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Introduction
Non-Hodgkin’s lymphoma (NHL) is a hematologic malignancy
for which a rather dramatic rise in incidence has been noted during
the past decade. NHL is a heterogeneous condition in every re-
spect. There is a wide range of histologic, immunologic, molecu-
lar and clinical expression of this condition with marked differ-
ences in response to therapy and survival. Various forms of combi-
nation chemotherapy and radiation have been proven to be suc-
cessful for the different types of NHL, however, on average only
one-half of the patient population with disseminated disease enters
a durable remission [1].

During the past 25 years, many investigators have explored
various forms of high dose therapy followed by either autologous
or allogeneic hematopoietic cell transplantation. This review will
present some of the original data and provide new information
from more recently published clinical trials.

Autologous Hematopoietic Cell Transplantation
The first group of patients treated with high dose combination
therapy followed by autologous HCT dates back to 1978. In a re-
port from the National Cancer Institute, 12 NHL patients were de-
scribed of whom four currently are alive and well more than 25
years after HCT [2]. This encouraging observation was followed
by a large number of clinical trials, mostly designed as feasibility
trials or phase II studies. A comparison between high dose therapy
and autologous HCT versus standard dose chemotherapy was re-
ported in 1995 and demonstrated a significant advantage with re-
spect to overall survival and disease-free survival in favor of
transplantation [3].

During the past decade, patients with NHL who had high risk
features have been transplanted electively during their first clinical
remission in order to avoid an early relapse. These extended phase
II trials have yielded promising results. A prospective comparison
showing the advantage of high dose sequential therapy versus con-
tinued standard dose therapy was reported five years ago [4].

The leading cause for treatment failure after autologous HCT
for NHL is the relapse of the underlying disease. A number of
strategies to improve the outcome of autologous HCT can be pur-
sued (see Table 1). In this presentation, I will show several exam-
ples which indicate the importance of some of the treatment strate-
gies mentioned in Table 1 [5].

Table 1. Opportunities to Improve the Outcome of Autologous
Hematopoietic Cell Transplantation

• Timing of autologous HCT with respect to remission status
• Selection of myeloablative doses and combinations of drugs

with or without irradiation
• Optimizing the graft, i.e., removal of clonogenic tumors with-

out loss of activity for hematopoietic reconstitution
• Post-autologous HCT to consolidate remission (cytokines,

monoclonal antibodies, vaccines, cells, involved-field radia-
tion)

The timing of high dose therapy and autologous HCT can have a
major influence upon the treatment result. In a prospective phase
II trial, we treated 37 patients with high dose therapy and autolo-
gous bone marrow transplantation for follicular lymphoma in first
complete or partial remission [6]. Seventeen patients were in first
complete remission and 20 patients were in partial remission. The
median age of this patient population was 37 years ranging from
24 to 49 years. The preparatory regimen consisted of fractionated
total body irradiation (1,200 cGy), etoposide (60 mg/kg) and cy-

clophosphamide (100 mg/kg). All patients received autologous
bone marrow cells which were purged with a set of monoclonal
antibodies directed against CD9, CD10, CD19 and CD20 with
complement lysis. An intent-to-treat analysis is shown in Figure 1.

At the time of analysis, the 31 surviving patients had been fol-
lowed for 8–14 years. Overall survival was 84%, event-free sur-
vival 62% and the relapse rate was 29%. The causes for treatment
failure included one early death due to septicemia, two patients
died from acute leukemia and three patients succumbed to lym-
phoma. The excellent long-term survival demonstrated in this
study indicates that the natural course of the underlying disease
has been markedly altered by the autologous HCT approach. A
case-matched comparison from the Stanford NHL data base indi-
cates a significant survival advantage compared to patients not un-
dergoing transplantation.

Conversely, patients with follicular lymphoma who proceed to
transplantation have a reduced chance for long-term survival. Four
groups of investigators at Boston, London, Omaha and Stanford
have evaluated 360 autologous HCT recipients in four indepen-
dent trials. Four to eight years following autologous HCT, overall
survival ranged from 60–69% and freedom from relapse ranged
from 42–63%. The event of a relapse of follicular NHL clearly re-
duces the chance for disease-free survival.

A prospective clinical trial in follicular lymphoma has been
completed recently in Europe. In this study, patients with this type
of lymphoma were treated with cytoreductive therapy to minimal
disease and were then randomized to receive either high dose ra-
diochemotherapy and autologous HCT or interferon. The data of
this trial are currently being prepared for publication. A prelimi-
nary review indicates a statistical advantage in progression-free
survival in favor of transplantation (W. Hiddemann, personal com-
munication, 2002).

Other efforts to overcome the relapse problem include the use
of maximum tolerated regimens with or without total body irradia-
tion. More recently, radiolabeled monoclonal antibodies have been
introduced and these interesting efforts have yielded promising re-
sults [7].

Another approach to reduce the post-transplant relapse rate is
the employment of monoclonal antibodies directed against epi-
topes expressed on lymphoma cells. In an exploratory trial, we
have administered the antibody directed against the CD20 epitope
to 35 autologous HCT recipients whose lymphoma cells expressed
CD20 [8]. These 35 patients had a median age of 51 years ranging
from 28 to 70 years. Following our standardized transplant ap-
proach, an intent-to-treat analysis shows that 31 of 35 patients are
alive and 29 are in continued complete remission with a follow-up
period ranging from 1.3 to 4.1 years. A comparison with similar
autologous HCT recipients with NHL who had not been treated
with the monoclonal antibody after transplantation indicates that

Figure 1: Overall survival, event-free survival and relapse follow-
ing autologous bone marrow transplantation in 37 patients with
follicular lymphoma during their first complete or first partial che-
motherapy-induced remissions



this new post-transplant therapy has contributed positively to the
treatment outcome. Clearly, a prospective randomized study is
needed to confirm our promising observation. Such a trial is being
performed under the auspices of the Eastern Oncology Group
(ECOG Trial 2199).

Allogeneic Hematopoietic Cell Transplantation
In 1986, a first group of 17 patients (14 with NHL and three with
Hodgkin’s disease) was described indicating that extended dis-
ease-free long-term survival can be attained with high dose thera-
py followed by allogeneic transplantation utilizing hematopoietic
cells obtained either from fully or closely matched related donors
[9]. The treatment outcome was greatly influenced by the remis-
sion status of the transplant recipient at the time when preparation
for transplantation was begun, age of the recipient, compatibility
with the respective donor and incidence of post-transplant compli-
cations. The leading cause for treatment failure remains graft-ver-
sus-host disease (GVHD) with associated infectious complica-
tions, other toxicities or relapse of the underlying disease. Figure 2
illustrates our institutional experience with 36 patients (seven chil-
dren/adolescents and 29 adults). The median age of the patient
population was 35 years ranging from 5 to 60 years. Median fol-
low-up in continued complete remission of survivors is in excess
of six years ranging from six months to more than 10 years. Over-
all survival is 50% with relapse causing treatment failure in 30%
of allogeneic HCT recipients. The remaining 20% of patients suc-
cumbed to complications such as graft-versus-host disease, infec-
tions or veno-occlusive disease. This limited experience is never-
theless representative for the observations made in other trials in-
cluding results reported from the International Bone Marrow
Transplant Registry. Without question, non-relapse mortality
(mostly due to GVHD) is a major obstacle to success and alterna-
tive technologies need to be explored.

Very promising data have recently been reported related to the
use of intensity-reduced regimens followed by allogeneic HCT
[10]. It can be expected that this novel concept which relies main-
ly on a graft-versus-lymphoma effect will lead to an increase in
the successful use of allogeneic HCT while the procedure-related
mortality is dramatically decreased as compared to high dose ther-
apy regimens.

Conclusion
The transplant physician who evaluates and counsels a patient
with NHL concerning the type of transplantation is faced with a
serious dilemma. Because of the heterogeneity of the underlying
disease, it has so far not been possible to come to a clear recom-
mendation which of the types of HCT should be pursued for any
given patient, autologous or allogeneic HCT. The earliest compari-
son was reported 15 years ago and indicated equivalence in out-
come [11]. Since then, another 10 comparative studies have been
described in the peer reviewed literature. In these trials, 1,183 al-

lograft recipients were compared to 10,087 autograft recipients
[12]. Differences in histology, remission status, source of autolo-
gous or allogeneic cells (marrow versus peripheral blood, related
versus unrelated donor) and post-transplant management make
even a meta-analysis relatively meaningless. One can only con-
clude that autologous HCT is associated with a post-transplant re-
lapse rate in the order of 40–50% while allogeneic HCT is compli-
cated mostly by GVHD and related toxicities resulting in equiva-
lent outcomes for patients with NHL.

A collaborative trial is currently planned by the Bone Marrow
Transplant Clinical Trials Network in the United States to address
this important question which should help to facilitate the proper
choice for transplant candidates. For the time being, most centers
would utilize HCT if a suitably matched donor is available and to
offer autologous HCT in the absence of a compatible donor.
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Introduction
Mortality after hematopoietic stem cell transplantation (HSCT)
could be reduced to approximately 10% in HLA-identical intrafa-
miliary pediatric transplantations and ranges between 20 and 40%
in HLA-different, intrafamiliary as well as HLA-unrelated trans-
plantations. In contrast, pulmonary complications are a leading
cause of mortality after HSCT and contribute markedly to the
morbidity [33]. The pathophysiology of these diseases is poorly
understood and their classification is highly descriptive. This over-
view is focussed on the pediatric age group and (1) elucidates the
circumstances which render recipients at increased risk of non-in-
fectious pulmonary complications, (2) describes the diseases and
alterations which are encountered, and (3) discusses diagnostic
and therapeutic consequences.

General Considerations
Incidence and Prevalence
The number of hematopoetic stem cell transplantations has in-
creased in recent years [53]. Statistically, pulmonary complica-
tions with respiratory insufficiency account for as much as 60% of
the mortality, depending on the patients’ age [12, 19, 36, 70, 64].
Furthermore, respiratory insufficiency is included under diagnoses
such as graft-versus-host-disease (GVHD) or multi organ insuffi-
ciency. The largest retrospective analysis of Italian children after
allogeneic stem cell transplantation demonstrated a pulmonary
mortality of 9% [28]. Case reports as well as retrospective or pro-
spective analyses of different patient cohorts demonstrate between
10% and 40% incidence of irreversible pulmonary function loss
after HSCT [68, 14, 48, 65, 43, 11]. The incidence of late-onset
non infectious pulmonary complications (LONIPC) is estimated to
be approximately 10%. In one study 18 out of 179 patients suf-
fered such complications three months after allogeneic HSCT [60,
10]. There has been no improvement over the past decade (11).

Risk Factors
Risk factors are intrinsic to the procedure (autologous vs. alloge-
neic transplantation with rejection by residual host T-cells,
GVHD), to the immunosuppression (total body irradiation, cyclo-
phosphamide and busulfan, both leading to interstitial pulmonary
fibrosis), to the underlying disease (sickle-cell anemia with recur-
rent episodes of chest syndrome and pulmonary infarction, severe
combined immunodeficiency with recurrent episodes of pneumo-
nia), to the treatment of the underlying disease (irradiation, resec-
tion) and the hyperimmune status (influenced by the histocompati-
bility between donor and host, e.g. donor T-cells reacting to HLA-
antigens). In one series of children undergoing transplantation for
hematologic diseases, 44% had pulmonary function abnormalities
before the procedure (11). Although the topic of this review is
non-infectious pulmonary complications, it is impossible to com-
pletely distinguish these from infectious ones, as the latter may
trigger hyperimmune reactions, lead to vascular alterations, en-
hance antigen presentation and fibroblast activity, attract neutro-
phils and eosinophils with release of their toxic products and dis-
turb the level of immunotolerance. In contrast, augmented immu-
nosuppression in the course of interstitial lung disease enhances
the susceptibility for infections leading to additional damage. The
extent of pulmonary mortality and morbidity, the degree and the
spectrum of pulmonary diseases in children as well as the rele-
vance of possible monocausal or multifactorial etiologic risk fac-
tors (GVH-disease, irradiation, chemotherapy especially with cy-
clophosphamide, bleomycin, busulfane, melphalane) is still classi-
fied insufficiently [26, 52, 8, 17, 3]. The introduction of fractional
irradiation schedules has led to a reduction of the incidence of
interstitial pneumonia [17]. Latent viral infections, GVHD and cy-
totoxic factors are not well defined in their pathogenetic role and
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data about the influence of fungi is limited [5, 20, 13]. Histologic
evaluations of lung tissue in GVHD-patients show epithelial and
interstitial lesions typical for GVHD of the skin and the intestine
[83]. There is some evidence for an active role of CMV in bron-
chiolitis obliterans (BO) as well as in interstitial pneumonias.
Since the detection of CMV in bronchoalveolar lavage (BAL) can
be taken as an indicator of invasive infection [9, 69, 63], screening
for CMV in BAL and blood has been suggested as a basis for rig-
orous treatment [38, 1, 30, 39, 25]. The same may hold true for
other viruses such as adeno-, EBV, influenza, parainfluenza virus,
HHV-6 and RSV (75, 34).

Time Course of Complications
It is usual to separate pulmonary complications up to day 100 (ear-
ly) from those after day 100 (late), although for some risks the di-
vision is arbitrary. If one follows lung function parameters over
time in clinically asyptomatic patients after HSCT for childhood
leukemia [11], abnormalities can be observed in more than 80% of
patients with predominance of a restrictive pattern 6 months after
transplantation (possibly due to conditioning). Lung function ab-
normalities tend to persist in patients with advanced disease states
before transplantation but decrease by 50% in those with trans-
plantation at early stages of childhood leukemia, suggesting a
summation of adverse effects. Toxic pulmonary reactions may oc-
cur within 90 days after irradiation. Clinically overt non-infectious
pulmonary complications in the neutropenic (early) phase after
transplantation occur in the form of engraftment-syndrome, idio-
pathic pneumonia syndrome (IPS) or diffuse alveolar hemorrhage-
syndrome (DAH). Furthermore the lung can be part of a systemic
vascular process (capillary-leak-syndrome, thrombotic-thrombo-
cytopenic purpura or cytokine-syndrome). Late pulmonary seque-
lae manifest as bronchiolitis obliterans (BO), bronchiolitis obliter-
ans organizing pneumonia (BOOP) or fibrosis.

Cells and Structures, Immune Mechanisms
There are several distinct cellular systems involved in the mainte-
nance of pulmonary integrity and, accordingly, in the disease pro-
cess: (a) Alveolar cells or pneumocytes are a source of surfactant
and contribute to metabolism within the lung as well as to lung de-
fence. (b) Bronchial epithelial cells contribute to the clearance of
bacteria and are important barriers against invasion. (c) Vascular
endothelial cells are essential for regulating gas exchange, fluid
homeostasis (selectins, endothelin), and the migration of blood
cells. (d) Fibroblasts are sources of metalloproteinases and con-
tribute to the repair (and fibrotic changes) of lung tissue. (e) Den-
dritic cells act as antigen-presenting-cells. (f) T-cells target pulmo-
nary structures in GVHD or autoimmunity. (g) Neutrophils are the
leading cells in bacterial defense but are also sources of proteases
with strong elastolytic activity. (h) Recently a role has been pro-
posed for alveolar macrophages in disease processes after HSCT
(76). It is beyond the scope of this review to evalute the literature
on the spectrum of immune mechanisms which include direct and
indirect allorecognition as well as the activation of chemokines
and lymphokines.

Diagnostic Procedures
Pulmonary diagnostics include lung function testing (bedside with
portable spirometers, bodyplethysmography), capillary blood gas
analysis, non-invasive transcutaneous assessment of oxygen satu-
ration, exercise tests, bronchoalveolar lavage (BAL), transbronchi-
al (TBB) or open lung biopsy, ultrafast or thin section computed
tomography (CT) (45, 49, 27, 21, 50, 19, 54). Material obtained
should be evaluated by the most sensitive and specific microbio-
logical and pathological techniques (7).

Differential Diagnoses
In the early phase, infectious complications are the leading differ-
ential diagnoses, predominantly by gram-positive and gram-nega-
tive bacteria of the endogenous flora. In prolonged neutropenia, in-
vasive fungal infections pose considerable diagnostic and therapeu-
tic problems. Secondly, infections by cytomegaly, EBV, adeno-,
respiratory-syncytial, parainfluenza and influenza virus, HHV-6, as
well as by chlamydia, mycoplasms, legionella, mycobacteria, toxo-

plasma, and pneumocystis-carinii should be considered. Infections
by herpes virus have reached their nadir 90 days post HSCT. How-
ever, all viral, bacterial and fungal infections can also occur at a la-
ter time point depending on the state of immunity, donor selection,
and preparation of the transplant. Furthermore, GVHD and its ther-
apy play a pathogenetic role in the development of so-called non-
infectious pulmonary complications. The treatment or prophylaxis
of infectious diseases may have equally profound impact on the
pattern of non-infectious lung diseases observed (4).

Selected Diseases
Idiopathic Pneumonia Syndrome
Among non-infectious pulmonary complications in the early
phase, a group of diffuse interstitial pneumonias is responsible for
high mortality. Some of these alterations were defined at the 1991
NIHLBI Workshop in Bethesda as “idiopathic pneumonia syn-
drome” (IPS) [15]. Immediately after transplantation the so-called
“engraftment syndrome” or “capillary-leak syndrome” play an im-
portant role (47), which has to be distiguished from diffuse alveo-
lar damage (DAD) or the idiopathic pneumonia syndrome. The
latter ones are considered primarily as forms of ARDS because
their time course, their histopathologic morphological criteria and
their clinical appearance closely resemble this complication –
which, despite various causes, generally has an unfavourable
prognosis [12, 13]. The incidence of IPS after allogeneic HSCT
has been reported as 12% [15] or 8% [41] for all ages, and is cer-
tainly lower for all donors among children. The mortality of this
complication is high, despite intensive care treatment including
mechanical ventilation (36). According to a retrospective analysis
of 1165 HSCT patients, mortality is estimated to be around 70%
[41]. Essential diagnostic criteria are (1) indicators of diffuse alve-
olar damage (multilobular infiltrates in thorax X-ray or distur-
bance of gas transfer, a restrictive ventilatory defect, clinical signs
of pneumonia) and (2) the exclusion of active infection of lower
airways by bronchoalveolar lavage (BAL) or transbronchial biop-
sy (TBB). Patients with severe acute graft versus host disease
(GVHD grade III-IV) have a largely increased risk of developing
IPS. It has not been clear whether IPS after transplantation repre-
sents T-cell-mediated lung damage (e.g. “acute GVHD of the
lung”) or is triggered by occult viral infections (e.g. adeno or
HHV-6), or can be considered as a consequence of a multiple or-
gan failure during generalised activation of inflammatory media-
tors (analogous to the multifactorial ARDS of non-transplanted
patients) in acute GVHD, in the course of viral infections or sep-
sis. There is no specific therapy for the IPS to date. Therefore dif-
fuse infiltrates on X-ray after transplantation have to be subject to
a thorough work-up. If they do not respond to diuretics (to exclude
pulmonary edema), they have to be evaluated radialogically, treat-
ed empirically for a short time and/or evaluated invasively de-
pending upon the radiological appearance before or shortly after
the start of antibiotics. Diagnostic criteria for “capillary leak syn-
drome”, which also occurs in the early phase after transplantation,
are inadequate weight gain and disturbance of gas transfer. Thera-
py with C1-esterase inhibitor is currently under evaluation (56).

Diffuse Alveolar Hemorrhage Syndrome
Diffuse alveolar hemorrhage syndrome (DAH) is another early
“non-infectious” pulmonary complication (day +7 until +40). Its
occurrence has been described predominantly after autologous
transplantation [78, 2]. Mortality of this disorder ranges from
50–80%. Nonspecific symptoms such as progredient dyspnoea,
dry cough, fever, hypoxia and diffuse lobular consolidation in X-
ray are considered typical. Hemoptoe is rare. Early diagnosis
(BAL) is important since high-dose corticosteroids can then be ap-
plied efficiently [70].

Bronchiolitis Obliterans
Because of its high mortality, the late complication “bronchiolitis
obliterans” (BO) stands – together with non-classifiable interstitial
pneumonia, – in the first line of differential diagnoses for non-in-
fectious pulmonary complications after HSCT. Not unlike BO af-
ter lung transplantation, the etiology remains unclear. Lymphocyt-
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ic bronchitis, alloreactivity after pathologic expression of antigens
due to stress (viral, radiation, medications), malnutrition of the
bronchial wall, vascular changes, occult aspirations – are all con-
sidered to be causative events (71). Histologically the disease re-
sembles BO in patients after heart-lung and lung transplantation; it
is interpreted as chronic rejection (prevalence >35%) with high
mortality (25%) [79]. The first description of BO after allogeneic
hematopoetic stem cell transplantation dates from 1982 [66].
Since then this complication has been described after all types of
transplantation, including cord blood cell transplantation [57]. In
adults one assumes a prevalence of bronchiolitis obliterans after
hematopoetic stem cell transplantation in a range between 5–10%
[62, 81]. In children, incidences of up to 20% have been reported
[68]. If unrecognised, this late complication tends to be lethal,
since the therapeutic effect of corticosteroids in advanced stages is
poor. The speed of progression for BO and the ideal time for ther-
apeutic intervention are unknown. BO is frequently associated
with chronic GVHD [81, 60] and they occur in combination in up
to 10% of adult patients [42] and up to 30% in children with
GVHD [68]. The clinical symptoms are nonspecific with expirato-
ry wheeze, cough, dyspnoea and hypoxia upon exertion. Typical
HR-CT-signs of the thorax for BO are peripheral hypovascularity,
enlargement of segmental- and subsegmental bronchi, fixed hyper-
inflation (“mosaic pattern”), and deformed peripheral vessels [31,
67, 6, 80, 35, 58]. It is debatable, however, whether these signs are
also typical for BO after hematopoietic stem cell transplantation.
Some of these signs can only be interpreted correctly if sequential
examinations have been performed. Furthermore, CT studies in
children are rare. In BAL differential cytology the relative number
of neutrophils is elevated [70]. The definite diagnosis of bronchio-
litis obliterans can frequently only be achieved by open lung biop-
sy. The histopathological finding is bronchiolar inflammation with
luminar scarring, fibrous tissue and obliteration of the small bron-
chioli without occluding the alveolar ducts. In lung function the
small airways are affected first (hyperinflation) and there is exer-
cise limitation without hypoxia. The involvement of vessels can
vary. Therapeutically, systemic glucocorticosteroids, cyclophos-
phamide, azathioprine, chloroquine, glucocorticosteroid pulses,
cyclosporine, anti-thymocyte globulin, tacrolimus, methotrexate,
total lymphoid irradiation, thalidomide, clofazimine, extracorporal
photopheresis, humanized monoclonal anti-IL-2 receptor antibod-
ies are applied in BO without convincing success. Furthermore,
there have been no controlled studies of any of the above-men-
tioned medications. As a number of interstitial diseases in child-
hood have shown a favourable response [22, 61, 59], our approach
is to try to detect the disease at an incipient stage and use methyl-
prednisolone pulse therapy as a first-line treatment (32). In about
30–50% of cases, at least a temporary response can be seen. Un-
fortunately, the time window for intervention is small in most
cases and the speed of progression extremely variable, rendering
evaluation of therapeutic success difficult. Complications of BO
are pneumothorax, pneumomediastinum, bronchiectases, hyper-
capnia and pulmonary hypertension with cardiac failure.

Bronchiolitis Obliterans Organizing Pneumonia
The “bronchiolitis obliterans organizing peumonia” (BOOP),
which occurs more rarely, was defined 1985 by Epler [24]. The
etiology remains unclear. In the literature BOOP has been de-
scribed in autoimmune diseases, after medication,as well as with
viral and bacterial infection and as idiopathic BOOP [18]. Lately a
number of cases have been published after HSCT with GVHD
[44, 48, 74, 40]. There are also reports on early and fulminant
courses [55, 16, 82]. The clinical picture is non-specific, with
cough, dyspnea, and hypoxia. Lung function shows a restrictive
pattern and impairied diffusion capacity. Histopathology demon-
strates granulation – and fibrous tissue in terminal bronchioles
reaching into alveoli – as well as interstitial lymphocytic inflam-
mation. Cellular profiles of BAL show high lymphocyte counts,
with low CD4/CD8-ratio (results from adults) [64]. Characteristic
HR-CT-patterns in BOOP are ground-glass opacification and nod-
ular shadows [29]. Typical bilateral, focal, predominantly periph-
eral infiltrates can be detected earlier using HR-CT rather than by

X-ray of the thorax [51, 46]. In the literature (including patients
after HSCT) the beneficial effect of treatment with glucocortico-
steroids is emphasized beginning at an early stage and continuing
for 6–12 months (18, 40, 44, 48, 50, 75).

Other Interstitial Lung Diseases
Bronchiolitis obliterans organizing pneumonia (BOOP) must be
separated diagnostically from “lymphocytic interstitial pneumonia
(LIP)”, “diffuse alveolar damage” (DAD) and “lung fibrosis” as
well as a NSID (nonspecific interstitial disease) and pulmonary
veno-occlusive disease (42, 77, 3, 4). These diseases tend to occur
after hematologic diseases, infections and therapeutical interven-
tions (radiation, chemotherapy). Some of them are termed as late
onset non specific interstitial lung disease (LONSILD). Prognosis
varies greatly. Treatment modalities range from antioxidants to
supportive care (oxygen) (72). With severe progression, the only
chance for survival may be lung transplantation.

Post Transplant Lymphoproliferative Disease (PTLPD)
Post transplant lymphoproliferative disease (PTLPD) can manifest
itself in the lung and can occur any time after transplantation. Fre-
quency varies depending on the kind of transplantation, intensity
and mode of immunosuppression, EBV-status of donor and recipi-
ent, and bone marrow reconstitution. Although rarely confined to
the lung, the occurrence of this lesion together with other infec-
tions (like aspergillus) or GVHD makes diagnosis difficult, usual-
ly requiring an invasive approach. The WHO classification is not
applied uniquely. Treatment modalities range from lowering im-
munosuppression to chemotherapy, using anti CD 20 antibodies to
antiviral therapy, depending, among other factors, on histology,
EBV-status, extent of the disease, and clinical course.

Lung Transplantation for Treatment of End-Stage Pulmonary
Disease
Lung transplantation has been applied as ultima ratio in patients
after an interval of up to 14 years after HSCT, mostly after pulmo-
nary complications involving GVHD. The preferred surgical tech-
nique in most cases has been double lung transplant. Reported sur-
vival is similar to transplantation for other causes – with one pa-
tient surviving more than seven years [37]. Out of this series, one
patient developed BOOP, a condition rarely seen after lung trans-
plantation. A girl with a lobar transplant from the same living do-
nor as her hematopoetic stem cells is the only known person with-
out immunosuppression after lung transplantation [73]. Generally,
prognosis after lung transplantation is a 45% survival rate after 5
years.

Consequences
Pulmonary complications after hematopoetic stem cell transplan-
tation are poorly understood and treatment is unsatisfactory. There
is no standardised pulmonary follow-up for children after hemato-
poetic stem cell transplantation with disappointing rates of pulmo-
nary function measurements [23]. On the other hand, the spectrum
of pulmonary complications is limited and the time sequence more
or less known. Diagnostically it would seem essential to follow a
scheduled plan of pulmonary surveillance measures including
body plethysmography, assessment of gas exchange and exercise
capacity as well as screening for infections. This should make it
possible to gain insight into the pathogenesis of the diseases and
examine whether bronchiolitis obliterans can be prevented by
therapeutical measures at an early stage. As therapeutical options
are limited in advanced BO, prophylaxis and preemptive therapy
may be crucial. As a prerequisite, risk factors should be carefully
studied and causal strategies developed in a multicenter approach.
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for Inborn Metabolic Diseases
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Introduction
The treatment of inborn metabolic diseases such as lysosomal hy-
drolase deficiencies [21,32] and peroxisomal disorders such as ad-
renoleukodystrophy (ALD) [1,28] has been limited to symptomat-
ic supportive care. Intravenous enzyme replacement has been
largely ineffective, especially in storage diseases with central ner-
vous system (CNS) manifestations. Allogeneic hematopoietic cell
transplantation (HCT) with related or unrelated bone marrow
cells, peripheral blood progenitor cells, or placental (umbilical
cord) blood cells in these conditions repopulates recipient hemato-
poietic and lymphoid cells with metabolically normal donor-de-
rived cells and thus provides a self-renewing source of hydrolase.
In addition, HCT effectively repopulates mononuclear phagocytic
cells, including macrophages, hepatic Kupffer cells, and pulmona-
ry alveolar macrophages, in which substrate often accumulates in
storage diseases. As discussed below, the repopulation of micro-
glia with donor-derived cells after allogeneic HCT is a potentially
important therapeutic mechanism of allogeneic HCT in patients
with CNS manifestations of metabolic diseases.

Mechanisms of Metabolic Correction by HCT
Intercellular transport of lysosomal hydrolase from normal donor
cells occurs by both receptor-mediated endocytosis and direct
transfer of enzyme from adjacent cells [2]. The heterogeneity of
receptor-mediated endocytosis systems limits the extent of hydro-
lase uptake among various cell types and tissues [38,40]. Direct
intercellular transfer of hydrolase occurs independent of specific
receptors but requires cell-to-cell contact and participation of ad-
hesion molecules such as LFA-1 and -3, ICAM-1, -2, and –3, and
CD2 (the sheep erythrocyte receptor on T lymphocytes) [2, 34].
Unlike lysosomal storage diseases, ALD is due to a defective pro-
tein component of the peroxisomal membrane that is neither se-
creted from normal cells nor transferred between cells, leading to
defective oxidation and elevated plasma levels of very long chain
fatty acids (VLCFAs) [30]. Co-culture with normal cells does not
improve VLCFA oxidation by ALD fibroblasts, indicating that im-
provement of ALD after HCT is likely due to repopulation by
metabolically normal cells instead of intracellular transfer of mol-
ecules from donor cells. Other beneficial effects of allogeneic
HCT in ALD include normalization of plasma VLCFA levels and
decreased perivascular inflammation.

Repopulation of Microglia after Allogeneic HCT
Microglia are the mononuclear phagocytic cells in the CNS [11,
24] and account for approximately 5% to 10% of non-neuronal
cells in the brain. Activated microglia, also referred to as CNS
macrophages, are involved in antigen presentation and responses
to inflammation, infection, or CNS injury [11]. Microglia are de-
rived from hematopoietic precursors that normally enter the brain
from the peripheral circulation during embryonic and early post-
natal life but not in adulthood [35]. In rodent HCT recipients, do-
nor-derived cells can be identified throughout the CNS [12] and
over time completely repopulate the microglial compartment [18,
22, 59]. In feline β-mannosidosis, these donor cells effectively
transfer lysosomal hydrolase to recipient neurons in vivo [52]. Af-
ter HCT, donor-derived cells also differentiate into other non-neu-
ronal CNS cell populations such as astrocytes (also referred to as
macroglia) [5, 31]. Postmortem studies confirm that donor mono-
nuclear cells are also present throughout the brains of human allo-
geneic HCT recipients [51]. The kinetics of repopulation of micro-
glia after HCT is slower than that observed with other mononucle-
ar phagocytes like pulmonary alveolar macrophages and hepatic
Kupffer cells [3, 25]. In humans, post-HCT repopulation with do-
nor-derived microglia requires approximately 1 year, which may
explain the ineffectiveness of allogeneic HCT in stabilizing or pre-
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venting neurological deterioration in some rapidly progressive
storage diseases [24, 25].

Animal Models in the Preclinical Evaluation of HCT 
for Inborn Metabolic Disorders
The availability of spontaneously occurring heritable animal mod-
els and the development of transgenic “knockout” lysosomal hy-
drolase deficient animals allows preclinical evaluation of the bio-
chemical, physiological and clinical effects of allogeneic HCT in
storage diseases. The most extensive studies of HCT in preclinical
storage disease models have been in canine α-L-iduronidase defi-
ciency (a model of mucopolysaccharidosis [MPS] IH, or Hurler
syndrome) [3, 8, 45], murine β-galactosidase deficiency (a model
of MPS VII, or Sly syndrome) [4, 42, 55], and murine galactosyl-
ceramidase deficiency (the “twitcher” mouse, a model of the
sphingolipidosis globoid cell leukodystrophy [GCL]).

We have extensively studied HCT in the twitcher murine mod-
el [49], which most closely resembles Krabbe disease, the early
infantile form of human GCL. HCT leads to prolonged survival,
clinical improvement, attenuation of hindlimb paralysis [57, 58],
remyelination in peripheral nerves and CNS [58], and stabilization
of motor nerve conduction velocities [50] in presymptomatic
twitcher mice but is of no benefit in symptomatic animals. After
HCT, galactosylceramidase is present in the CNS and non-neural
tissues [14, 60], and levels of the toxic metabolite psychosine (ga-
lactosylsphingosine) [15], are significantly decreased in the CNS
[14]. Postnatal HCT is not curative in murine GCL, most likely
because repopulation of the CNS and peripheral nervous system
with donor cells does not occur rapidly enough to stabilize the
progressive demyelination. Murine GCL may be an important
model for critical evaluation of the effects of intrauterine cellular
transplantation for infantile-onset sphingolipidosis.

Clinical Results
Several recent reports have summarized the results of allogeneic
HCT for storage diseases and ALD [27, 44, 56]. This review will
focus on current concepts of allogeneic HCT for MPS IH (Hurler
syndrome), globoid cell leukodystrophy and ceramidase deficien-
cy (Farber disease).

Mucopolysaccharidosis IH
The prognosis of untreated MPS IH (α-L-iduronidase deficiency)
is poor, with a median survival of 4.5 years and with very few
children surviving into the second decade of life [23]. In contrast,
survival after HCT in children with MPS IH is 75% after bone
marrow transplantation (BMT) from HLA-identical siblings, 53%
after BMT from HLA-mismatched relatives, and 49% after BMT
from unrelated donors [36, 37]. Hepatosplenomegaly, joint mobili-
ty, and upper airway obstruction in MPS IH resolve within months
to a year after HCT. Corneal clouding stabilizes or slowly resolves
[9], and visual acuity may improve even without regression of cor-
neal clouding. Unfortunately HCT does not correct the skeletal
manifestations (dysostosis multiplex) of MPS IH, which are due to
metabolic dysfunction in chondrocytes and osteoblasts that arise
from mesenchymal precursors. The orthopaedic complications of
MPS IH require ongoing evaluation and surgical management
even after HCT [7].

Mental retardation is a hallmark of untreated MPS IH [53], and
both age and neurodevelopmental status are important determi-
nants of outcome after HCT. When carried out in patients under
age 2 years, HCT preserves neurocognitive function and prevents
or reverses increased intracranial pressure. This favorable out-
come is in part due to the fact that the developmental quotient
(DQ) falls below 70 in most children with MPS IH after age 2
years [43]. In general, children with MPS IH with normal intelli-
gence before HCT maintain that level of cognitive functioning af-
ter transplant [36, 43, 54], but those with significant neurocogni-
tive impairment (e.g., DQ below 70) at HCT have progressive de-
terioration and do not benefit from the procedure.

Globoid cell leukodystrophy (GCL)
Globoid cell leukodystrophy (galactosylceramidase deficiency) is
one of the sphingolipidoses, which are characterized by demyelin-

ation of the CNS and/or peripheral nervous system because of de-
ficiencies in specific acid hydrolases involved in the metabolism
of sphingomyelin, gangliosides and cerebrosides [48]. Character-
istic globoid cells, derived from microglia or CNS macrophages
and containing periodic acid-Schiff (PAS)-positive myelin break-
down material, are present in the brains, spinal cord and peripheral
nerves. Interestingly, the widespread demyelination in GCL is due
to accumulation of psychosine (galactosylsphingosine), which is
derived from the substrate galactosylceramide and is toxic to both
oligodendroglia and Schwann cells [15].

The four clinical phenotypes of human GCL vary in clinical
manifestations and tempo of disease progression. Patients with
early (age of onset, 3 to 6 months) or late (age of onset, 6 months
to 3 years) infantile GCL have profound psychomotor retardation,
failure to thrive, spasticity, seizures, optic atrophy and cortical
blindness [10]. Juvenile GCL affects children from 3 to 10 years
of age, with insidious onset and progression of visual loss, lower
extremity spasticity, and in some patients dementia. Adult GCL
occurs in patients over age 10 years and is characterized by slowly
progressive difficulty in walking, long-tract signs, asymmetric
weakness of the extremities, and difficulties with coordination and
balance, but intellect is generally unaffected [20]. Allogeneic HCT
is not curative in symptomatic early infantile GCL (Krabbe dis-
ease), in which neurodegeneration persists despite post-transplant
biochemical improvement [23,26], analogous to observations in
the preclinical studies of HCT in murine GCL. Although very lim-
ited experience suggests that presymptomatic infants with infantile
GCL may benefit from HCT [26], early identification of the af-
fected infant and of a suitable HCT donor are obvious practical
challenges to this therapeutic strategy. The role for allogeneic
HCT is more firmly established in patients with presymptomatic
or minimally symptomatic juvenile or adult GCL, in whom HCT
leads to stabilization and gradual improvement in clinical, neuro-
logical and neurocognitive status [13, 26, 43].

Ceramidase deficiency (Farber disease; lipogranulomatosis)
Of the six phenotypes of ceramidase deficiency [29], at least 50%
of patients have the classic infantile form, or Farber disease phe-
notype. Affected infants have painful joint swelling, multiple pain-
ful subcutaneous nodules, hoarseness, swallowing difficulties, and
failure to thrive [6]. Microscopic examination of the nodules
shows granulomata containing ceramide-laden macrophages.
Granulomata in the aerodigestive tract cause hoarseness and de-
glutition problems. Hepatomegaly, recurrent pulmonary infections
and respiratory difficulties are common and due in large part to or-
gan infiltration by ceramide-laden macrophages. Infants with Far-
ber disease die with progressive and profound psychomotor retar-
dation at a mean age of 18 to 20 months [29]. Two infants with
Farber disease received allogeneic BMT at 18 months [47] and 9
months [61] of age, respectively. Subcutaneous nodules, joint pain
and hoarseness regressed within 2 months after transplant in both
patients. The older patient had progressive neurodegeneration and
died 6 months after BMT. The younger patient, who had mild de-
velopmental delay and slight hypotonia at BMT, had progressive
psychomotor retardation and graft failure, with a developmental
age of 4 months at chronological age 32 months. Despite loss of
donor cell engraftment, levels of ceramidase in the peripheral
blood leukocytes remained in the donor heterozygous range, sug-
gesting ongoing production of ceramidase by non-circulating do-
nor cells and hydrolase uptake by recipient blood cells [61]. These
limited observations indicate that HCT does not stabilize the rapid
neurological deterioration in classic Farber disease.

New Therapeutic Approaches for Cellular Transplantation 
in Metabolic Diseases
Among new approaches for treatment of metabolic disorders by
cellular transplantation, intrauterine HCT may be worthy of explo-
ration, especially in the rapidly progressive infantile forms in
which postnatal HCT is not effective. The major limitation to this
approach is the low levels of donor cell engraftment, which may
not provide sufficient hydrolase or metabolically active cells to
correct the underlying biochemical defect [17]. Allogeneic HCT
using reduced-intensity nonmyeloablative preparative regimens
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may be considered in some indolent forms of storage diseases,
providing gradual donor cell engraftment without the risk of apla-
sia and other short- and long-term toxicities associated with inten-
sive marrow-lethal preparative regimens [19, 46]. The use of these
regimens is not feasible in more aggressive forms of storage dis-
eases. Insertion of genes for specific lysosomal hydrolases or for
the ALD protein into autologous hematopoietic stem cells (HSCs)
and transplantation of these cells is theoretically very attractive
but remains at the level of preclinical investigation at this time be-
cause of ongoing challenges such as efficient introduction and in-
tegration of the exogenous gene in truly primitive HSCs and sus-
tained, consistent high-level expression of the hydrolase in these
cells and their progeny [41]. A potentially exciting approach for
storage diseases with skeletal manifestations (dysostosis multi-
plex) is the co-transplantation of mesenchymal stem cells (MSCs),
which may differentiate into chondrocytes and osteoblasts [33,
39]. Although clearly not a clinical therapeutic option at this time,
intracerebral injection of MSCs may favorably affect the neuro-
pathological and biochemical abnormalities in a murine model of
acid sphingomyelinase deficiency (Niemann-Pick disease types A
and B) [16].

Summary
Clinical experience for more than two decades has shown that al-
logeneic HCT may benefit some but not all patients with inherited
metabolic diseases. The HCT procedure is most effective in pre-
symptomatic patients and those with indolent forms of storage dis-
eases but is ineffective in those with overt neurological symptoms
or aggressive neonatal or infantile forms. HCT alone does not cor-
rect skeletal dysplasia in MPSs and may not prevent development
or progression of the peripheral neuropathy in sphingolipidoses
and ALD. Decisions regarding HCT in patients with storage dis-
eases should be made by investigators knowledgeable about these
diseases, with judicious use of laboratory and clinical resources
necessary to reach the best therapeutic decision for the individual
patient.
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