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A robust bitmap‑based real‑time 
position tracking algorithm for rats 
in radial arm maze tests
Chi‑Chun Chen1*, Liang‑Jyun Hong1, Jian‑Yong Wang1 & Ching‑Ping Chang2

This paper aims to develop a position tracking algorithm by which a rat in a radial arm maze can 
be accurately located in real time. An infrared (IR) night‑vision camera was hung above the maze 
to capture IR images of the rat. The IR images were binarized and then duplicated for subsequent 
intersection and opening operations. Due to simple operations and a high robustness against the 
noise spots formed by the droppings of the rat, it took just minutes to process more than 9000 
frames, and an accuracy above 99% was reached as well. The maze was intruded by an experimenter 
to further test the robustness, and the accuracy slightly fell to 98%. For comparison purposes, the 
same experiments were carried out using a pre‑trained YOLO v2 model. The YOLO counterpart gave 
an accuracy beyond 97% in the absence and in the presence of the intruder. In other words, this work 
slightly outperformed the YOLO counterpart in terms of the accuracy in both cases, which indicates 
the robustness of this work. However, it took the YOLO counterpart an hour or so to locate a rat 
contained in the frames, which highlights the contribution of this work.

In the field of epidemiology and molecular genetics, rodents have long been used to investigate basic mechanisms 
of spatial learning and  memory1–4. Devices and methods for assessing learning and memory functions have 
been extensively used since their development in the early twentieth  century5. Among behavioral tests, radial-
arm mazes (RAMs) have been widely used to quantify the spatial learning situations of healthy and unhealthy 
 animals6–9 due to their convenience and high reproducibility. RAMs reveal features that can be used to identify 
Alzheimer’s  disease10 or  frailty11 associated with spatial learning impairment in animals, and exhibit various 
advantages when assessing spatial learning improvement and progress. For example, animals’ spatial memory 
is improved after experiencing enriched  environments12 or exercise  stimulation13. RAM assessment methods 
have also been successfully implemented for  humans14. Many studies have shown that traumatic brain injury 
(TBI) is a high risk factor for Alzheimer’s  disease15. TBI, also referred to as head injury or intracranial injury, is 
an epidemic that arises from brain damage caused by an external force. Approximately 10 million people suffer 
from TBI each  year16. TBI and Alzheimer’s disease share many common pathological features, such as deposits of 
β-amyloid protein (Aβ) in the brain, neurofibrillary tangles, neuronal synapse loss and cognitive  impairment17. 
Therefore, a RAM is used in this work to explore the behavioral characteristics of rodents with TBI.

Tests entail an eight-arm radial maze. Food is placed at the ends of some of the arms, and animals’ spatial 
memory performance can be quantified as quantities such as the number of times each arm is accessed, the 
amount of time spend in each arm, the number of times that baited and non-baited arms are accessed, and 
the sequence of accessed  arms6. Short-term and long-term memory are evaluated after a maze test. Short-term 
memory, also referred to as the working memory, is the transient memory of task-related information in competi-
tive  environments18. By contrast, long-term memory, also referred to as the reference memory, is the permanent 
memory developed in natural adaptation to repetitive stimulation by the processing of the same  information18. 
In addition to the short-term and long-term memory, other quantities related to search behaviors merit further 
investigation.

Although search trajectories in mazes can serve as an indicator, they are mostly used in the studies related 
to water  mazes19,20, while hardly used in RAM-based studies. Some water maze-based studies have suggested 
that animals with variant pathologies adopt different search trajectories. For example, rats with hippocampal 
lesions circled around their targets, whereas those with global cerebral ischemia wandered around their  targets21. 
However, few studies have been conducted on the search trajectories of animals due to a poor  repeatability21 in 
a water maze test, simply because rats escape by swimming under an extremely high level of stress. Therefore, a 
water maze is not a good choice to objectively assess the memory of animals with motor function impairment. 

OPEN

1Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan. 2Department 
of Medical Research, Chi Mei Medical Center, Tainan, Taiwan. *email: chichun@ncut.edu.tw

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-01974-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22447  | https://doi.org/10.1038/s41598-021-01974-0

www.nature.com/scientificreports/

Stress has been acknowledged as a confounding factor to the accuracy of water maze experiments. Instead, there 
is a higher reproducibility in RAM tests, since test subjects experience relatively low psychological stress when 
food is used as an incentive in tests. Thus, an RAM is used to investigate the food search trajectory of rats with 
cognitive impairment.

Position tracking technologies for animals can be broadly categorized into contact and non‐contact. In the 
former case, tracking data were provided using sensors affixed to an  animal22,23, while positions were evaluated 
in the latter  case24,25. Non‐contact tracking is common in laboratories where software tools calculate animals 
location from video footage using software  tools24–32. However, as will be seen below, each tracking strategy has 
its own advantage and disadvantage.

Background subtraction strategy works well on the condition that the background is static while the animals 
are  mobile29–31, and remains one of the commonest computer vision techniques for object detection. It can handle 
complex backgrounds and take care of non-uniform illumination problems. However, it fails when the tracked 
animals remain static for a long period of time, or if the illumination varies over time. Adaptive thresholding 
technique is a simple computer vision technique used to segment an object of interest from its background by 
binarizing an  image33. Using the adaptive thresholding technique skillfully, animals can be reliably located from 
non-uniformly illuminated or non-static backgrounds, e.g. disturbed  water26. Use of a Kalman filter had been 
validated as an efficient way to deal with tracking  issues25,34. A wide variety of tracking algorithms have been 
proposed as well, e.g. identity  matching24, optical  flow28 and model-based  tracking32.

Recently, deep learning models have been well applied to target tracking  issues35–37, including automatic 
detection of marine species in aerial  imagery38 and identification of individual animals in a  crowd39. Many 
high-performance algorithms employ convolutional neural networks (CNNs) as feature extractors. You-Only-
Look-Once (YOLO) has been acknowledged as one of the most powerful deep neural network (DNN) models in 
the field of real-time target  tracking40. A large number of tracking algorithms have been proposed for different 
purposes. Open-source tracking software is released to the general public, while nobody but programmers can 
modify the codes to meet their specific requirements. For this sake, commercial software is the No. 1 choice to 
track animals in the vast majority of  experiments20,41,42, e.g. Ethovison XT (Noldus, Netherlands), ANY-maze 
(Stoelting, USA) and SMART video tracking system (Panlab, USA). Despite a licensed copy of SMART video 
tracking  system42 available in our laboratory, our team decided to develop our own tracking algorithm for the 
following reason.

The droppings of a rat are liable to be misidentified as a forever nonmoving target by the SMART video 
tracking system, and the worst case scenario is that an experiment goes endless regardless of the rat searching 
for food. As a straightforward, but neither elegant nor efficient, solution, droppings are mopped up manually 
and instantly so as to keep the image recognition algorithm working. It would take an experimenter hours to 
watch all the rats go through experiments. In a light room, the droppings of rats reflect light, and hence become 
noise sources to signal processing. The noise levels could be lowered in a dimly lit room, and all the experiments 
herein were performed in darkness accordingly.

Here is another reason for our team to develop this work. In the 2-week training program prior to a radial 
arm maze test, rats were pre-trained to locate the food in 4 out of 8 arms. Interestingly, some rats seemed well 
satisfied, and stayed still for as long as 40–50 min sometimes after they were “treated” with food at the end of 
a baited arm. Hence, an experimenter must be alerted to guide the rat to move on to the next baited arm(s). 
However, the intrusive experimenter is definitely a high-level noise source to the position tracking algorithm. 
In other words, a rat must be located in real time for efficient training, and a high robustness against an intruder 
is also required to avoid misidentification. As will be seen below, the presented position tracking algorithm was 
designed in such a way that both requirements can be fulfilled.

Methods
This work aimed to develop a real-time tracking algorithm with a high robustness against an intruder by which 
the food search trajectories of rats can be monitored and then analyzed. An infrared night-vision camera (model: 
TP-Link C200) was placed 2.2 m above the maze to capture rat images in darkness, as shown in Fig. 1. Experi-
ments were conducted in a dimly lit room, where the camera transmitted real-time images wirelessly to a com-
puter in another room for statistical analysis. An experimenter watched the food searching progress in real time 
through a user interface (UI). The computer beeped when the searching job was done. Thus, there was no need 
to the experimenter to remain on standby over the course of an experiment.

Automatic analysis system. The codes were written using Python. As illustrated in Fig. 2, the flow is 
divided into three stages: load files, global variable initialization and thread initiation. The “load files” stage 
comprises the information of a selected camera (IPCAM_INFO[ ]) and the outline of the RAM (ARMS_POS[ ]); 
the “global variable initialization” stages comprises variables related to the UI, the camera (IPCAM) and image 
processing; finally the “thread initiation” stage contains three threads, namely the UI thread, IPCAM thread and 
Image Processing thread.

As illustrated in Fig. 3, all the baited arms were specified in AF[ ] by an experimenter in the UI thread, and the 
collected data were used to quantify the cognitive performance of a rat. The UI thread can tell whether the Link 
or the Start button is clicked to connect the system to the IPCAM or to initiate a system operation, respectively.

The IPCAM thread was designed to tell whether the Link button in the UI was clicked. If it was clicked, 
“LinkFlag” was set to true and the camera driver information (IPCAM_INFO[ ]) was compared, as illustrated 
in Fig. 4. Images were captured and saved in IPCAM_Image[ ] after the right camera driver was selected. As 
illustrated in Fig. 5, the Image Processing thread was designed to locate rats and evaluate cognitive quantities.
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A rat was located as follows. In this work, an animal image was tracked using the OpenCV  library43. First, an 
IR image (i.e., IPCAM_Image[ ]) was captured, a subimage of 480 × 480 pixels, containing the RAM, was selected, 
converted to grayscale and then binarized. The gray level at pixel (i, j) is given by

and lies between 0 and 255. Accordingly, gray levels are binarized with a threshold of 127. The binarized pixel 
value was set to 1 if Gray(i, j) > 127, and 0 otherwise. A mask used to generate Image 1’ in Fig. 6B, C was simply 
the outline of the RAM for a subsequent intersection operation. A 5 × 5 matrix is employed as a structuring 
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Figure 1.  Configuration and framework of the developed system.

Figure 2.  Software flow.
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element for an opening operation. The binary image was duplicated as Images 1 and 2 in Fig. 6. Image 1’ was 
simply the intersection of Image 1 and the mask in Fig. 6B. Next, an opening operation was performed on Image 
1’ to remove the noise spots therein so as to give Image 1″. An opening operation of an image A by the structuring 
element B in Eq. (2) is defined as an erosion, expressed in Eq. (3), followed by a dilation operation expressed in 
Eq. (4). Then, the white outline and the coordinates of the center were saved in Array 1. As before, an opening 
operation was performed on Image 2 to remove the noise therein so as to give Image 2′. Subsequently, the white 
outline and the coordinates of the center were saved in Array 2. Finally, the coordinates of both white outlines in 
Images 1″ and 2′ were saved in Array 3. If Array 3 contained a single white outline, the outline denoted the rat’s 
body outline. This outline was then used to calculate the coordinates of the center of the rat (Target_Pos[ ]). If 
multiple white outlines were contained in Array 3, it means that there were noise spots in the images. Here is an 
example. As depicted in Fig. 6B, the images of a leg and a shoe were captured when an experimenter crossed an 
arm. The binary image showed white spots and strips caused by the rat and the shoe sole. In this case, the largest 
white outline inside the maze in Image 1″ was treated as the rat’s outline for the following reason. Most noise spots 
appeared outside the RAM, and were removed after an opening operation. The residual noise spots after the open-
ing operation were mostly smaller than the rat, and accordingly the largest area contained in Array 3 was simply 
the rat’s body outline, which was then used to evaluate the coordinates of the center of the rat (Target_Pos[ ]).

Here is another example to illustrate the noise spot removal process. As illustrated in Fig. 6C, the maze was 
intruded by an experimenter whose body covered part of the maze arms. In this case, binarization and an open-
ing operation were performed to obtain Image 2’. An intersection operation was subsequently performed on 
Image 2’ and 1’’ to give a white spot as the location of the rat. The coordinates of the center of the rat was saved 
in a hard drive every 0.05 s.

(2)A ◦ B = (A⊖B)⊕ B

(3)A⊖B =
{

z | (B̂)z ⊆ A
}

Figure 3.  Flow of the UI thread.

Figure 4.  Flow of the IPCAM thread.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22447  | https://doi.org/10.1038/s41598-021-01974-0

www.nature.com/scientificreports/

As illustrated in the upper half of Fig. 7, a variable “MazeState” was used to indicate whether an arm was 
accessed. MazeState = 0 signified that any arm had not been accessed yet, and then initiate an “access to arms” 
monitoring procedure. A rat was released in the central platform, and an experiment started. The distance 
between the proximal end of an arm (i.e., ARMS_LINE[ ][ ]) and the rat’s center (Target_Pos[ ]) was evaluated. 
If the distance was less than a threshold, the rat was seen as having entered into arm. In this scenario, MazeState 
was set to the numbering of the accessed arm (MazeState = CurA). Subsequently, another variable AF[i] was 
used to indicate whether an arm was baited or not. AF stands for Arm Food, and the argument i ranges between 
0 and 7. AF[i] = 0 and 1 represent that arm i + 1 is non-baited and baited, respectively. For example, AF[0] = 0 
represents arm 1 is non-baited, and AF[1] = 1 represents arm 2 is baited, and so on. If the food in arm i + 1 was 
taken, AF[i] was reset to 0, and Entry[i] = Entry[i] + 1. Entry[i] represents the number of times that arm i + 1 
has been accessed. Finally, another variable MAX(AF[i]) = 1 was used to represent that there was an unaccessed 
baited arm(s). Otherwise, MAX(AF[i]) = 0 represents that there was no leftover food in the maze, and the RAM 
test was completed.

MazeState ≠ 0 represents that the rat stayed inside an arm, and then initiate the procedure as illustrated in the 
lower half of Fig. 7. The distance between the proximal end of an arm (i.e., ARMS_POS [ ][ ]) and the rat’s center 
(Target_Pos[ ]) was evaluated again. If this distance was less than a threshold, the rat was seen as having exited 
the arm. In this scenario, MazeState was reset to 0. Entry[i] ≠ 0 represents arm i + 1 had been accessed before, 
and this time was a reentry thereto. Therefore, short-term memory error was added by 1. Entry[i] = AF[i] = 0 
represents that arm i + 1 is a non-baited arm, and the first entry therein caused a long-term memory error, that 
is, the long-term memory error was added by 1.

UI of the developed system. Figure 8 illustrates the UI of the developed system. Here is how it works. 
First, the camera was selected, the “Link” button was clicked to connect to the camera, and then the connection 
status was displayed in Frame 6. Next, the “Setting” button was clicked to specify the information of a rat, e.g., 
model and group, and the information entered was displayed in Frame 7. Finally, the baited arms were speci-
fied and the “Start” button was clicked to enable a system operation. Images of the rat can be seen by clicking 
“Camera” in Frame 4. In Frame 5, the location of the rat was displayed in real time. The long-term, short-term 
memory error and the latency were presented in Frame 8, and quantities such as the sequence of accessed arms 
were shown in Frame 9. After a test was completed, the system automatically terminated, saved all the quantities 
as an excel file in Fig. 9A and a food search trajectory as a bitmap file in Fig. 9B.

(4)A⊕ B =
{

z | (B̂)z ∩ A �= φ

}

Figure 5.  Flow of image processing thread.
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Figure 6.  (A) Position tracking procedure for rats, (B) removal of noise spots caused by an experimenter 
crossing an arm, and (C) by the experimenter whose body covered part of the RAM.
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Experimental procedure for inducing TBI. TBI surgery. Animal models with TBI were obtained by 
inflicting a fluid percussion injury on healthy rats using a fluid percussion device (VCU Biochemical Engineer-
ing, Richmond, VA, USA). The percussion force generated was 1.8–2.0 atm, and this force damaged the rats’ 
brains. Prior to the experiment, the rats were completely anesthetized by introducing a Zoletil mixture into their 
bodies through intramuscular injection. Next, the rats were tethered to a Kopf stereotaxic instrument, where 
their heads were fixated by placing an iron rod in each of their two ear sockets. Then, the epidermises of the rats’ 
heads were cut open, which exposed the bregma and lambda of their skulls. The point 3.0 and 4.0 mm behind the 
bregma and to the right of the bregma, respectively, was set as the center point of percussion. Subsequently, the 
rats’ skulls were scraped off using a drill, and an injection cap was fixed to their skulls. The injection cap was con-
nected to the fluid percussion device to induce percussion. For the Sham group, sham surgeries were performed 
and no percussion force was applied.

Experimental protocol. As illustrated in Fig. 10, an experiment was divided into two stages: the training and 
testing stage. Prior to inducing TBI, all the rats were trained in the RAM for 2 weeks. On Days 1 and 2, the rats 
were introduced to the maze. No food was placed in any arm to allow the rats to familiarize themselves with the 
new environment. On Days 3–5, food was placed in the distal end of each arm so as to guide the rats to reach 
each arm. On Days 8–12, food was placed in the distal end of four arms, and trained the rats to memorize the 
locations of the four baited arms. A day before the induction of TBI, a presurgery test was conducted in the maze, 
and the rats took a week of rest afterwards. Then, each rat was subjected to a maze test on a weekly basis with the 

Figure 6.  (continued)

Figure 7.  An “access to arms” monitoring procedure.
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Figure 8.  UI of the developed system.

Figure 9.  (A) cognitive quantity display and (B) food search trajectory display.
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same baited arms as before. The tests lasted for 1 month. The experimental protocol was approved by the animal 
ethics committee of Chi Mei Medical Center, Tainan, Taiwan. The study was conducted in compliance with the 
ARRIVE  guidelines44. All the methods proposed here were performed in accordance with relevant institutional 
guidelines and regulations.

Ethics approval and consent to participate. The statements on Ethics approval and consent to partici-
pate in the study are reported in the Methods–Experimental animals section.

Consent for publication. Not applicable.

Results. This article aimed to compare the food searching performance, including the search trajectory, 
between the Sham and the TBI group. However, it was observed that a rat did not keep searching for food in 
an RAM. For example, as presented in Fig. 11, a rat was detected as a red dot, and regarded as “staying still” if 
it moved within a specified range. In this fashion, the cognitive function of a rat can be quantified as the total 
number of spots and the total amount of time that the rat stayed still, which will be seen in the last two rows of 
Table 1. For the sake of discussion, a red spot, as illustrated in Fig. 11, is referred to as an “S” spot, and the total 
amount of time that a rat stayed still is referred to as the duration at the S spots hereafter.

Figure 12 presents a comparison on the food search trajectory between both groups over the course of 
1 month. As time went by, a rat in the TBI group accessed more arms, eventually all the baited and non-baited 
arms, for food. Besides, it had more repeated access to the arms than earlier. Instead, a rat in the Sham group 
had access to less arms than in the TBI case, meaning that the rat had a better spatial memory than the TBI 
counterpart.

Each arm of the maze is 70 cm long and 10 cm wide, and was equally divided into 10 pieces for statistical 
purpose, each of which occupied an area of 70  cm2. In addition, the central platform of the maze was divided into 
9 pieces, each with an area of 70  cm2 approximately. Therefore, the maze was divided into a total of 89 pieces. A 
rat was detected as a dot which was displayed in color according to the number of times that the rat stayed in a 
piece, as in rainfall statistics. For illustrative purposes, the food searching pattern of another rat in the TBI group 
was presented in Fig. 13A. Readers may be misled into thinking that the rat kept accessing all the arms, but did 
not reach the central platform of the maze. However, the food searching patterns vary among individuals, and 
this observation cannot apply to others in the TBI group. For instance, two rats in the TBI group kept circling 
along the rim of the central platform, but hardly entered an arm. Besides, there are more dots in Fig. 13A than in 
Fig. 13B, simply due to a longer food search trajectory required in the TBI group than in the Sham counterpart 
on Day 28, as will be seen in Table 1. It is also noted that there are denser dots in the distal than the proximal end 
of some arms. This finding could be ascribed to the fact that food was placed in the distal end of the baited arms.

Table 1 presents a performance comparison between the TBI and the sham group over 28 days. There were 
significant difference in the latency, short-term and long-term memory error on Day 7, and the performance 
gap widened on Day 28. The length of a food search trajectory is defined as the sum of all the distance between 

Figure 10.  A RAM experimental protocol.
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two consecutive detected dots. There were significant difference in the length of a food search trajectory and 
the average speed between both groups on Day 28. Over time, the TBI group took a longer route and at a slower 
average speed to complete tests. Moreover, the proportion of time spent by the TBI group in the central platform 
decreased over time, whereas that by the sham group was maintained at 50–60%.

Over time, the proportion of time spent in the baited arms increased in the TBI group, and hit approximately 
40% on Day 28. In contrast, it lay between 10–20% in the Sham group, which was statistically distinguishable 
from 40% in the TBI group. There was statistical difference in the quantity between the two groups on Days 7 
and 28. Instead, the time spent in the non-baited arms in both groups reached approximately 30%, and there 
was no statistical difference between both.

Finally, the last two rows indicate that there were 40.3 ± 20.7 S spots before TBI surgery, while at 123.1 ± 32.4 
S spots seven days later in the TBI case. Likewise, the duration at the S spots was raised from 54.2 ± 24.0 s before 
TBI surgery to 290.0 ± 102.2 s seven days later. All the figures were statistically distinguishable from those in the 
Sham case, and the performance gap between both groups grew over time, meaning that the cognitive function 
of the TBI group worsened over time.

On the issue of robustness, the accuracy and the tracking time were measured in two cases to compare the 
performance between this work and a You Only Look Once (YOLO) v2 model. The accuracy was measured as 
the detection rate which is defined as the percentage of the frames in which a rat was reliably detected, and the 
tracking time is defined as the amount of time taken by an algorithm to track the rat throughout the frames. 
The YOLO v2 model was pre-trained using 100 labeled images of rats captured in the RAM, and then tested on 
9010 frames extracted from a 5-min video in Cases 1 and 2. The only difference between Cases 1–2 is simply that 
the 5-min video in Case 2 contained an intruder into the RAM, while that in Case 1 did not. Algorithms were 
executed on an Altos BrainSphere™ P550 F4 Workstation running Windows 10 Enterprise edition, equipped 
with dual Intel(R) Xeon(R) Gold 5220R 2.20 GHz processors and 16 GB of RAM. Table 2 gives a performance 
comparison between the YOLO v2 model and this proposal. As it turned out, this work slightly outperformed the 
YOLO v2 counterpart in terms of the detection rate in both cases. It is also noted that the detection rate in Case 
2 is slightly below that in Case 1 (97.45% vs. 97.75% in YOLO v2, and 98.19% vs. 99.10% in this work), meaning 
that both strategies have a high robustness against an intruder. Here, it must be pointed out that this work is 

Figure 11.  Illustration of an “S” spot regardless of small body movements.
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Table 1.  Statistics on cognitive performance. Note that values are expressed as mean ± S.D. A student’s 
t-test was used to compare performance between both groups. *p < 0.05 indicated a statistical significance as 
compared with the sham group.

Cognitive quantities Timing Sham (n = 6) TBI (n = 6)

Latency (s)

Pre-surgery 156.5 ± 73.0 166.5 ± 71.0

Day 7 after surgery 158.8 ± 104.6 499.5 ± 121.6*

Day 28 after surgery 181.4 ± 67.9 998.1 ± 291.8*

Short-term memory error (times)

Pre-surgery 1.4 ± 1.3 1.3 ± 1.2

Day 7 after surgery 1.5 ± 1.4 8.4 ± 3.7*

Day 28 after surgery 2.1 ± 1.9 18.0 ± 6.1*

Long-term memory error (times)

Pre-surgery 1.5 ± 0.5 1.6 ± 0.6

Day 7 after surgery 1.8 ± 1.0 3.7 ± 0.5*

Day 28 after surgery 2.8 ± 0.8 3.5 ± 0.5*

Length of food search trajectory (m)

Pre-surgery 19.2 ± 6.2 18.8 ± 7.5

Day 7 after surgery 20.9 ± 5.0 35.1 ± 12.1

Day 28 after surgery 21.9 ± 7.1 56.1 ± 21.5*

Average speed (cm/s)

Pre-surgery 13.2 ± 1.4 12.4 ± 1.4

Day 7 after surgery 12.7 ± 1.5 8.1 ± 1.1*

Day 28 after surgery 14.1 ± 2.5 5.7 ± 1.6*

The time spent in the central platform (%)

Pre-surgery 60.5 ± 22.4 51.6 ± 20.1

Day 7 after surgery 55.1 ± 9.8 41.3 ± 11.3

Day 28 after surgery 63.6 ± 11.8 28.8 ± 5.6*

The time spent in the baited arms (%)

Pre-surgery 12.7 ± 5.5 13.2 ± 4.4

Day 7 after surgery 11.8 ± 3.9 39.0 ± 16.2*

Day 28 after surgery 16.1 ± 3.4 40.8 ± 11.6*

The time spent in the non-baited food arms (%)

Pre-surgery 24.7 ± 5.1 33.0 ± 12.4

Day 7 after surgery 29.7 ± 5.4 30.0 ± 8.6

Day 28 after surgery 30.7 ± 7.9 31.7 ± 15.6

The number of the S points

Pre-surgery 38.6 ± 25.8 40.3 ± 20.7

Day 7 after surgery 48.6 ± 16.2 123.1 ± 32.4*

Day 28 after surgery 52.75 ± 11.3 266.5 ± 58.7*

Duration at the S points

Pre-surgery 52.2 ± 20.1 54.2 ± 24.0

Day 7 after surgery 55.5 ± 24.3 290.0 ± 102.2*

Day 28 after surgery 67.6 ± 17.6 660.8 ± 188.3*

Figure 12.  Food search trajectory comparison between the TBI and sham group over the course of 1 month.
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far more efficient than the YOLO v2 counterpart, that is, 3 vs. 50 min in Case 1, and 2 vs. 73 min in Case 2. As 
referenced in the Introduction, the real-time position tracking feature is the key to this work, and this feature 
gives the presented algorithm a clear advantage over the YOLO v2 model.

Discussion
In agreement with others’ work in the literature, the latency, short-term and long-term memory error grew over 
time in the TBI group. In this work, it was particularly seen that two newly introduced quantities, the number and 
the duration at the S spots, were raised over time in the TBI group, meaning that both quantities can be viewed 
as measures of cognitive impairment. It was also observed that another two newly introduced quantities, i.e. 
the length of food search trajectory and the average speed, increased and decreased over time. Besides, another 
interesting finding is that the TBI group showed different food searching patterns from the Sham group, and 
the pattern even varied among individuals in the TBI group. Analysis on food searching patterns is definitely an 
issue that deserves further investigation.

YOLO has been acknowledged as a robust object recognition model if adequately trained. As listed in Table 2, 
this work provides a comparable detection rate as compared with a YOLO v2 model in Cases 1–2, meaning that 
it is robust against noise spots formed by the droppings of rats and against a high-level noise source such as an 
intruder into a maze.

On the other hand, this work significantly outperforms the counterpart in terms of tracking time due to 
simple operations. The real-time feature gives this work a clear advantage over the YOLO v2 model, and is the 
key to efficient rat training prior to RAM tests. The real-time advantage of this work is expected to be further 
highlighted when it is applied to locate a mouse inside a maze more complicated than a  RAM45,46, for it would 
take a YOLO model a much longer period of time to locate a target from a complicated background in a frame.

Conclusion
This paper presents a novel position tracking algorithm by which a rat in a radial arm maze can be located in real 
time using simple intersection and opening operations. It provides an accuracy above 99%, and also has a high 
robustness against the noise spots formed by the droppings of the rat. The accuracy slightly fell to 98% when 
the maze was intruded by an experimenter. As opposed to a YOLO v2 model, the algorithm does not require 
pre-training. Even though the YOLO counterpart provides comparable accuracy and robustness, it took a much 
longer period of time to locate the rat in the maze. In other words, the real-time feature gives the work a clear 
advantage over the YOLO counterpart.

Figure 13.  Dot distribution over the entire maze of another single rat in (A) the TBI group and (B) in the Sham 
group on Day 28.

Table 2.  Performance comparison between this proposal and a YOLO v2 model.

Video

Tracking time 
(h:min:s) Detection rate (%)

YOLO v2 The study YOLO v2 The study

Case 1 00:50:28 00:03:43 97.75 99.10

Case 2 01:13:23 00:02:33 97.45 98.19
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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