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In understanding the pathology of neurological diseases, the role played by brain energy
metabolism is gaining prominence. Animal models have demonstrated that regular
physical exercise improves brain energy metabolism while also providing antidepressant,
anxiolytic, antioxidant and neuroprotective functions. This review summarizes the latest
evidence on the roles played by peroxisome proliferator-activated receptor gamma
(PPAR-γ) coactivator 1-alpha (PGC-1α) and mitochondrial uncoupling protein (UCP)
in this scenario. The beneficial effects of exercise seem to depend on crosstalk
between muscles and nervous tissue through the increased release of muscle irisin
during exercise.
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INTRODUCTION

A physically inactive lifestyle is associated with the development of non-communicable diseases
(NCD), such as cardiovascular diseases, type 2 diabetes, some cancers, and an overall increased
mortality rate (Booth et al., 2012; Koster et al., 2012; Biswas et al., 2015; Same et al., 2016; Patterson
et al., 2018). Physical inactivity is also considered a risk factor for abdominal obesity, high serum
triglyceride levels, low-density lipoprotein, cholesterol, hypertension, and hyperglycemia, which
together characterize metabolic syndrome (Bankoski et al., 2011). Physical exercise has several
benefits for physical and mental health (Aguiar et al., 2008; Garber et al., 2011; Esteban-Cornejo
et al., 2015; Loprinzi, 2015), including increased physical and cardiorespiratory capacity (or fitness),
improved body composition and balance (or fatness), and greater muscle strength and flexibility
(Garber et al., 2011; Geneen et al., 2017). Physical exercise also improves the serum lipid profile,
decreases glucose intolerance, and attenuates insulin resistance (Lin et al., 2015; Brymer and Davids,
2016; Qiu et al., 2018). The literature supports the fitness-fatness hypothesis, which suggests that a
higher level of cardiorespiratory fitness will reduce the adverse effects of obesity on morbidity and
mortality, making obesity a much less important factor for health than is generally believed (Hainer
et al., 2009; Fogelholm, 2010; Barry et al., 2014). The data are mixed, but for many authors, fitness
is more important than fatness for early mortality (Blair et al., 1989; Wei et al., 1999; McAuley et al.,
2009; Barry et al., 2014). This is important for individuals who are unable to lose weight but are able
to engage in a regular physical activity program.
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The American College of Sports Medicine (ACSM)
recommends increasing total energy expenditure (TEE;
kcal/day) for health, with a minimum of 30 min of moderate
physical exercise 5 days/week or 20 min of vigorous exercise
3 days/week (Haskell et al., 2007). The ACSM also recommends
combining moderate (3–6 MET) and vigorous activities (>6
MET) (Haskell et al., 2007). The World Health Organization
(2000) recommends that individuals participate in at least 150
or 75 min/week of moderate or vigorous physical activities,
respectively (World Health Organization, 2010). For overweight
and obesity, the ACSM recommends increased physical activity,
between 150 and 250 min/week to prevent weight gain or provide
modest weight loss (Donnelly et al., 2009). Larger amounts of
exercise (>250 min/week) are needed for clinically significant
weight loss (Donnelly et al., 2009). However, physical activity for
weight loss is controversial; the amount of weight lost due to an
exercise intervention is often less than what is predicted to be
lost based on the exercise workload, suggesting a smaller increase
in TEE (and smaller energy imbalance) than expected (Thomas
et al., 2012; Melanson et al., 2013; Flack et al., 2018). This reduced
energy imbalance occurs through metabolic and behavioral
modifications in humans (Pontzer, 2018) and reinforces the
hypothesis that fitness is more important than fatness for health.
In general, the 150 min/week of moderate physical activity or
60–75 min/week of vigorous activity recommendations of ACSM
and WHO is effective for overall health.

Even single exercise sessions, which increases the production
of endogenous opioids (Geneen et al., 2017), angiogenesis factors
(such as vascular endothelial growth factor [VEGF], hypoxia-
induced 1 alpha factor [HIF-1α] and erythropoietin [EPO])
(Ribeiro et al., 2017) appear to be healthy, and they protect against
hyperglycemia peaks (Lang Lehrskov et al., 2018) in humans.
A single exercise session increases the plasma endocannabinoid
levels in mice (Fuss et al., 2015), which is a possible mechanism
for the euphoric state (runner’s high) that occurs after long runs
(Boecker et al., 2008).

The central nervous system (CNS) was the last physiological
system approached by the exercise sciences. Lack of exercise is
a major cause of chronic diseases (Booth et al., 2012), including
brain diseases, such as depression (Farmer et al., 1988; Aguiar
et al., 2014), and neurodegenerative diseases (Radak et al.,
2010; Xu et al., 2010; Aguiar et al., 2016). However, physical
exercise is a neuroprotective agent against depression (Schuch
et al., 2017), anxiety disorders (Jayakody et al., 2014), cognitive
decline/dementia in elderly people (Aguiar et al., 2011; Shen et al.,
2016), Parkinson’s disease (Chen et al., 2018), and Alzheimer’s
disease (Aguiar et al., 2016; Law et al., 2018). Animal studies have
shown that physical exercise increases neuronal survival, cerebral
vascularization, neurogenesis, and mitochondrial metabolism,
while it decreases the effects of neurotoxins on the CNS (Aguiar
et al., 2014; Zhang and Zhang, 2016). Iris and uncoupling
proteins (U) are candidate mechanisms for these exercise-
induced changes.

In mammals, transcriptional peroxisome proliferator-
activated receptor gamma (PPAR-γ) coactivator 1-alpha
(PGC-1α)/fibronectin type III domain-containing protein 5
(FNDC5, the precursor of irisin), which is secreted during

exercise, promotes the browning of beige fat cells in white
adipose tissue (Figure 1), resulting in enhanced thermogenesis
and increased energy expenditure (Hofmann et al., 2014). In the
CNS (Figure 2), FCDN5/irisin regulates central mechanisms
that mediate adaptive responses by (a) improving neuronal
mitochondrial decoupling and (b) increasing the expression of
neurotrophins and neuroprotective proteins such as neuronal
PAS domain protein 4 (NPAS4), cFOS, activity-regulated
cytoskeleton-associated protein (ARC), and zinc finger protein
268 (ZIF268) (Figure 1; Wrann et al., 2013; Wrann, 2015). In
brown adipose tissue, mitochondrial uncoupling is effected by
a specific protein, referred to as uncoupling protein-1 (UCP1),
in the inner mitochondrial membrane (Ricquier and Bouillaud,
2000). The cloning of UCP2 and UCP3, two homologs of
UCP1, has boosted research into the importance of respiration
control in metabolic processes, metabolic diseases and energy
balance (Ricquier and Bouillaud, 2000). PPAR-γ/PGC-1α

expression also improves mitochondrial decoupling, which
reduces mitochondrial membrane potential and reactive oxygen
species (ROS) production, oxidative damage, mitochondrial
calcium overload and potential apoptotic events through the
induction of uncoupling protein 2 (UCP2) (Andrews et al.,
2005). Therefore, FND5/irisin is essential for processes involving
neurotrophins and synaptic plasticity, mitochondrial biogenesis,
and resistance to neuronal stress (Wrann et al., 2013; Marosi and
Mattson, 2014; Raefsky and Mattson, 2017).

The purpose of this manuscript is to review the roles played
by FND5/irisin and UCP2, which are important for energy
metabolism, in the neuroprotective and antioxidant effects of
physical activity in the CNS.

THE EXERCISE-INDUCED RELEASE OF
IRISIN AND ITS NEUROPROTECTIVE
EFFECTS

Because irisin is an exercise-induced hormone (or myokine), it
is unclear whether the physical exercise-related CNS benefits are
attributable to irisin. Irisin is a 112 amino acid peptide that is
cleaved (by an unknown protease) from the glycosylated type I
membrane protein FNDC5 and released into the bloodstream
in a PGC-1α-dependent manner through a muscle contraction-
mediated transcription mechanism (Bostrom et al., 2012). PGC-
1α is a transcriptional coactivator and does not bind to DNA
directly; it needs to interact with another transcription factor
to induce neuronal FNDC5 gene expression (Xu, 2013). Several
clues indicate that the PGC-1α binding partner is orphan nuclear
estrogen-related receptor alpha (ERRα) (Kamei et al., 2003;
Xu, 2013). Moreover, irisin enhances PGC-1α expression in the
hippocampus and prefrontal cortex of mice in a positive feedback
loop (Siteneski et al., 2018). The irisin released from muscles is
a myokine that acts preferentially on the subcutaneous ‘beige’
fat and causes it to ‘brown’ by increasing the expression of
UCP1 and other thermogenic genes (Bostrom et al., 2012). Irisin
is involved in human biological adaptations such as increased
muscle strength, decreased obesity and insulin resistance, and
also has physical and psychological benefits (Bostrom et al., 2012;
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FIGURE 1 | The mechanism of action of irisin in metabolism-associated health issues or metabolic diseases. The expression of Arc, cFos, and Zif268 is induced by
neuronal activity. BDNF, brain-derived neurotrophic factor; ERRα, estrogen-related receptor alpha; FNDC5, fibronectin domain-containing protein 5; PGC-1α,
peroxisome proliferator-activated receptor gamma coactivator-1-alpha; TrkB, tyrosine receptor kinase B; WAT, white adipose tissue.

Ghahrizjani et al., 2015). Currently, it is hypothesized that irisin
circulates in the blood in vesicles containing other molecules,
such as proteins, miRNA and nucleic acids, until reaching the
target tissues, which include adipose tissue and the brain (Safdar
et al., 2016). The exercise-induced release of peptides and nucleic
acids from skeletal muscle (collectively termed ‘exerkines’) has
been implicated in mediating systemic biological adaptations
(Safdar et al., 2016).

The contraction of large muscle groups increases the muscle-
specific expression of PGC1-α and FNDC5 and consequent
release of irisin (Bostrom et al., 2012). In humans, blood irisin
levels reach approximately 3.6 ng/ml in sedentary individuals
and 4.3 ng/ml in active individuals after 12 weeks of regular
aerobic exercise (Jedrychowski et al., 2015). Irisin contributes to
exercise-induced physiological adaptations in the cardiovascular,
immune, digestive, and adipose systems (Bostrom et al., 2012;
Zhang et al., 2015; Mazur-Bialy et al., 2017). In obese adult
humans, exercise combined with caloric restriction improves
health (Mozaffarian et al., 2011) and increases concentrations of
circulating irisin (Huang et al., 2017). Although skeletal muscle
is the major source of exercise-induced irisin that is released into
the plasma (Roca-Rivada et al., 2013), it remains unclear whether
neuronal irisin is derived from muscles or is produced in neurons.
In neurons, PGC-1α interacts with estrogen-related receptor
alpha (ERRα) to regulate the expression of FNDC5 (Figure 1;
Wrann et al., 2013). Moreover, the increased expression of
FNDC5 promotes neuronal development and differentiation
(Forouzanfar et al., 2015; Ghahrizjani et al., 2015). FNDC5 can be
found in the cerebrospinal fluid, cortical neurons, paraventricular
neurons in the hippocampus, Purkinje cells in the cerebellum,
hypothalamus, multipolar neurons in the anterior nerve of the
spinal cord, and in astrocytes and microglia in the cerebral
tissue (Dun et al., 2013; Moon et al., 2013; Piya et al., 2014;

Albayrak et al., 2015). In the rat H19-7HN cell line, irisin (50–
100 nmol/l) increased the proliferation of hippocampal cells, thus
reinforcing its role in neurogenesis (Moon et al., 2013).

Wrann et al. (2013) demonstrated that the expression of
PGC-1α and FNDC5 in the hippocampal neurons was enhanced
after the mice spent 2 weeks running in exercise wheels.
Higher FNDC5 expression also increased the expression of
the genes BDNF, Arc, cFos, and Zif268, which is induced by
neuronal activity. FNDC5 expression is counterbalanced by
BDNF expression in a negative feedback mechanism (Figure 1;
Wrann et al., 2013). It is possible that this feedback loop is
a CNS detraining mechanism that requires regular exercise to
maintain its neurological benefits. This evidence suggests that
the induction of FNDC5 is part of the transcriptional response
to exercise, including neuroplasticity and neuroprotection, in
the CNS. Exercise-induced PGC-1α and irisin reduced ischemia-
induced neuronal injury (Zhang et al., 2012) via activation of
the Akt and ERK1/2 signaling pathways in mice (Li et al.,
2017). Exercise-induced irisin also reduced the brain infarct
volume, neurological deficits, brain edema and the body weight
decline of mice subjected to middle cerebral artery occlusion
(MCAO) (Li et al., 2017). Since BDNF is a critical regulator
of neural plasticity, irisin may act as a key regulator of
neuronal survival following cerebral ischemia. Physical activity
(running wheel, 12 weeks) increases levels of circulating irisin
and BDNF even in 20-month-old female rats (Belviranli and
Okudan, 2018), increases the expression of BDNF and decreases
neuroinflammation in the hippocampus of aged rats and mice,
and has motor and cognitive benefits (Aguiar et al., 2011;
Dallagnol et al., 2017).

Exercise is an antidepressant (Blumenthal et al., 1999; Cunha
et al., 2013), and irisin has been linked to the antidepressant
effects of exercise. Reduced irisin levels are associated with

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 292

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00292 March 27, 2019 Time: 17:51 # 4

de Oliveira Bristot et al. Exercise, Irisin and Brain

FIGURE 2 | The exercise-increased circulating protein irisin links structural and functional modifications in muscle and brain. BDNF, brain-derived neurotrophic factor;
FNDC5, fibronectin type III domain-containing protein 5; UCP2, uncoupling protein 2.

mood impairment and reduced BDNF levels in humans (Papp
et al., 2017; Szilasi et al., 2017), and increased circulating
concentrations of irisin have been shown to have antidepressant
effects in mice (Siteneski et al., 2018). A possible mechanism
for the antidepressant effect is the activation of the PGC-
1α/BDNF pathway by irisin after exercise (Wrann et al., 2013). As
previously mentioned, BDNF is a critical neurotrophin involved
in the differentiation, survival, maintenance, and function of
neurons; it is also involved in learning and memory processes
(Wrann et al., 2013). Torma et al. (2014) demonstrated that the
neurotrophic role of BDNF is dependent on PGC-1α.

In humans, the increased plasma levels of FNDC-5, irisin
and BDNF seem to depend on exercising large muscle groups,
as can be achieved with regular Nordic walking training
(Gmiat et al., 2018), aquarobics (16 weeks) (Kim and Kim,
2018), and CrossFit training (12 weeks) (Murawska-Cialowicz
et al., 2015). The electrical stimulation of small muscle groups
increases BDNF but not irisin in the hippocampus of rats
(Maekawa et al., 2018). In healthy elderly women, Nordic walking
training improved body composition, anaerobic capacity and
cardiovascular fitness (Gmiat et al., 2018), and CrossFit training
improved psychological (Quality-of-Life Assessment and The
Beck Depression Inventory-2) and cognitive functions (D2 test
of attention and Trail Making Test A&B).

NEURONAL UCP2 –AN ANTIOXIDANT
MECHANISM OF EXERCISE

The expression of neuronal uncoupling proteins (UCP)
is induced by metabolic and oxidative challenges such as

physical exercise and caloric restriction (Liu et al., 2015). UCP
facilitates proton flux through the internal mitochondrial
membrane, thereby dissociating the oxidative phosphorylation
of ATP synthesis (Wei et al., 2009). The enhanced proton
flux process reduces the mitochondrial membrane potential,
increases mitochondrial respiration, decreases the ATP/ADP
ratio, and dissipates chemical energy in the form of
heat (Chu et al., 2009). Acute mitochondrial decoupling
reduces mitochondrial ATP production; however, chronic
mitochondrial decoupling promotes an increase in the number
of mitochondria and an increased level of ATP production
(Coppola et al., 2007).

Initially, UCP1, which functions in heat production, was
identified in brown adipose tissue (Geisler et al., 2017).
UCP2 is found in organs and tissues such as the liver,
kidney, pancreas, endothelium, immune cells, and the CNS
(Pecqueur et al., 2001; Chu et al., 2009). UCP2, UCP4,
and UCP5 are expressed in the CNS, are referred to as
neuronal U, and are involved in the adaptation to cellular
stress (Chu et al., 2009). The distribution of neuronal UCPs
demonstrates the relevance of mitochondrial decoupling in
the CNS to the control of neuronal, neuroendocrine, and
autonomic responses (Richard et al., 1998). UCP2 is expressed
in the hypothalamus, especially in the arcuate nucleus, limbic
system, cerebellum, choroid plexus, and encephalic trunk
(Richard et al., 1998; Arsenijevic et al., 2000). UCP4 is
detected in most brain tissues, but it is expressed at lower
levels in the spinal cord and Substantia nigra (Mao et al.,
1999). UCP5 is expressed in the cerebral cortex, hippocampus,
thalamus, hypothalamus, amygdala, basal ganglia, and spinal
cord (Kwok et al., 2010).
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Neuronal UCPs influence the regulation of mitochondrial
biogenesis, calcium flux, ROS production, and local temperature
(Teshima et al., 2003). Neuronal UCPs play an important
role in the reduction of ROS production and consequent
reduction in oxidative stress without compromising the
production of ATP (Arsenijevic et al., 2000). Exposure of
cultured neurons to decoupling agents, such as carbonyl
cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) or
2,4-dinitrophenol (2,4-DNP or simply DNP), reduces the
mitochondrial membrane potential and inhibits mitochondrial
calcium absorption, and thus prevents cell death (Stout
et al., 1998). Neuronal UCPs also influence the temperature
of neuronal microenvironments and thus contribute to the
dynamics of neuronal activity through greater synaptic plasticity
and neuronal transmission (Arsenijevic et al., 2000). Some
studies have suggested that mitochondrial decoupling is
linked to neuroprotection against physiological processes and
pathological mechanisms including aging, Alzheimer’s and
Parkinson’s diseases, neuronal hypoxia and ischemia, and
epilepsy (Bechmann et al., 2002; Dietrich et al., 2008).

Among the neuronal UCPs, UCP2 is involved in central
autonomic, endocrine, and metabolic regulation and is thus
associated with cognition, mood, and behavior (Diano et al.,
2000; Wang et al., 2014). UCP2 in the ventromedial nucleus
restores glucose tolerance and regulates insulin sensitivity
mediated by glucose-excited neurons, which is important
for the physiological control of systemic glucose metabolism
(Toda et al., 2016). In the arcuate nucleus, UCP2 is associated
with mitochondrial fission, increased mitochondrial density
and diminished mitochondrial size (Toda et al., 2016). UCP2
shows increased expression after neuronal injury (Bechmann
et al., 2002). UCP2 induces mitochondrial decoupling in nigral
neurons of the substantia nigra pars compacta (SNpc) and
can prevent the loss of dopaminergic cells after 1-methyl-4-
phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced toxicity,
which is an essential effect to delay Parkinson’s disease
pathophysiology (Echtay et al., 2001; Horvath et al., 2003).
The relation of UCP2 to exercise occurs through the PGC-
1α/PPARα pathway, which can regulate neuronal UCP2
(Wu et al., 2014) and BDNF (Gomez-Pinilla et al., 2008).
Physical activity (running wheel, 4 weeks) increased UCP2
expression and mitochondrial oxygen consumption in coupled
and uncoupled mitochondria in the hippocampus of mice
(Dietrich et al., 2008). Moreover, physical activity (running
wheel, 1 week) and exercise (treadmill, 12 weeks) increased
UCP2 levels in the hippocampus, cerebellum and brain
cortex mitochondria of adult rats (Gomez-Pinilla et al., 2008;
Marques-Aleixo et al., 2015). The exercise-induced (running
wheel, 1 week) increase in UCP2 correlated with increased
BDNF in the hippocampus of rats (Gomez-Pinilla et al.,
2008). These changes in BDNF content and mitochondrial
metabolism (Vaynman et al., 2006; Aguiar et al., 2007, 2014)
coincided with an increase in the number of mitochondria
and dendritic spine synapses in the granule cells of the dentate
gyrus and the stratum radiatum of the CA1 region and were
dependent on UCP2 expression because such changes were
not observed in UCP2 knockout mice (Dietrich et al., 2008).

The absence of proper mitochondrial decoupling reduced
the number of synapses in hippocampal neurons due to the
increase in free radical production in response to exercise,
thus demonstrating the characteristic protective effect of UCP2
in this knockout mouse model (Dietrich et al., 2008). For
example, doxorubicin is an effective antineoplastic agent that
is limited by mitochondrial toxicity in non-target tissues,
including the brain (Marques-Aleixo et al., 2016; Flanigan
et al., 2018). Doxorubicin (2 mg/kg, i.p.) impaired spatial
learning/memory and decreased UCP2 protein content in
cerebellum and brain cortex mitochondria of adult rats,
both of which were prevented by physical activity (treadmill,
12 weeks) (Marques-Aleixo et al., 2016). The UCP2-related
nuclear respiration factor 1 (NRF1) and mitochondrial
transcription factor A (TFAM) genes, which are involved
in mitochondrial biogenesis, are associated with synaptic
plasticity and decreased neuronal vulnerability to cellular stress
(Simon-Areces et al., 2012). In an animal model of Parkinson’s
disease, 8 weeks of treadmill exercise stimulated mitochondrial
biogenesis and increased NRF2 and TFAM expression in the
striatum of mice, which protected against neuronal death
caused by the neurotoxin 6-OHDA (Aguiar et al., 2016). The
mitochondrial mechanism related to UCP2 function is essential
for the appropriate bioenergetic adaptation of neurons to
increased neuronal activity and synaptic plasticity in response to
physical activity.

CONCLUSION

Exercise improves the PGC-1α/BDNF pathway (muscle/brain)
through the signaling of circulating irisin, which strengthens
synapses and exhibits neuroprotective and antidepressant effects.
These neuroprotective effects of exercise are enhanced by the
antioxidant effects of UCP2, which is expressed at increased
levels in neurons in response to exercise. Therefore, the
evidence suggests a role for irisin/UCP2 in the mechanism
underlying the benefits of physical exercise on the CNS.
Consequently, irisin/UCP2 might be a potential therapeutic
target to improve brain function and prevent or treat neurological
and neurodegenerative diseases.
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