
 International Journal of 

Molecular Sciences

Article

Luseogliflozin, a SGLT2 Inhibitor, Does Not Affect Glucose
Uptake Kinetics in Renal Proximal Tubules of Live Mice

Anqi Zhang, Daisuke Nakano *, Wararat Kittikulsuth , Yuka Yamashita and Akira Nishiyama

����������
�������

Citation: Zhang, A.; Nakano, D.;

Kittikulsuth, W.; Yamashita, Y.;

Nishiyama, A. Luseogliflozin, a

SGLT2 Inhibitor, Does Not Affect

Glucose Uptake Kinetics in Renal

Proximal Tubules of Live Mice. Int. J.

Mol. Sci. 2021, 22, 8169. https://

doi.org/10.3390/ijms22158169

Academic Editor:

Anastasios Lymperopoulos

Received: 2 June 2021

Accepted: 23 July 2021

Published: 29 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Pharmacology, Kagawa University, Takamatsu 760-8521, Kagawa, Japan;
s18d715@stu.kagawa-u.ac.jp (A.Z.); wararat.kittikulsuth@kagawa-u.ac.jp (W.K.);
s18m101@stu.kagawa-u.ac.jp (Y.Y.); nishiyama.akira@kagawa-u.ac.jp (A.N.)
* Correspondence: dnakano@med.kagawa-u.ac.jp; Tel.: +81-(878)-912-125

Abstract: Proximal tubules (PTs) take up most of the glucose in the glomerular filtrate and return it
to peritubular capillary blood. Sodium-glucose cotransporter 2 (SGLT2) at the apical membrane takes
up glucose into the cell. Glucose then flows across the cells and is transported to the interstitium
via glucose transporter 2 (GLUT2) at the basolateral membrane. However, glucose transport under
SGLT2 inhibition remains poorly understood. In this study, we evaluated the dynamics of a fluores-
cent glucose analog, 2-NBDG, in the PTs of live mice treated with or without the SGLT2 inhibitor,
luseogliflozin. We employed real-time multiphoton microscopy, in which insulin enhanced 2-NBDG
uptake in skeletal muscle. Influx and efflux of 2-NBDG in PT cells were compared under hypo-,
normo-, and hyperglycemic conditions. Luseogliflozin did not exert significant effects on glucose
influx parameters under any level of blood glucose. Our results suggest that blood glucose level per
se does not alter glucose influx or efflux kinetics in PTs. In conclusion, neither SGLT2 inhibition nor
blood glucose level affect glucose uptake kinetics in PTs. The former was because of glucose influx
through basolateral GLUT2, which is an established bidirectional transporter.

Keywords: glucose handling; proximal tubules; intravital imaging

1. Introduction

In modern life, owing to improvements in living conditions and enrichment of food
types, excessive energy intake has created new challenges that threaten the health of
individuals. These challenges include diabetes. Accordingly, treatment and prevention of
diabetes are becoming increasingly important. Inhibitors of sodium-glucose cotransporter
2 (SGLT2) act via a mechanism that is different from that of other antihyperglycemic drugs
for reducing blood glucose levels. Furthermore, compared with other antihyperglycemic
drugs, there is increasing evidence that SGLT2 inhibitors reduce the risk of cardiorenal-
vascular events [1,2]. Therefore, there is high demand for knowledge on how SGLT2
inhibitors confer favorable effects.

Large amounts of glucose are reabsorbed in the convoluted segment of the proximal
tubules. SGLT2, expressed on brush border membranes, transports sodium and glucose
from the tubular lumen into the cells. SGLT2 inhibitors reduce glucose uptake in proximal
tubule cells, which increases glucose excretion in urine, thereby reducing blood glucose
levels under hyperglycemic conditions. It is believed that glucose taken up through SGLT2
flows across the cells and is transported to the interstitium. Glucose transporter 2 (GLUT2),
expressed in the basement membrane, transports glucose from the intracellular space to
interstitial fluid.

GLUT2 is an important glucose transporter and is widely distributed in various organs
and tissues, such as the liver, intestine, kidney, pancreatic islet β-cells, and central nervous
system [3]. Additionally, GLUT2 facilitates bidirectional glucose transport [4]. When the
blood glucose level is high, blood glucose passes through GLUT2 expressed in the liver
and is stored as glycogen. When the blood glucose level is low, the liver promotes glycogen
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decomposition to glucose and provides glucose to the blood through GLUT2 [5]. In the
kidney, GLUT2 is coexpressed with SGLT2 [6]. In our previous study using intravital imag-
ing at a subcellular spatial resolution, we found that GLUT2 downregulation dramatically
reduced glucose uptake into the proximal tubules of mice treated with luseogliflozin, a
SGLT2 inhibitor [7]. This observation suggested the potential for glucose uptake by GLUT2
in the kidney under the influence of SGLT2 inhibitors. This prompted our interest in deter-
mining whether SGLT2 inhibition using luseogliflozin affects glucose uptake dynamics in
the proximal tubule cells of live mice. We also evaluated proximal tubule glucose uptake
dynamics with and without luseogliflozin under different levels of blood glucose. We used
fluorescent glucose analogs 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose
(2-NBDG) in vivo and 2-deoxyglucose in vitro to visualize glucose dynamics.

2. Results
2.1. In Vivo Analysis of Glucose Dynamics in Skeletal Muscle Using Multiphoton Imaging

We first confirmed the reliability of our in vivo imaging system by measuring the
insulin-accelerated 2-NBDG uptake in skeletal muscle. Insulin was intravenously injected
5 min before 2-NBDG administration. The focal plane was selected based on the autoflu-
orescence of skeletal muscle, which was excited at a wavelength of 860 nm (Figure 1A).
As shown in Figure 1B, insulin time-dependently increased 2-NBDG-derived fluorescence
(green) in skeletal muscle (Figure 1B). The result supports the reliability of our multiphoton
imaging system for visualization of in vivo glucose dynamics by using the fluorescent
glucose analog, 2-NBDG.
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Figure 1. Intravital imaging for skeletal muscle glucose uptake. (A) Protocol for the skeletal muscle
experiment. Insulin was injected 5 min before injection of the fluorescent glucose analog, 2-deoxy-2-
[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG). We observed skeletal muscle of the
medial thigh of mice, and the focal plane was selected based on autofluorescence from muscle fibers
(blue). (B) Representative in vivo images of 2-NBDG (green) uptake in mouse skeletal muscle before
and after 2-NBDG injection (n = 4). Scale bar = 80 µm.
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2.2. Analysis of Glucose Dynamics in Proximal Tubules of Live Animals

Next, we evaluated 2-NBDG uptake in the kidneys of live mice. We injected luseogliflozin
intraperitoneally 90 min before 2-NBDG administration [8]. In some mice, insulin was
injected 30 min before 2-NBDG administration (Figure 2A). Superficial areas of the kidney at
a 20–40-µm depth were visualized using two-photon microscopy. The focal plane contained
convoluted segments of proximal tubules, distal convoluted tubules, and cortical collecting
duct (Figure 2B), and proximal tubules could be identified based on autofluorescence
(Figure 2C). 2-NBDG is depicted as green to yellow (if saturated) throughout the figures.
We set a region of interest in the cytosol of individual cells and measured time-dependent
changes in fluorescence intensity (Figure 2C). Peak (maximum level), Tmax (time to achieve
the peak level), and T1/2 (time to halve the fluorescence level from the peak) were analyzed
(Figure 2C). A portion of 2-NBDG was not taken up and flowed into the distal nephron.
This enabled us to identify earlier and later segments of the proximal tubule based on the
time 2-NBDG appeared in the tubular lumen (Figure 2D).
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Figure 2. Intravital imaging for proximal tubule glucose uptake. (A) Protocol for the kidney exper-
iment. Either vehicle or luseogliflozin was injected 90 min before 2-NBDG injection. Insulin was
injected 30 min before injecting 2-NBDG. (B) The microscopic observation plane was at the superficial
level of the kidney cortex that includes proximal tubules (PTs) near the glomerulus, PTs relatively
far from the glomerulus, distal convoluted tubules (DCT), and collecting ducts (CCD). (C) In vivo
image before and after 2-NBDG injection. Regions of interest (ROI) were set in the cytosol of PT cells
(PTCs) (red dotted circles), and changes in fluorescence intensity were measured. 2-NBDG at a low
level was depicted as green, while a saturated level of 2-NBDG was depicted as yellow (green and
red). (D) In vivo images at different time points after 2-NBDG injection (13, 33, and 124 s). The image
on the left (13 s) shows 2-NBDG in the lumen of early segments of PT and peritubular capillaries
(white arrows). The image at the center (33 s) shows 2-NBDG in the lumen of late segments of PTs
(red arrows) and in the cytosol of early segments. The image on the right (124 s) shows 2-NBDG in
the lumen of DCT or collecting ducts (CDs) (blue arrow) and in the cytosol of PTC. The image before
2-NBDG injection was as dark as the image provided in C. Scale bar = 40 µm.
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2.3. Effect of Luseogliflozin on Glucose Dynamics in Proximal Tubules

Blood glucose level in mice was measured just before 2-NBDG injection (Table 1).
Luseogliflozin did not significantly affect blood glucose level in the either hypo- or nor-
moglycemia groups (Table 1). In the streptozotocin (STZ)-induced hyperglycemia group,
luseogliflozin decreased blood glucose levels, indicating inhibition of proximal tubule glu-
cose uptake at the apical side. After administering 2-NBDG, peak, Tmax, and peak/Tmax
were analyzed separately in the three groups according to blood glucose level (earlier
segments: Figure 3 and Supplementary Figures S1–S3; later segments: Supplementary
Figures S4 and S5). Luseogliflozin did not significantly affect these parameters in any of
the groups, suggesting the existence of an SGLT2-independent glucose transport pathway.

Table 1. Blood glucose levels (mg/dL) before 2-NBDG injection.

Hypoglycemia Normoglycemia Hyperglycemia

Vehicle 51.69 ± 1.90 (n = 13) 146.58 ± 6.70 (n = 12) 412.42 ± 20.29 (n = 12)

Luseogliflozin 53.67 ± 5.13 (n = 12) 139.67 ± 7.97 (n = 12) 296.75 ± 19.08 * (n = 12)

* p < 0.05 vs. vehicle.
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Figure 3. Effects of luseogliflozin on 2-NBDG (2 mg/kg) dynamics in early segments of proximal
tubules. Peak, Tmax and peak/Tmax were compared under (A) hypoglycemic, (B) normoglycemic,
and (C) hyperglycemic conditions. Each dot represents an average value from five proximal tubule
cells in each mouse (n = 7–10).

2.4. Effects of Blood Glucose Level on Glucose Dynamics in Proximal Tubules

There was no significant difference in peak or Tmax between the hypo- and normo-
glycemia groups, whether vehicle- or luseogliflozin-treated (Figure 4 and Supplementary
Figure S6). In the hyperglycemia groups, peak and peak/Tmax were lower compared with
the other groups, possibly because of competition with native glucose at the transporters.
Indeed, an increase in the dose of 2-NBDG from 2 to 6 mg/kg resulted in a gain of fluores-
cence intensity and elimination of the difference in peak/Tmax between the normo- and
hyperglycemia groups. A higher dose of 2-NBDG induced saturation of fluorescence level.
Importantly, the trend was similar between the vehicle- and luseogliflozin-treated groups.
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Figure 4. Effects of blood glucose level on 2-NBDG (2 or 6 mg/kg) dynamics in early segments of proximal tubules. Peak,
Tmax, and peak/Tmax were compared in (A) vehicle- and (B) luseogliflozin-treated groups. Hypo: hypoglycemia, normal:
normoglycemia, hyper: hyperglycemia. Each dot represents an average value from five proximal tubule cells in each mouse
(n = 7–10 for the 2 mg/kg group and n = 4 for the 6 mg/kg group).

2.5. Effect of Blood Glucose Level on Basolateral Glucose Transport in Proximal Tubules

Physiologically, the glucose taken up through apical membrane SGLT2 flows across
the cells and is transported to the interstitium via GLUT2 at the basolateral membrane.
Basolateral transport of intracellular glucose to the interstitial fluid was analyzed by
dividing half of the peak fluorescence intensity by T1/2. This analysis was performed only
in the vehicle-treated group because luseogliflozin treatment markedly prolonged T1/2.
Blood glucose level did not significantly affect basolateral glucose transport in proximal
tubules (Figure 5).
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Figure 5. Effects of blood glucose level on 2-NBDG (2 or 6 mg/kg) transport from cytosol to
interstitium in early segments of proximal tubules. P1/2/T1/2 was compared between groups.
Hypo: hypoglycemia, normal: normoglycemia, hyper: hyperglycemia. Each dot represents an
average value from five proximal tubule cells in each mouse (n = 3–8 for the 2 mg/kg group and
n = 3–5 for the 6 mg/kg group).
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Changes in GLUT2 level in hypo- and hyperglycemia could affect the glucose transport
efficacy at the basolateral membrane of proximal tubules. Because we did not find any
significant difference in basolateral glucose transport among the groups, we hypothesized
that GLUT2 level in the kidney was similar in the current experimental setting. Thus,
we examined GLUT2 protein levels in the three groups of mice with different blood
glucose levels. As expected, GLUT2 protein levels were similar in all groups (Figure 6 and
Supplementary Figure S7).
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Figure 6. GLUT2 expression in renal cortical tissues assessed by Western blot. (A) Representative
blots and (B) quantitative data are shown (n = 4–6). There are two bands for GLUT2; one is membrane-
bound form and another is cytosolic form. The bands that are indicated by an arrow, which are
detectable mainly in the cell membrane (glycosylated), were analyzed. Hypo: hypoglycemia, normal:
normoglycemia, hyper: hyperglycemia.

2.6. Effects of Luseogliflozin on Glucose Uptake in Cultured Proximal Tubule Cells

The in vivo analyses described above indicate that SGLT2 inhibition by luseogliflozin did
not change glucose dynamics in proximal tubules. We further confirmed that luseogliflozin
does not interfere with GLUT-dependent glucose uptake. Mouse proximal tubule cells
(mProx24 cells) cultured in standard DMEM without modification did not demonstrate
a sodium-dependent increase in glucose uptake (Supplementary Figure S3A), indicating
that the cells do not express functional SGLT2. Glucose uptake in these cells was time-
dependently increased as measured using 2-deoxyglucose (Supplementary Figure S3B). Up-
take of 2-deoxyglucose was suppressed when it was added to cells cultured in medium con-
taining a relatively higher amount of glucose, such as 25 mM (high) and 17.5 mM (medium),
compared with 5 mM (low) glucose-containing medium (Supplementary Figure S3B), in-
dicating competitive inhibition. Preincubation of cells with either low, medium, or high-
glucose-containing medium did not affect subsequent 2-deoxyglucose uptake in cells in
glucose-free medium (Supplementary Figure 3C), suggesting potential translocation of
cytosolic GLUT to the membrane under high glucose was not significant. Importantly,
luseogliflozin did not affect 2-deoxyglucose uptake in any of the above experiments. Ad-
ditionally, incubation of 2-deoxyglucose with luseogliflozin did not affect the uptake
(Supplementary Figure S3D). Taken together, luseogliflozin did not affect glucose uptake
through GLUT.

3. Discussion

SGLT2 inhibitors, a novel class of drug used for treatment of diabetes, increase urinary
glucose excretion by inhibiting the major glucose transporter in the kidney, SGLT2, thereby
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controlling the blood glucose level [1]. SGLT2 inhibitors block glucose uptake at the
basolateral membrane of proximal tubules and, in turn, affect urinary glucose excretion.
However, glucose dynamics from the lumen to tubular cells and from tubular cells to the
interstitium have not been sufficiently examined. In our study, we obtained no evidence
showing luseogliflozin alters glucose uptake kinetics in the proximal tubules at multiple
levels of extracellular glucose. GLUT2 presumably plays a major role in proximal tubule
glucose uptake when SGLT2 is inhibited, and our data suggest the glucose uptake kinetics
regulated by GLUT2 are similar to those by SGLT2 in renal proximal tubules of live mice.

It was initially expected that SGLT2 inhibition would slow glucose dynamics in
proximal tubules. However, it was unaffected. This led us to speculate that GLUT2, a
facilitating transporter expressed in the basement membrane in the liver [5], transferred
2-NBDG from interstitial fluid to proximal tubules. We previously showed that SGLT2
inhibitor alone had a minor effect on glucose uptake, at one specific time point, in the
proximal tubules of the nondiabetic kidney and that cellular injury accompanied by reduced
GLUT2 expression dramatically halted glucose uptake [7]. In this study, we found that
luseogliflozin did not affect time-dependent changes in glucose uptake in mice with either
hypo-, normo-, or hyperglycemia, indicating that glucose transport through SGLT2 and
GLUT2 was similar and unaffected by extracellular glucose levels. A limitation of our
study was the duration of hypo- (<1 h) and hyperglycemia (1 week). We did not use longer
experimental periods because chronic exposure to low or high blood glucose can affect
transporter expression levels. As mentioned above, we demonstrated that a decreased
level of GLUT2 critically affects glucose uptake. Accordingly, we did not chronically treat
mice with luseogliflozin because it is well established that it protects the kidneys [7,9], and
its potential effects on the expression of transporters can affect experimental results.

It has been shown that there are differences in cellular features and metabolism
between early and late segments of proximal convoluted tubules [10–12]. Therefore, we
separately analyzed 2-NBDG dynamics in early and late segments. According to our
observations, use of luseogliflozin did not significantly change parameters related to
glucose dynamics in either early or late segments, regardless of levels of blood glucose.

One of our focus areas was the effect of blood glucose level on glucose kinetics in
proximal tubule cells. The hyperglycemia group demonstrated a lower peak/Tmax than
the other two groups. This may have resulted from competition between native glucose
and 2-NBDG. This should be overcome by constructing dose–response curves using graded
doses of 2-NBDG. The dose of 2-NBDG that was three times higher (6 mg/kg) than the
original dose (2 mg/kg) resulted in increased fluorescence intensity, indicating that under
the condition of hyperglycemia, 2-NBDG uptake by the kidney could afford to be more.
Therefore, in the hyperglycemia group, total glucose uptake, either through SGLT2 or
GLUT2, was estimated to be greater than in the other groups because of a higher blood
glucose level. It should be noted that the primary regulatory factor of SGLT2, sodium
concentration, is much higher than the glucose concentration and that the Km value of
GLUT2 is over double the physiological plasma glucose concentration [13]. However,
further increasing the dose of 2-NBDG, such as to 10 mg/kg, resulted in saturation of the
fluorescence level, making it impossible to analyze glucose transport efficiency. Technology
that allows for analysis of glucose transport through both apical and basolateral membranes
in real time with high-sensitivity quantification is needed.

The original dose of 2-NBDG was 2 mg/kg, which is estimated to be 5 mg/dL in the
blood of a 25 g mouse with 1 mL of plasma. Therefore, artificial increases in blood sugar
level by injection of 2-NBDG were negligible in the in vivo experiments.

Another limitation was that our experimental design could not account for glucose
generated intracellularly via gluconeogenesis. Although we previously reported that inhi-
bition of glucose uptake by SGLT2 siRNA or removal of glucose from medium is sufficient
to induce cell phenotypic changes, such as suppression of cell senescence [14] or an increase
in angiogenic factor secretion [7], the intracellular glucose level must be taken as the sum
of glucose taken up from extracellular spaces and that generated intracellularly. SGLT2
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inhibitors reportedly increase expression of genes involved in gluconeogenesis [15,16]. An
increase in intracellular glucose production via de novo pathways may attenuate the con-
centration gradient of glucose between the cytosol and interstitium, thereby counteracting
glucose influx through GLUT2. However, to date, there are technical limitations associated
with comparing amounts of glucose via gluconeogenesis or glucose uptake.

In vivo multiphoton imaging allows for testing of glucose uptake by the visualiza-
tion of changes in 2-NBDG uptake in the tissue of live animals. Real-time analysis was
performed in skeletal muscle [17,18] but not in the kidney. Skeletal muscle has long been
shown to take up glucose from blood via glucose transporter 4 (GLUT4). When insulin
levels are elevated, insulin receptors in skeletal muscle produce signals that stimulate the
transfer of GLUT4 from the cytoplasm to the cell membrane [19,20]. Glucose uptake in
skeletal muscle increases with expression of GLUT4 on the cell membrane, resulting in a
reduced blood glucose level [21,22]. Owing to this process, we initially used skeletal muscle
to confirm the functionality of our analytical system for examining glucose dynamics. We
found that insulin significantly and time-dependently increased skeletal muscle uptake of
2-NBDG, consistent with previous reports [23].

In conclusion, treatment with luseogliflozin did not cause changes in glucose uptake
kinetics in the proximal convoluted tubules of the kidney in normal mice. Bidirectional
transport of GLUT2 may be the main factor why the proximal convoluted tubule maintains
similar glucose uptake kinetics following luseogliflozin treatment.

4. Materials and Methods
4.1. Materials

Luseogliflozin was provided by Taisho Pharmaceutical Co., Ltd. (Tokyo, Japan). All
other chemicals were from Sigma (St. Louis, MO, USA) or Wako unless otherwise specified.

All experimental procedures using animals were performed according to guidelines
for the care and use of animals established by Kagawa University.

4.2. In Vivo Imaging

Six-week-old male C57BL/6J mice were from Clea Japan (Tokyo, Japan). Mice received
either vehicle (4.5% HP-β-CD, intraperitoneal) or luseogliflozin (0.9 mg/kg, intraperitoneal)
and were then anesthetized with 1.0–1.5% isoflurane (Mylan, Osaka, Japan). All surgery
and animal maintenance during intravital imaging procedures were performed as reported
previously [24,25]. After tracheotomy, the jugular vein was cannulated for injection of
fluorescent dye and insulin (0.64 U/kg, intravenous). The left kidney of each mouse was
exteriorized through a small flank incision and attached to a coverslip. The microscope
stage and animals were warmed using a heating pad during all experimental procedures.
Intravital multiphoton microscopy was performed using an Olympus FV1000MPE multi-
photon confocal fluorescence imaging system, powered by a Chameleon Ultra-II MP laser
at 860 nm (Coherent Inc., Santa Clara, CA, USA). The microscope objective was a 25×
water immersion lens with a 1.05 numerical aperture. Imaging settings for the microscope
(gain and offset for all three channels; blue, green, and red) were fixed throughout the
experiments. Two-dimensional time-lapse images were taken 30 µm from the surface of the
kidney. Time-lapse images were obtained at a resolution of 512 × 512 pixels with excitation
at 860 nm. To visualize glucose uptake in proximal tubules in vivo, we intravenously
injected a fluorescent glucose analog, 2-NBDG (2 or 6 mg/kg). The cytosolic fluorescence
intensity of 2-NBDG was measured in five different proximal tubular cells in the early and
late segments, respectively, for 30 min. Peak, Tmax, and T1/2 values were extracted based
on time-dependent changes in fluorescence intensity in each cell. Each mouse was injected
with approximately 40–50 µg of 2-NBDG. The estimated plasma 2-NBDG level was around
40–50 mg/L (the hypothesized amount of plasma in a mouse is approximately 1 mL).
Therefore, injection of 2-NBDG was unlikely to have caused excess hyperglycemia (glucose
+ 2-NBDG in mouse blood). For muscle visualization, skeletal muscle on the medial side of
the right thigh was surgically cut and exposed and was attached to a coverslip.
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Hyperglycemia was induced by STZ injection. C57BL/6J mice were fasted 8 h before
STZ injection (50 mg/kg per day, 5 consecutive days). STZ was dissolved in sodium citrate
buffer (pH 4.5) just before injection. Blood glucose level was confirmed on Day 5 after the
final injection, and experiments were performed on Day 7.

Urinary protein excretion was determined using a commercially available assay kit
(microTP-test; Wako, Osaka, Japan).

4.3. Western Blot

Whole kidney tissue was homogenized using a Physcotoron (Microtec, Chiba, Japan)
in 10% w/v buffer (10 mM Tris-HCl, 1 mM EDTA, and 150 mM sucrose, pH 7.4, containing
proteinase/phosphatase inhibitor cocktail (#5871; Cell Signaling, Danvers, MA, USA)
diluted at 1:100) and centrifuged at 4000× g for 120 s. Equal amounts of protein (50 µg)
were subjected to SDS-PAGE and transferred to nitrocellulose membranes. After blocking,
the membranes were incubated with anti-GLUT-2 antibody (1:1000 dilution; 07-1402-I,
Millipore, Billerica, MA, USA).

4.4. Cell Culture

Mouse proximal tubule cells (mProx24 cell line) were kindly provided by Dr. Takeshi
Sugaya (Timewell Medical Co., Ltd., Tokyo, Japan). Cells were cultured at 37 ◦C, 5%
CO2 until 90% confluent, and were then incubated for 24 h before starting experiments
with fetal bovine serum (FBS)-free DMEM containing 17.5 mM D-glucose. Cells were
incubated in FBS-free DMEM, with glucose levels adjusted to 5, 17.5, or 25 mmol/L,
with either vehicle (2-hydroxypropyl-β-cyclodextrin) or luseogliflozin (100 nmol/L, which
sufficiently blocks SGLT2 [26]). The in vitro glucose uptake tests were performed using a
commercially available kit (2-Deoxyglucose Uptake Measurement kit, Cosmo Bio, Tokyo,
Japan) according to the manufacturer’s instructions.

4.5. Statistical Analysis

Statistical significance was assessed using one-way ANOVA followed by Tukey’s
multiple comparison test to evaluate differences among the multiple groups. Mann–
Whitney’s U tests were performed to compare the differences between the 2 groups. All
statistical analyses were performed using GraphPad Prism 5 (GraphPad Software Inc., La
Jolla, CA, USA), with p < 0.05 considered statistically significant. Data are presented as
mean ± standard error of the mean.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22158169/s1, Figure S1: Effects of luseogliflozin on 2-NBDG (2 mg/kg) dynamics in
early segments of proximal tubules (data from each tubular cell). Figure S2: Effects of luseogliflozin
on 2-NBDG (6 mg/kg) dynamics in early segments of proximal tubules (data from each mouse).
Figure S3: Effects of luseogliflozin on 2-NBDG (6 mg/kg) dynamics in early segments of proximal
tubules (data from each tubular cell).Figure S4: 2-NBDG (2 and 6 mg/kg) dynamics in late segments
of proximal tubules (data from each mouse). Figure S5: 2-NBDG (2 and 6 mg/kg) dynamics in late
segments of proximal tubules (data from each tubular cell). Figure S6: Effects of blood glucose level
on 2-NBDG (2 or 6 mg/kg) dynamics in early segments of proximal tubules (data from each tubular
cell). Figure S7: Effects of blood glucose level on 2-NBDG (2 or 6 mg/kg) transport from cytosol to
interstitium in early segments of proximal tubules (data from each tubular cell). Figure S8: Uptake of
2-deoxyglucose (2-DG) in cultured proximal tubular cells.
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