identify the signatures
with the highest degree of interpatient variability, assum-
ing that these would be best able to discriminate patients
according to phenotypes. We identified these signatures
at the least granular, module aggregate level, thus start-
ing from a set of only 38 variables (Figure S3). We selected
the following four aggregates: (a) A27, comprising five
modules functionally associated with the “cell cycle”; (b)
A28, comprising six modules functionally associated with

https://drinchai.shinyapps.io/RSV_Meta_Module_analysis/
https://drinchai.shinyapps.io/RSV_Meta_Module_analysis/
https://youtu.be/htNSMreM8es
https://drinchai.shinyapps.io/RSV_Meta_Module_analysis/
https://drinchai.shinyapps.io/RSV_Meta_Module_analysis/
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F IGURE 2 Heatmap representation of changes in abundance of transcriptional modules across respiratory syncytial virus (RSV)-infected
individuals. This heat map was generated for the GSE77087 dataset that is also represented as a fingerprint grid plot in Figure 1B. The modules
comprised in aggregates identified as being conserved (indicated by the colored triangles in Figure 1A) are arranged as rows, and the RSV
subjects comprised in this dataset are arranged as columns. The colored spots represent the percentage of transcripts within each module
deemed to be differentially expressed (up = red, down = blue). The modules are arranged based on similarities in abundance patterns via
hierarchical clustering within each aggregate. A general function is attributed to some of the aggregates, as indicated by the colored symbols
and key
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the “interferon response”; (c) A35, comprising 21 mod-
ules predominantly associated with “inflammation”; and
(d) A37, comprising 11 modules predominantly associated
with “erythrocytes.” We did not include two other module
aggregates that exhibited a similar degree of interpatient
variability, but which at a high level exhibited a notable
degree of functional convergence with the four selected
aggregates. The two aggregates that we did not include
are: A33, which like A35 is also associated with “inflam-
mation”; and A38, which like A37 is associated with “ery-
throcytes.” Limiting the number of parameters to only four
helped keep the number of possible phenotypes to a rea-
sonable level (81 in total) given the sample size (N = 319
RSV patients). Notably, larger study cohorts should accom-
modate the definition of more complex phenotypes (i.e.,
selection of more than four parameters, or “traits”).
Next, we assigned the status for each aggregate signa-

ture in a given individual using the corresponding per-
centage of increased or decreased transcripts: if the value
was >15% the aggregate was considered to be increased
(noted as +), if <15% it was considered to be decreased
(noted as −), else it was considered not changed (noted
as 0). An example of such a notation for a given phe-
notype would be Infl0/IFN+/CC+/Ery−. We then gener-
ated the distribution of subjects constituting the combined
RSV cohorts across all 81 possible Infl/IFN/CC/Ery phe-
notypes (Figure 3). We found that a small subset of pheno-
types comprised a higher number of patients than others
(>10 per phenotype). These phenotypes were all positive
for the “interferon” trait (IFN+), were positive or showed
no change for the “inflammation” and “cell cycle” traits
(Infl+/0 or CC+/0), and exhibited any erythrocyte trait
status (Ery+/0/−). Phenotypes where the interferon sta-
tus was unchanged or decreased were comparatively less
prevalent (five patients per group at most), and so were
phenotypes where interferon was increased but inflamma-
tion or cell cycle phenotypes were decreased.
Overall, we showed that a principled approach using

a small subset of highly reduced variables can identify a
discrete number of interpretable RSV blood transcriptome
phenotypes.

2.6 A subset of RSV blood
transcriptome phenotypes is associated
with severe disease

An obvious next question is whether the stratification
of RSV patients according to blood transcriptome phe-
notypes, such as those described above, has any clini-
cal relevance. The extent of phenotypic information made
available alongside the blood transcriptome datasets var-
ied greatly between studies.Notably, pertinent information

F IGURE 3 Stratification of respiratory syncytial virus (RSV)
patients according to blood transcriptome phenotypes. Phenotypes
were defined according to four different “traits.” Each of the 319
RSV patients comprising the consolidated cohort used in this meta-
analysis was assigned to a phenotype according to their status for
each of the four traits: positive (red), negative (blue), or unchanged
(white). This determination was made in reference to each respec-
tive control baseline. The bar graph shows the number of patients
assigned to each of the phenotypes. The gray line indicates the thresh-
old used to select the phenotypes considered to be themost abundant
(>10 subjects)
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reflecting disease severity (eg, respiratory rate, transcuta-
neous O2 saturation) was lacking for many patients. As a
result, we had to use a relatively crude metric of disease
severity that relied on the type of care the patient required;
that is, whether they were outpatients, inpatients cared for
in theward or were admitted to the pediatric intensive care
unit (PICU).
We first visualized the patterns of transcript abundance

at the module level for individuals belonging to the eight
most prevalent phenotypes (Figure 4). This heat map veri-
fied that the phenotypic categories presented a high degree
of homogeneity. Upon overlaying the phenotypic informa-
tion on this plot, we gained first indication of a possi-
ble association between age and disease severity. Specifi-
cally, it was possible to discern a trend toward a younger
age among Ery+ subjects in comparison to Ery− or Ery0
subjects. Importantly, the different studies also seemed to
be well represented in each of the phenotypes, indicative
of their underpinnings by biological rather than technical
factors.
We then looked at the relative proportion of severe

patients for each high-prevalence phenotype and the con-
tributions by the different studies (Figure 5A). Four of
the eight phenotypes were Ery+, of which three com-
prised a proportion of PICU patients that was on average
5.6 times higher than the four Ery− and Ery0 pheno-
types. The Ery+ patients included the quadruple posi-
tive IFN+/Infl+/CC+/Ery+ phenotype with 32% of PICU
patients, while its IFN+/Infl+/CC+/Ery− counterpart
had 12% of patients. We found no severe patients in the
IFN+/Infl+/CC0/Ery0 group. Furthermore, subjects with
Ery+ phenotypes were significantly younger than subjects
with Ery− phenotypes (P < .001, Figure 5B).
We next wanted to determine whether the presence

of the Ery trait was associated with heightened severity,
regardless of age. For this, we examined the distribution
of severe cases across the same phenotypes but focused on
infants <4 months old (Figure 5A). This cutoff was chosen
because no associations between age and Ery levels were
observed for this age group (Figure S4), whereas an associ-
ation was evident among subjects <6 months old (a cutoff
that is more customary in immunological studies and was
employed in some of the analyses presented in the original
papers). We found that among infants <4 months old, the
severe cases were again distributed preferentially among
Ery+ phenotypes ([Ery+ = 29 PICU] cases, Ery−/0 = 4
PICU cases; of note, the IFN+/Infl+/CC+/Ery− pheno-
type comprised only two patients, one ofwhichwas a PICU
case).
Finally, we investigated the associations between each

of the four traits used for RSV patient phenotyping
and stratification, and disease severity (Figure 6). Here,
we found that the abundance of transcripts forming

the A37/erythrocyte cell aggregates were significantly
increased in patients cared for in the PICU compared to the
ward (Ery trait; P < .01). We made a similar finding for the
A35/“inflammation” aggregate, although to a lesser degree
(Infl trait; P < .05). We found no significant differences for
the A27/cell cycle or A28/interferon aggregates. Associa-
tions can be explored for various aggregates as a function
of age via our web application (https://drinchai.shinyapps.
io/RSV_Meta_Module_analysis/).
Taken together, these findings suggest that our RSV

stratification systemmight be clinically relevant. This con-
clusion is illustrated by the fact that a high proportion of
severe subjects was observed amongmost phenotypes pos-
itive for the Ery trait. This finding might be particularly
relevant in infants <4 months old who would otherwise
carry a similar risk of developing severe RSV disease when
taking age into consideration.

2.7 The RSV “erythrocyte” signature is
shared with melanoma patients and liver
transplant recipients

Beyond the question of clinical relevance of these RSV
blood transcriptome phenotypes, we next sought to under-
stand their biological significance. For this we relied
on several resources. First, we used a web applica-
tion providing access to a reference collection of mod-
ule fingerprints for the 16 pathological or physiologi-
cal states19 (accessible via: https://drinchai.shinyapps.io/
dc_gen3_module_analysis/#; demonstration video: https:
//youtu.be/y__7xKJo5e4).
We generated fingerprint grid plots to compare the

changes in transcript abundance in acute influenza and
RSV infections (Figure 7A). Acute influenza infection
highly resembles RSV infection in terms of clinical pre-
sentation, especially in infants. As could be expected, the
fingerprints of both of these respiratory infections fea-
tured a potent interferon signature (modules in aggre-
gate A28; ie, the IFN trait defined earlier). The modules
associated with inflammation (comprised in aggregate
A35; Infl trait) were also generally increased in both
diseases. However, one of the most marked differences
between the influenza and RSV fingerprints concerned
the erythrocyte signature (aggregate A37; Ery trait), which
was consistently increased in RSV but was unchanged in
influenza.
Another fingerprint dominated by an interferon sig-

nature was that of systemic lupus erythematosus (SLE),
but as was the case for influenza, it did not comprise
an “A37/erythrocyte” signature. Among the fingerprints
of other reference datasets, those of Staphylococcus aureus
infection, liver transplantation, and metastatic melanoma

https://drinchai.shinyapps.io/RSV_Meta_Module_analysis/
https://drinchai.shinyapps.io/RSV_Meta_Module_analysis/
https://drinchai.shinyapps.io/dc_gen3_module_analysis/
https://drinchai.shinyapps.io/dc_gen3_module_analysis/
https://youtu.be/y__7xKJo5e4
https://youtu.be/y__7xKJo5e4
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F IGURE 4 The association of dominant respiratory syncytial virus (RSV) blood transcriptional phenotypeswith clinical and demographic
attributes. Heat maps were generated for the sevenmost prevalent phenotypes identified on the distribution plot. The subjects (rows) were first
arranged according to their phenotype, and then arranged within each phenotype according to similarities in abundance patterns. Modules
constituting the four aggregates selected for the definition of molecular phenotypes are shown as columns. The respective traits for module
aggregates A28, A35, A27, and A37 are IFN (interferon), Infl (inflammation), CC (cell cycle), and Ery (erythrocytes). The status for each phe-
notype is indicated by a red, blue, or white spot (increase, decrease, or no change, respectively). The concentric circle plots (right) indicate the
distribution of patients constituting each phenotype according to age, study membership, and RSV severity status.
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F IGURE 5 The association of dominant respiratory syncytial virus (RSV) blood transcriptional phenotypes with disease severity as a
function of age. A, Bottompanel: The red or blue spots define the status for four traits corresponding to the eightmost prevalent RSV phenotypes
identified in Figure 4 (>10 subjects). Middle panel: The relative frequency of subjects cared for in the hospital ward, PICU, outpatients, and
experimentally exposed subjects. This information was not available for all studies. Top panel: Bar graph showing the number of subjects
comprising each of the eight different phenotypes. The combination of tables and graphs on the left is for all subjects. Information for a subset
of subjects<4months is shown on the right. B, The box plots represent the age inmonths of individuals comprising the consolidated RSV cohort
used throughout this study. Patients were categorized according to their Ery trait status. The plot on the right shows the same information but
of a subset of patients <4 months. Dots are color-coded according to severity status (red = PICU, blue = ward, yellow = outpatient). *P < .05,
**P < .01, ***P < .001

also showed an elevation in abundance for transcripts
constituting modules belonging to the A37 aggregate
(Figure 7A). The S. aureus infection fingerprint showed
the highest degree of alteration overall, with widespread
changes in transcript levels occurring in most aggre-
gates. This finding contrasts with the fingerprint for

metastatic melanoma, which for the most part was
quiescent, except for a marked increase in the abun-
dance of genes constituting the A37 modules. The sig-
nature observed in liver transplant recipients receiv-
ing maintenance immunosuppresive therapy was more
perturbed than that of melanoma patients, but it was
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likewise characterized by an increase in the abundance
of transcripts constituting the “A37/erythrocyte” modules.
Next, we used the same web application to examine

module abundance profiles specifically for the IFN, Infl,
CC, and Ery traits across all 16 reference datasets (Fig-
ure 7B). For the IFN trait (A28), RSV clustered among
the diseases showing an intermediate level of response,
along with liver transplant recipients, patients with sys-
temic onset juvenile idiopathic arthritis (SoJIA), S. aureus
infection (pediatric), or sepsis caused by various pathogens
(adults). Influenza was clustered among diseases showing
the highest IFN responses, including other infections such
as tuberculosis or HIV, as well as SLE (Figure S5). For the
Infl trait (A35), RSV clustered again with diseases showing
an intermediate response level, and predictably lower than
those measured not only in SoJIA, sepsis, and S. aureus,
but also influenza infection. For the CC trait (A27), the
RSV and HIV cohorts formed a cluster with the highest
increase in abundance. Finally, for the Ery trait (A37) the
RSV cohort was one of only three diseases in the high-
abundance cluster, along with the melanoma and liver
transplant cohorts.We observed increases to a lesser extent
in diseases characterized by overt systemic inflammation,
such as sepsis or SoJIA, as well as in pregnant women. This
trait tended to be decreased in other viral illnesses, such as
influenza and HIV infection.
Overall, this contextual interpretation of the domi-

nant traits comprising the RSV signature identified some
peculiarities. Notably, the interferon response that, while
robust, seemed to be somewhat muted when compared to
other viral infections. More striking was the atypical over-
all elevation in the abundance levels associated with the
erythrocyte signature. The extent of the observed change
was only found in melanoma patients and liver transplant
recipients: in these two cohorts, the erythrocyte signa-
ture dominated the overall changes observed in the blood
transcriptome. Notably, both patient populations relate
to states characterized by marked immunosuppression,
driven by the disease in the first case and pharmacologi-
cal treatment aiming at maintaining graft tolerance in the
other.

2.8 Expression of transcripts
constituting the A37/“erythrocyte”
modular signature is restricted to a
population of fetal GlyA+ erythroid cells

In our final analyses, we focused our interpretations
on the erythrocyte signature (A37). Although we had
observed an association with RSV disease severity, we
did not ascertain causality. Based on functional profil-
ing results that were run using multiple approaches, we
attributed the erythrocyte annotation to 8/11 modules in
aggregate A37 (interactive reports available via: https:
//prezi.com/view/YyQs4WiXSNf0YXE79lfS/). Examining
the abundance patterns for the transcripts comprising the
A37 modules in reference datasets comprising isolated
leukocyte cell populations provided further insight (Fig-
ure 8; with additional heat maps accessible via the weblink
provided above). In one such reference dataset contributed
by Novershtern et al,24 the expression of A37 transcripts
was narrowly restricted to populations of glycophorin A-
positive (GlyA+) fetal erythroid cells. This pattern was
irrespective of CD71 marker expression. However, genes
comprising A37 modules were not expressed in CD71+ but
GlyA− cells. We observed similar expression patterns for
modules constituting aggregates A36 and A38, both com-
prised one module functionally associated with the ery-
throcyte annotation (Figures S6 and S7).
Erythroid precursors of fetal origin can circulate in the

blood of neonates for up to 3-4 weeks following birth.
Immunosuppressive properties have been attributed to
these populations25; for example, this cell population con-
fers susceptibility to Listeria infection in neonates.26 How-
ever, a possible role for these circulating erythroid cells
(CECs) in the context of RSV infection has not been investi-
gated to date. Others have also described the presence of an
erythroid cell population with potent immunosuppressive
properties associated with anemia in adults with late-stage
cancer.27 This finding is consistent with our observation of
a prominent A37/erythrocyte signature in the melanoma
patients included in our study.

F IGURE 6 Association of blood transcriptomic traits with respiratory syncytial virus (RSV) disease severity in infants <4 months of age.
Box plots (left) show levels of transcript abundancemeasured for individual subjects for a given aggregate. This value represents the percentage
of transcripts constituting the aggregate that is increased or decreased for an individual compared to themedian of the uninfected control group
(+100% = all transcripts are increased; −100% = all transcripts are decreased). Individuals are grouped according to health status: uninfected
controls, inpatients cared for in the hospital ward, or inpatients cared for in the PICU. *P < .05, **P < .01, ***P < .001. The “Signature survival”
curves (right) represent the relative frequency of subjects (y-axis) for whom the percentage response falls at or above a given threshold (x-
axis). The percentage response was calculated in the same manner as described for the box plot. Thus, all subjects would have a percentage of
response falling between −100% and +100%, as indicated by the curves showing the frequency values of 1 at x = −100%. As the range narrows,
the frequency decreases; inmost cases a very small proportion of patients have a percentage of response values falling between+90% and+100%
(at x = +90%). The separation of the curves is an indication of the differences in the distribution of percentage responses between groups (pale
blue = control, dark blue = ward, red = PICU).

https://prezi.com/view/YyQs4WiXSNf0YXE79lfS/
https://prezi.com/view/YyQs4WiXSNf0YXE79lfS/
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Taken together, these observations support the notion
that an increase in A37 transcript abundance is associ-
ated with the presence of CECs. These cells might possess
immunosuppressive properties and conceivably contribute
to the worsening of RSV infection. While these findings
might be particularly relevant to young infants, we also
observed increases in adult subjects exposed experimen-
tally to the virus (GSE73072: Figure 1A, Figure S1).

3 DISCUSSION

This work has built on earlier studies investigating host
responses to RSV via blood transcriptome profiling. The
approach we adopted did not focus on identifying sets of
classifiers or predictors. Rather, we primarily documented
the interindividual differences among this large, consoli-
dated set of patients. Relying on highly reduced dimen-
sions made it possible to define dominant blood tran-
scriptome phenotypes among this aggregated RSV patient
cohort. The four “traits” or signatures that were retained
included: interferon (A28 aggregate/IFN trait), inflam-
mation (A35/Infl), cell cycle (A27/CC), and erythrocytes
(A37/Ery). Out of 319 RSV subjects, 199 were distributed
in just eight phenotypes out of a possible 81. These dom-
inant phenotypes were all positive for the interferon trait
and positive or unchanged for the inflammation and cell
cycle traits. The erythrocyte trait status ranged from being
increased, unchanged, or decreased.
From the standpoint of clinical significance, the phe-

notypes positive for both the interferon and erythrocyte
traits were generally associated with a higher proportion
of severe patients. However, the levels of increase in abun-
dance of interferon-inducible transcripts did not corre-
late with disease severity. Rather, erythrocyte transcripts
showed the strongest association with infection severity.
This finding confirmed (on a larger scale) the associa-
tion previously described by Mejias et al, which was based
on the analysis of one of the datasets comprised in this
collection.7 We also observed an association, although to
a lesser degree, between the level of increase of tran-
scripts forming an inflammation signature (aggregate A35)

and infection severity. Again, this is in line with previ-
ous findings.9,10 The approach that we employed here
permitted the integration of such signatures into more
complex phenotypes as well as individual benchmark-
ing/prioritization in a much larger aggregated cohort of
patients. Follow-up prospective studies are nowwarranted
to validate and maybe further refine such classification
scheme. For instance, the number of traits needed for this
classification to be clinically relevant would have to be
determined. Thus far, our analysis suggests that the ery-
throcyte trait might constitute a valuable risk indicator
if testing focuses on a narrowly defined age group (eg,
<4 months of age).
Our meta-analysis of available RSV blood transcrip-

tome datasets also yielded several insights relevant to the
immune biology of this disease. The interferon signature
(A28/“IFN” trait) is a hallmark of RSV infection and is
observed in a wide range of other viral and bacterial infec-
tions as well as autoimmune diseases, as illustrated in the
set of 16 blood transcriptome datasets used in our inter-
pretation. Our previous work has suggested that subsets
of modules constituting this aggregate are preferentially
induced by type I interferons (M8.3, M10.1).19 Consistently,
we also observed changes for these modules in patients
with RSV infection (Figure S5). Others have also described
robust interferon responses as measured via blood tran-
scriptome profiling in RSV patients.11 The role of type
I interferons per se is not widely reported, but a recent
study describes a dependency on interferon alpha and
beta for developing antibody-mediated responses.28 Sev-
eral reports, however, have identified reduced interferon
gamma responses in the context of RSV infection, espe-
cially when compared to the response observed during
influenza virus infection.29–32 This finding is also consis-
tent with our observation of a somewhat muted interferon
response in RSV patients compared to what we measured
in response to not only influenza, but also to HIV or TB
infection, as well as in patients with SLE.
We propose that the inflammation signature (A35/“Infl”

trait) is associated with “neutrophil-driven” inflamma-
tion, given the preferential expression of its constitutive
transcript in neutrophils and induction in patients with

F IGURE 7 Contextual interpretation of respiratory syncytial virus (RSV) blood transcriptome fingerprints A, Fingerprint grid plots dis-
playing changes in the levels of transcript abundance in patients with RSV infection, influenza infection, systemic lupus erythematosus, stage
IVmelanoma, or in liver transplant recipients. The visualization scheme is similar to the one described for the fingerprint grid plot in Figure 1B.
The four traits used to molecularly stratify RSV patients are highlighted. Because position of the modules on the grid is fixed, the color key from
Figure 1B can also be used for functional interpretation of the modules from the other rows. The datasets on which the fingerprint maps are
based are publicly available under Gene ExpressionOmnibus (GEO) accession IDGSE100150. B, Heatmaps displaying the changes in transcript
abundance for modules belonging to four aggregates (columns) across 16 reference datasets. As for the grid plots, an increase and decrease in
the abundance of transcripts constituting these modules are shown by a red or blue spot, respectively. The rows (datasets from each disease
cohort) and columns (modules) were arranged by hierarchical clustering based on similarities in patterns of transcript abundance. All the
plots can be generated and exported via a web application: https://drinchai.shinyapps.io/dc_gen3_module_analysis/#; video demonstration:
https://youtu.be/y__7xKJo5e4

https://drinchai.shinyapps.io/dc_gen3_module_analysis/
https://youtu.be/y__7xKJo5e4
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F IGURE 8 Expression levels of A37 genes across cell populations isolated from human peripheral blood and cord blood. The abundance
levels of transcripts comprised in the 11 modules constituting A37 (columns) across blood-cell populations (rows). The dataset is publicly avail-
able under GEO accession ID GSE24759 (24). The populations are separated based on whether they were isolated from adult venous blood (top)
or from neonate cord blood (bottom). Distinct erythroid cell populations isolated on the basis of cell surface expression of CD34, CD71 and GlyA
antigens are also shown
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sepsis. This information is derived, in part, from a dataset
contributed by Linsley et al that comprised RNAseq
profiles of isolated leukocyte fractions.33 The patterns of
transcript abundance are available for the modules consti-
tuting aggregate A35 via an interactive web presentation
(https://prezi.com/view/7Q20FyW6Hrs5NjMaTUyW/).
This aggregate was also the focus of a recent reanalysis
that we conducted, in which an increase in abundance
of A35 transcripts was a dominant feature of the psori-
asis blood transcriptome fingerprint.34 In this work, we
hypothesized in turn that this inflammatory response
might be driven more specifically by interleukin-17 (IL17).
And indeed, several researchers have found a role for IL17
in the context of RSV infection,35,36 and in one instance
specifically indicating the involvement of neutrophils in
IL17-mediated antiviral responses.37
We posit that the cell cycle signature (A27/“CC” trait)

is associated with the expansion of plasmablasts, which
are responsible for antibody production. Indeed, modules
in this aggregate comprised an overabundance of genes
involved in the cell cycle, such as cyclins. One of the
modules also comprises several genes expressed by plas-
mablasts (M12.15: CD38, IGJ, TNFRSF17).38–40 Notably, we
have reported earlier that abundance levels of those tran-
scripts is also markedly increased between 7 and 14 days
after the administration of trivalent influenza or pneu-
mococcal vaccines.41 In the context of this earlier study,
changes in the abundance of thesemarkers were shown by
flow cytometry to correlate with the presence of antibody-
producing cells. These levels also correlated with anti-
body titers measured 4 weeks postvaccination. Indeed,
antibody-producing cells also expand during the course of
RSV infection. Habibi et al reported a peak in antibody-
producing cells, 10 days after experimental exposure to
RSV as well as a correlation with the levels of neutralizing
antibodies developed by the study subjects.42
Consistent with our earlier findings,7 the erythrocyte

signature (A37/“Ery” trait) was most strongly associated
with RSV infection severity. We putatively link this sig-
nature with the presence of CEC precursors, based on
the restriction of A37 transcripts in a reference transcrip-
tome dataset to fetal erythroid cells (Figure 8). Erythroid
precursors would normally be found in the bone mar-
row, but cells originating from the fetal liver do persist
in infants in the circulation for a few weeks after birth.43
In adults, extramedullary erythropoiesis is observed in
the spleen and liver, and occurs under various circum-
stances, including anemia, pregnancy, severe infection, or
chronic stress.44,45 Indeed, in the context of the present
study, it is worth noting again that an increase in abun-
dance of A37 transcripts was also observed in adult sub-
jects experimentally infected with RSV (GSE73072 dataset,
from Liu et al21). We hypothesize that the CECs associ-

ated with this signature might have immunosuppressive
functions during an RSV infection. Thus, CEC-mediated
immunosuppression would in turn drive a worsening
of disease and severity in patients with RSV infection.
This assertion is supported by various lines of evidence.
First, Elahi described a wide range of mechanisms con-
ferring immunosuppressive properties to this cell popula-
tion, including via cell surface receptors (such as PD1/PDL-
1 and VISTA) or soluble factors (such as arginase, TGF-
beta, reactive oxygen species).25 Interestingly, we found a
number of transcripts associated with the reactive oxygen
species pathway and oxidative stress among the A36, A37
and A38 modules and for which the expression was highly
restricted to erythroid cells. These transcripts included
GPX4, PRDX2, GCLC, CYB5R3, ATP6V0C and ISCA1.
We also observed a striking increase in A37 transcript
abundance in metastatic melanoma and liver transplant
recipients under maintenance therapy. Both states are
characterized by marked immunosuppression and were
categorized in the high abundance profile cluster for
A37. Of the 14 other cohorts in this reference collection,
only RSV was present in this same cluster. Others have
recently described immunosuppression exerted by CECs
in patients with late stage cancer: these cells were found
to be at least in part responsible for the impaired T-cell
responses observed in this patient population.27 Third,
the RSV literature provides indications of this virus’ abil-
ity to subvert the immune response.4 While the possi-
bility of an involvement of CECs in this immune mod-
ulation of the response to RSV is novel, the contribu-
tion of the hypo-responsiveness of the neonatal immune
system as an underlying factor to progression to severe
RSV infection has been clearly outlined.46 A key question
could thus center on the possible contribution of CECs
to the reduced competence of the neonatal immune sys-
tem. Indeed, results obtained by Elahi et al in animal
models indicate that CEC depletion can restore neonatal
immune responsiveness and confer resistance to Listeria
infection.26 More recently, findings reported in a preprint
contributed by Shahbaz et al indicated that the suppres-
sive activity of CECs operated in the context of infec-
tion by another respiratory virus, SARS-CoV-2.47 Assum-
ing that CECs may exert such immunosuppressive activ-
ity and drive RSV pathogenesis would entail that Ery+
individuals display reduced immune function. Consis-
tently, we found that A37 abundance levels tended to cor-
relate negatively with that of several aggregates associ-
ated with lymphocyte responses. A negative trend was
notably observed in the case of aggregate A4 that also
comprises modules associated with NK cells/cytotoxic
responses (R = −0.34, P < .001). A similar trend was
observed for A27 (plasmablasts/antibody-producing cells;
R = −0.22, P < .001). While such associations are not

https://prezi.com/view/7Q20FyW6Hrs5NjMaTUyW/
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particularly strong, they are consistent with immunosup-
pressive role of CECs. They are also in line with results
reported in the same preprint contributed by Shahbaz
et al describing CEC’s suppressive activities in COVID-19
patients.47
Taken together, this work permitted conceptual

advances to bemade on two fronts. On one hand, wemade
methodological advances with data integration and meta-
analysis being carried out at the transcriptional module
level, rather than at the gene level. It is this data reduction
step that permitted the implementation of an original
approach to the definition of blood transcriptional “traits”
and phenotypes. Furthermore, since the transcriptional
module repertoire employed as a framework for these
analyses was pre-established, data interpretation also ben-
efitted from extensive prior functional annotation work
and tailored bioinformatic resources.19,48 And it is in part
thanks to the availability of such resources that potential
conceptual advances concerning RSV immunobiology
were made on the other hand. Indeed, we previously
reported an association between an erythrocyte signature
and severe presentation of RSV disease in a subset of the
subjects used in the present meta-analysis.7 Here, we
confirmed this association in a much larger set of patients.
But we were also able to establish links between this
A37/Ery+ signature and: (a) immunosuppressive states
encountered in melanoma and liver transplant recipients
under maintenance therapy; (b) fetal GlyA+ erythroid
precursors; and (c) literature attributing immunosuppres-
sive properties of erythroid cells, including in the context
of neonatal infections.
Certain limitations to the work presented here must be

noted and considered when designing follow-on studies.
First, the hypotheses advanced regarding a possible role
of CECs in the context of RSV pathogenesis would need
to be validated in patients and animal models using stan-
dard immune profiling methods and functional assays.
Second, follow-on studies specifically aimed at determin-
ing the potential clinical utility of assessing patient sta-
tus for the Ery and Infl traits (and potentially others) are
needed. Such studies should permit profiling to be con-
ducted in large patient cohorts, using uniformmethodolo-
gies, and ensure uniform collection of sufficiently detailed
clinical data. Unequal depth and lack of uniformity of the
clinical information available in public repositories indeed
being a clear limitation of meta-analysis, such as ours pre-
sented here. A line of investigation that might be consid-
ered for such follow-on studies would consist of determin-
ing utility for predicting risk of developing severe disease
in symptomatic patients admitted to the emergency room
(as an indication for inpatient care and potential admis-
sion to the ICU). Similarly, another line of investigation
could focus on assessing the risk of developing severe dis-

ease in asymptomatic patients. Information gained from
such studies might in turn be used to indicate a need for
monoclonal antibody prophylaxis.49,50 Such studies might
take years to fund and implement; as such, we believe that
the publication of early-stage findings derived from exten-
sive meta-analysis of large-scale data is warranted as a first
step.
Another limitation is inherent to the profiling of bulk

bloodRNAseq: while this approach presents the advantage
of practicality and scalability, and for these reasons also
carries significant translational potential, it does not neces-
sarily allow the delineation of responses from rare cell pop-
ulations, such as regulatory T cells. Likewise, it may be dif-
ficult to distinguish cell subsets, such as myeloid-derived
suppressor cells, whose expression profiles may closely
relate to that of other abundant populations. In designing
follow-on studies, it may thus be worthwhile considering
to implement, at least in a small subset of patients, single-
cell RNAseq approaches.
In conclusion, the synthesis that we conducted here

extends earlier findings, but also offers new avenues of
investigations. Notably, it points to the potential clinical
relevance of blood transcriptional phenotyping for strati-
fication of patients with RSV infection. More specifically, a
signature putatively attributed to immunosuppressive ery-
throid cells was found to be associated with clinical sever-
ity, even in homogenously younger patients. The clinical
relevance of this candidate biomarker signature nowneeds
careful assessment. Further investigations into relevance
of the CEC population in the context of RSV infection are
also warranted. One of the central questions to address is
whether these cells merely accompany clinical worsening
of the disease or constitute one of its drivers. More gener-
ally, this work also highlights the need for follow on, large-
scale blood transcriptome profiling studies of responses
to RSV patients, especially over multiple time points and
possibly carried out concomitantly in both adult and pedi-
atric populations. Coordination and cooperation between
the research groups that might engage in such endeavors
would likely prove beneficial for generating large, interop-
erable blood transcriptome dataset collections.

4 METHODS

4.1 Selection of public blood
transcriptome datasets

Datasets deposited in the NCBI Gene Expression Omnibus
(GEO) were used in this meta-analysis. Accession IDs
along with descriptive information and references can be
found in Table 1. A reference dataset, which consisted
of transcriptome profiles derived from adult blood cell
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populations and cord blood, was also used to support the
functional interpretation of our findings. This dataset was
contributed to GEO by Novershtern et al with accession ID
GSE24759.24

4.2 Module repertoire construction

The construction of a transcriptional module repertoire
for blood transcriptome analyses has been described
previously.51,52 The version that was used in this study is
the third one developed by our group and is the object of
a separate publication (available on a preprint server19).
Briefly, the approach consists of identifying sets of coex-
pressed transcripts for a given biological system (in this
case blood) and across a wide range of disease or physio-
logical states (perturbations of steady state). In this case,
coexpression was determined based on patterns of coclus-
tering observed for all gene pairs across a collection of 16
reference datasets. These datasets encompassed viral and
bacterial infectious diseases (HIV, influenza, RSV, melioi-
dosis, S. aureus, tuberculosis) as well as several inflamma-
tory or autoimmune diseases (systemic lupus erythemato-
sus, multiple sclerosis, chronic obstructive pulmonary dis-
ease, Kawasaki disease, juvenile dermatomyosistis, sys-
temic onset juvenile idiopathic arthritis), B-cell deficiency,
liver transplantation, stage IV melanoma, and pregnancy.
The overall collection comprised 985 blood transcriptome
profiles. A weighted coexpression network was built based
on the coclustering patterns that were obtained. Here, the
weight of the nodes connecting a gene pair being based on
the number of times coclustering was observed, thus rang-
ing from a weight of one (where coclustering occurs in one
of 16 datasets) to a weight of 16 (where coclustering occurs
in all 16 datasets). Next, this network was mined using a
graph theory algorithm (identification of cliques and par-
acliques) to define a subset of densely connected gene sets
that constituted the module repertoire. Overall, 382 mod-
ules were identified via this process, encompassing 14 168
transcripts. A Supporting File including the definition of
this module repertoire along with the functional annota-
tions is available from a separate publication.19

4.3 Constitution of module aggregates

To maintain the number of variables within a manage-
able number and to facilitate data interpretation, a second
tier of clustering was performed to group the modules into
“aggregates.” This was achieved by segregating the set of
382 modules according to the patterns of transcript abun-
dance across the 16 reference datasets that were used for
module construction. This segregation resulted in the for-

mation of 38 aggregates, each comprising between one and
42 modules. The second level of granularity that was thus
obtained was used to define distinct RSV blood transcrip-
tome phenotypes and as a basis for the fingerprint grid
plot representation (see Figures 1 and 7). With such grids,
the first vertical reading of the fingerprint grid provides an
overview of the changes in transcript abundance observed
among module aggregates, whereas the horizontal read-
ing provides the changes observedwithin an aggregate and
across modules.

4.4 Module repertoire analysis
workflow

The modular analyses were performed using the “Blood-
Gen3Module” R package “https://github.com/Drinchai/
BloodGen3Module.”53 t-test was performed on the log2-
transformed data (FC cutoff = 1.5; FDR cutoff = 0.1). For
individual patient analyses, each sample was compared to
the mean value of control samples in each dataset. The
cutoff comprised an absolute FC > 1.5 and a difference
in gene expression level >10. The results for each mod-
ule analysis are reported as the percentage of its constitu-
tive transcripts for which the abundance was increased or
decreased. Because gene sets were selected based on the
coexpression observed in blood, the changes in abundance
within a given module tended to be coordinated and the
dominant trend selected (the greater value of the percent-
age increased vs percentage decreased). Amodulewas con-
sidered to be “responsive”when the proportion of differen-
tially expressed transcripts (as defined above) was >15%.

4.5 Data visualization

The results were visualized in a fingerprint format, either
as a grid plot (group level, Figure 1) or as a heat map
(individual level, Figure 5), using the same illustrative RSV
dataset. For eachmodule, the percentage of increased tran-
scripts is represented by a red spot and the percentage of
decreased transcripts is represented by a blue spot. The
larger of the two values was retained for visualization. In
the grid format (Figure 1), the position of each module is
fixed. A row of modules corresponds to a “module aggre-
gate,” which as described above is a set of modules follow-
ing a similar pattern of activity across the 16 input datasets
corresponding to different disease or physiological states.
A few “aggregates” comprised only a single module and
thus are not shown on the grid.
For the heat maps (Figures 2, 5, and 7B), each row cor-

responds to a module and each column to a sample. The
columns and rows are arranged based on similarities in

https://github.com/Drinchai/BloodGen3Module
https://github.com/Drinchai/BloodGen3Module
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the patterns of module activity. Filters can be applied to
removemodules that showonly low levels of activity across
the samples or to retain only the modules associated with
functional annotations.
The fingerprint grid plots and heatmaps were generated

using the “BloodGen3Module” R package (link provided
above)”53
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