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Moustafa O. Aboeleza,b , Amany Belalc , Guangya Xianga and Xiang Maa

aSchool of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; bDepartment of Pharmaceutical
Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt; cDepartment of Pharmaceutical Chemistry, College of Pharmacy, Taif
University, Taif, Saudi Arabia

ABSTRACT
A new class of EGFR PROTACs based on pomalidomide was developed, synthesised, and tested for their
cytotoxic activity against a panel of human cancer cells. Compounds 15–21 were showed to be more
effective against the four tested cell lines than erlotinib. In particular, compound 16 was found to be the
most potent counterpart as it was 5.55, 4.34, 5.04, and 7.18 times more active than erlotinib against MCF-
7, HepG-2, HCT-116, and A549 cells, respectively. Compound 15 was revealed to be more active than
doxorubicin against the four tested cell lines. Furthermore, the most potent cytotoxic compounds were
studied further for their kinase inhibitory effects against EGFRWT and EGFRT790M using HTRF test.
Compound 16 showed to be the most effective against both kinds of EGFR, with IC50 values of 0.10 and
4.02mM, respectively. Compound 16 could effectively degrade EGFR protein through ubiquitination (Dmax
¼ 96%) at 72h in the tested cells.
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1. Introduction

The epidermal growth factor receptor (EGFR) is a transmembrane
tyrosine kinase protein that regulates cell proliferation, invasion,
metastasis, and apoptosis in human epithelial cells by acting as a
receptor for members of the EGF family.1–3 EGFR gene amplifica-
tion has been associated to several human malignancies, including
oesophageal cancer, glioblastoma, anal cancers, malignancies of
the epithelium of the head and neck, breast cancers, and lung
cancers, particularly non-small-cell lung cancers (NSCLCs).3–6

Mutations in the EGFR kinase adenosine triphosphate (ATP)-
binding domain is considered as the oncogenic driver in NSCLC,

such as in-frame deletions of exon 19 and the L858R mutation.1

Lung cancer is the most common cancer related to death in the
world, and NSCLCs are one of the most common types of lung
cancer.7 The biomedical community has actively examined EGFR
as a therapeutic target for NSCLC. Studies on inhibiting the activ-
ity of mutant EGFR ATP-binding domains resulted in the creation
of a variety of FDA-approved EGFR tyrosine kinase inhibitors
(TKIs). In NSCLC patients, the first-generation of TKIs, gefitinib8

and erlotinib,9 exhibited significant responses and prolonged sur-
vival rates. The secondary "gatekeeper" T790M mutation, on the
other hand, enhanced ATP-binding affinity and induced recurrence
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in the majority of NSCLC patients after 9–14months of
treatment.10–14

To prevent resistance, second-generation of EGFR inhibitors
have been developed, including afatinib and dacomitinib, which
target EGFR with the T790M activating mutation. Following that,
the third-generation of EGFR covalent inhibitors was created, with
increased selectivity to (WT) EGFR13. However, acquired resistance
to irreversible EGFR-TKIs has been linked to the C797S point muta-
tion and/or other mechanisms, making NSCLC resistant to these
inhibitors.15–19

The fourth-generation EGFR-TKIs, such as EAI04520 and other
noncovalent inhibitors targeting allosteric binding site (s), appears
to be a substantial break through against these tertiary muta-
tions.21–23 Despite this progress, there is still a medical need for
new small-molecule inhibitors or therapeutic methods to over-
come multipoint EGFR mutations.24

Proteolysis targeting chimaeras (PROTACs) can target a specific
protein for degradation as a potential therapeutic method.25–30

PROTAC-induced proximity causes preferential polyubiquitination
of the target protein, which leads to proteasome destruction.
Unlike typical enzyme inhibitors, which limit the target enzyme’s
catalytic activity, PROTACs cause the target protein to degrade. As
a result, the new bifunctional small-molecule-mediated protein
degradation paradigm has the potential to overcome the disad-
vantages of traditional occupancy-driven inhibitors. This method
has been successfully used for the degradation of a variety of pro-
teins in recent years31.

Meng et al. developed a set of putative EGFR degraders (EGFR
PROTAC 1–3) in order to investigate a potential novel therapeutic
strategy for NSCLC and overcome drug resistance (Figure 1). As
shown in (Figure 1), two new CRBN-based EGFR targeting
PROTACs (SIAIS125 and SIAIS126) were reported to induce deg-
radation for both EGFREx19del and EGFRL858R/T790M resistant pro-
teins. It is noticeable from their chemical structures that they are
based on pomalidomide. Additionally there are EGFR targeting
small molecule PROTACs based also on pomalidomide (Figure 1)

that have showed selective and potent antitumor activities in
EGFR-TKI resistant lung cancer cells and can stimulate necrosis
and stop cell cycle in H1975 cells.31 All these facts encouraged us
to design a new pomalidomide based EGFR targeting PROTACs to
get new hopeful candidates that can affect both types of EGFR
either wild or mutant.

In a previous study, a variety of EGFR-TKI inhibitors were devel-
oped,32–36 which are fused heterocycles with a quinoxaline moiety
1–3 (Figure 2(A)). Those inhibitors have good anti-proliferative
effects against breast cancer (MCF-7), hepatocellular carcinoma
(HepG-2), colorectal carcinoma (HCT-116), and non-small cell lung
cancer cells (A549) and exhibited EGFR inhibitory action32.
Additionally, when compared to erlotinib, compounds 4–7 (Figure
2(A)), demonstrated substantial EGFR inhibitory action, and these
findings are consistent with our docking studies.

These findings imply that these compounds with EGFR inhibi-
tory action could be useful in anticancer treatments. We used
compounds 1–7 as ligands of EGFR to try to find a new EGFR
degrader. The design, synthesis, and bioactivity evaluation of diox-
opiperidinyl moiety derivatives 15–21 as new EGFR degraders
were described in this study. The CRBN ligand pomalidomide and
the VHL ligand were chosen as E3 ligase-recruiting components in
our EGFR-targeting PROTACs (Figure 2(B)).

2. Results and discussion

2.1. Design and synthesis of EGFR-targeting PROTACs

Pomalidomide (4-amino-2-(2,6-dioxopiperodin-3-yl)-isoindoles-1,3-
dione) was used as an E3 ubiquitin ligase ligand,28 the second
generation of immuno-modulatory drugs (IMIDs), and has a higher
cellular stability than other IMIDs.29,37 The synthetic methods used
to prepare the designed compounds 15–21 were depicted in
Schemes 1 and 2. We aimed to build up N-(2-(2,6-dioxopiperidin-
3-yl)-1,3-dioxoisoindolin-4-yl)-2-(2-iodoethoxy)ethoxy)acetamide 14
by "expanding" the linker attached to the pomalidomide end

Figure 1. Chemical structures of previously published EGFR targeting PROTACs based on pomalidomide.
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(A)

(B)

Figure 2. (A) Chemical structures of some reported EGFR-TK inhibitors. (B) Design of EGFR-targeting PROTACs in this work.

Scheme 1. Synthesis of key intermediate 14. Reagents and conditions: (i) t-BuOK, THF, stirring, overnight, r.t.; (ii) 20% THF\DCM, r.t., 1 hr; (iii) SOCl2, DCM, stirring, r.t.,
2 hr; (iv) THF, DIPEA, reflux, 8 h; (v) NaI, Acetone, reflux, overnight.
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12,38 hydrolysis of tert butyl 2-(2-(2-chloroethoxy)ethoxy)acetate
10 with trifluroacetic acid (TFA) in dichloromethane (DCM) yielded
2-(2-(2-chloroethoxy)ethoxy)acetic acid 11.38 Then, compound 11
was activated to acyl chloride via its reaction with thionyl chloride
in tetrahydrofuran (THF) and then subjected to react with pomali-
domide (12) in presence of diisopropylethylamine (DIPEA) as a
base to afford 2-(2-(2-chloroethoxy)ethoxy)-N-(2-(2,6-dioxopiperi-
din-3-yl)-1,3-dioxoisoindolin-4-yl)acetamide 1338 (Scheme 1).

Compound 13 was converted to N-(2-(2,6-dioxopiperidin-3-yl)-
1,3-dioxoisoindolin-4-yl)-2-(2-iodoethoxy)ethoxy) acetamide (14)
via a Finkelstein reaction38 (Scheme 1). Compound 14 was used
as a key material to create target compounds 15–21 in acceptable
yields via nucleophilic substitution reaction with quinoxalines 1–3,
isatin hydrazides 4,5, benzoxazole hydrazide 6 and benzothiazole
hydrazide 7 respectively32–36 (Scheme 2).

Target compounds 15, 16 and 17 were obtained (56–60%
yields, purification by flash chromatography) through the reaction
of compound 14 with quinoxalines 1–3 by heating under reflux at
80 �C overnight, using methyl-2-pyrrolidone (NMP) as solvent and
DIPEA as a base.

Synthesised compounds 18 and 19 (52–56% yield, purification
by flash chromatography), were obtained by the same previous

method via the treatment of intermediate key 14 with isatin
hydrazides 4 and/or 5, respectively.

Furthermore, the reaction of compound 14 with benzoxazole
hydrazide 6 and benzothiazole hydrazide 7, resulted in the forma-
tion of target compounds 20 and 21, respectively (50–52% yield,
purification by flash chromatography) by the same previous
method (Scheme 2). Proposed structures for EGFR PROTACs
degraders 15–21 were in agreement with their various spectro-
scopic and analytical data (Supplementary data files).

2.2. Biological evaluations

2.2.1. In vitro cytotoxic activities
The anti-proliferative activity in vitro of target compounds 15–21
against a panel of four cell lines MCF-7, HepG-2, HCT-116 and
A549 were evaluated using MTT assay.39,40 Erlotinib and doxorubi-
cin were applied in the experiments as references. In MCF-7,
HepG-2 and A549 cell lines, EGFRWT is overexpressed.41–43 The
results were illustrated in (Table 1) as IC50 (mM). Compounds
15–21 showed to be more active against the four tested cell lines
than erlotinib. In particular, compound 16 that showed to be 5.55,

Scheme 2. Synthesis of target compounds 15–21. Reagents and conditions: (i) DIPEA, DMF, reflux, overnight.
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4.34, 5.04 and 7.18 folds more active than erlotinib in MCF-7,
HepG-2, HCT-116 and A549 cells, respectively. Compound 16 was
also more effective than doxorubicin against MCF-7, HepG-2 and
HCT-116 cells, although compound 15 was more effective against
MCF-7 and HepG-2 cells.

2.2.2. Egfrwt kinase inhibitory assay
EGFRWT kinase inhibiting activities of the target compounds
15–21 were investigated using the homogeneous time resolved
fluorescence (HTRF) assay,44 with erlotinib as a standard (Table 2).
The results revealed that the target compounds exhibited EGFRWT

activity with IC50 values varying from 0.10 to 3.02 mM. Compounds
15, 16 and 17 were the most potent against EGFRWT than erloti-
nib (IC50 ¼ 0.32 ± 0.05 lM) with IC50 values of 0.22, 0.10 and
0.19lM, respectively. However, compounds 18 and 20 showed to
have similar activities to erlotinib with IC50 values of 0.65 and
0.77mM, respectively. Finally, compounds 19 and 21 exerted mod-
erate activities with IC50 values of 3.02 and 2.27 mM, respectively.

2.2.3. Egfrt790m kinase inhibitory assay
The target compounds 15–21 that showed promising IC50 values
against EGFRWT were explored further for their inhibiting activities
against mutant EGFRT790M. Gefitinib were investigated as a refer-
ence standard. The majority of target compounds inhibited
EGFRT790M activity, indicating more potent than gefitinib with IC50
values varying from 4.02 to 16.26 mM. In particular, the most
potent analogue, compound 16 (IC50 ¼ 4.02 ± 0.19mM), was
observed to be 5.27 folds more active than gefitinib (IC50 ¼
21.44 ± 0.75 mM). Compounds 15, 17, and 18 were the most
potent analogues, with 3.07, 3.38 and 2.59 folds the activity of
gefitinib, respectively. Finally compounds 19–21 have inhibitory
activities equivalent to gefitinib, with IC50 values of 14.06, 16.26,
and 15.26 mM, respectively (Table 2).

2.2.4. Correlation of cytotoxicity with EGFRWT inhibition
The target compounds, 15–21 exhibited an inhibitory activity
against EGFRWT. Next, we evaluated whether the EGFRWT inhibition
can lead to an antiproliferative effect in the tested four cell lines.
Using the Graph Pad-Prism 5 software, the activity of the tested
compounds as EGFRWT inhibitors was plotted against their cyto-
toxicity in a simple linear regression configuration. The measured
coefficients of determination (R2) represent the relationship
between EGFRWT inhibition and the induced antiproliferative activ-
ity. The R2 values for MCF-7, HepG-2, HCT-116 and A549 were
0.7391 (p values: 0.013), 0.5611 (p values: 0.05), 0.3852 (p values:
0.136) and 0.4440 (p values: 0.102), respectively (Figure 3).

2.2.5. Western blotting assay
The western blotting analysis showed that, the majority of our tar-
get compounds 15–21 are moderate to good degraders (Figure
4(A)). Degradation at the concentration of 1 mM is significantly
higher than that at 0.1mM, indicating a certain concentration-
dependent relationship. Following this, the target compounds
15–21 tethering various E3 ligases ligand were chosen as repre-
sentative PROTACs for further degradation study based on tem-
poral data.

We set nine concentration gradients ranging from 1 mM to
10 mM to determine the degradation activity of all tested com-
pounds and calculated the DC50 (concentration that caused dele-
tion of 50% of EGFR) values. The results showed that, compounds
15 and 16 can induce EGFRWT degradation in A549 cells in a con-
centration-dependent manner, with DC50 values of 43.4 and
32.9 nM, respectively. At greater concentrations of compound 16,
it exhibited a significant "hook effect" on EGFR degradation, which
was caused by the creation of unproductive dimers (rather than
productive ternary complex),35 while compounds 17–21 were
moderately effective at the concentrations of 1mM to 10mM
(Figure 4(B)).

At a concentration of 100 nM, the time-dependent degradation
activities of compounds 15–21 were also examined (Figure 5(A)).
As the administration duration was extended, the amount of EGFR
protein was gradually reduced. At 96 hours, compound 15 reached
its maximum degradation rate (Dmax ¼ 86%) at 96 h, and com-
pound 16 showed the maximum degradation rate (Dmax ¼ 96%)
at 72 h. These results indicate that transmembrane protein degrad-
ation is a time-consuming process. Moreover, as shown in (Figure
5(B)), compounds 15 and 16 at the concentrations of 0.1, 0.3 and
1 mM effectively displayed inhibitory activity against EGFR and
downstream Akt phosphorylation in a concentration-depend-
ent manner.

Compound 15 inhibited EGFR phosphorylation in a similar way
as erlotinib, whereas compounds 15 and 16 have inhibitory
actions on Akt phosphorylation that were comparable to erlotinib.
In A549 cells, the promising compounds 15 and 16 promoted
EGFR degradation with DC50 values of 43.4 and 32.9 nM, respect-
ively. Protein-controlling machinery in cells (ubiquitin-proteasome
system) UPS was a part of the process.

2.2.6. In vitro DNA-flow cytometric (cell cycle) analysis
Cell cycle analysis on MCF-7, HepG-2 and HCT-116 cells was per-
formed for the most potent compound 16, as indicated by Wang
et al.45 Compound 16 was incubated with MCF-7, HepG-2, and
HCT-116 cells for 24 hours at doses equivalent to its IC50 against
the three cell lines (3.92, 3.02 and 3.32 mM, respectively). Then, the
influence of compound 16 on the cell cycle profile was then
investigated.

Table 2. In vitro enzymatic inhibitory effects of compounds 15–21 against
EGFRWT and EGFR790M.

Compounds EGFRWT IC50 (mM)
a EGFR790M IC50 (mM)

a

15 0.22 ± 0.05 6.89 ± 0.31
16 0.10 ± 0.03 4.02 ± 0.19
17 0.19 ± 0.09 6.26 ± 0.32
18 0.65 ± 0.03 8.16 ± 0.28
19 3.02 ± 0.12 14.06 ± 0.51
20 0.77 ± 0.05 16.26 ± 0.69
21 2.27 ± 0.16 15.26 ± 0.61
Erlotinib 0.32 ± 0.05 NT
Gefitinib NT 21.44 ± 0.75
aIC50 values are the mean ± S.D of three experiments.
NT: Compounds not investigated.

Table 1. In vitro anti-proliferative activities of target compounds 15–21 against
MCF-7, HepG-2, HCT-116 and A549 cells line.

Compounds

IC50 (mM)
a

MCF-7 HepG-2 HCT-116 A549

15 7.87 ± 0.31 3.89 ± 0.05 6.19 ± 0.27 3.09 ± 0.15
16 3.92 ± 0.19 3.02 ± 0.12 3.32 ± 0.15 2.69 ± 0.09
17 7.96 ± 0.35 4.09 ± 0.11 6.29 ± 0.35 3.19 ± 0.19
18 8.26 ± 0.25 6.26 ± 0.56 6.79 ± 0.27 4.67 ± 0.13
19 16.26 ± 0.71 8.26 ± 0.36 9.12 ± 0.38 6.54 ± 0.32
20 14.26 ± 0.69 9.26 ± 0.39 12.26 ± 0.71 8.27 ± 0.25
21 16.26 ± 0.71 9.86 ± 0.37 12.96 ± 0.52 7.27 ± 0.16
Erlotinib 21.76 ± 1.85 13.11 ± 1.28 16.76 ± 1.65 19.33 ± 1.85
Doxorubicin 7.89 ± 0.55 6.22 ± 0.45 5.52 ± 0.25 NT
aIC50 values are the mean ± S.D of three experiments.
NT: Compounds not investigated.
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When MCF-7 pre-treated to compound 16, the percentage of
cells in pre-G1 and G2-M phases increased by 4.39 and 1.53 fold,
respectively, compared to the control. In HepG-2 cells, compound
16 caused 6.76 and 1.61 fold increase in the percentage of cells in
pre-G1 and G2-M stages, respectively, as compared to the control.
In HCT-116 cells, compound 16 caused 5.37 and 1.49 fold increase
in the percentage of cells in pre-G1 and G2-M phases, respect-
ively, as compared to the control. These results clearly showed
that compound 16 inhibits the cell cycle in the G2-M phase
(Figure 6).

2.2.7. Apoptosis analysis
The double staining Annexin V/propidium iodide technique was
performed to assess the mechanism of cell death and apoptosis-
inducing activity.46 For 24 hours, MCF-7, HepG-2, and HCT-116
cells were treated with compound 16 at concentrations of 3.92,
3.02 and 3.32 mM, respectively. As shown in (Figure 7 (A and B).

The results revealed that the application of compound 16 on
MCF-7 cells the early apoptosis ratio jumped from 0.67% to
4.18%, and the late apoptosis ratio from 0.56% to 5.07%, com-
pound 16 promoted nearly 9-times for cellular apoptosis, includ-
ing early and late when compared to control. HepG-2 cells,
compound 16 improved the early apoptosis ratio from 0.57% to
7.55%, while the late apoptosis ratio rises from 0.49% to 5.53%.
This means that compound 16 caused almost up to 13-folds for
both early and late cellular apoptosis upon comparison with the
control. Compound 16 enhanced the early apoptosis ratio in HCT-
116 cells from 0.63% to 5.96%, as well as the late apoptosis ratio
from 0.53% to 5.15%, upon comparison with the control, com-
pound 16 caused nearly 9-times for cellular apoptosis, including
early and late. Compound 16 has a significant apoptotic effect

against MCF-7, HepG-2, and HCT-116 cells, according to the
obtained results.

2.2.8. Caspase-3 determination
The most sensitive cells (HepG-2) were treated with compound 16
at a concentration of 3.02 mM for 24 hours to determine the effect
of compound 16 on caspase-3 levels, The results showed that con-
siderable increase the level of caspase-3 (6.31 fold) when com-
pared to control cells (Figure 7 (C)).

2.3. In silico studies

2.3.1. Molecular docking
Docking studies were performed for the compounds 15–21
against the ATP binding sites of EGFR-TK Wild-type (EGFRWT,
PDB:4HJO)47 and EGFR-TK mutant type (EGFRT790M, PDB:
3W2O).48,49 The docked compounds revealed good binding affin-
ities against EGFRWT (energy score �7.50 to � 8.65 kcal mol�1;
Table 3).

The commercial programme Molecular Operating Environment
(MOE) 2019.01 was used to construct a molecular docking proto-
col. The structural coordinates of the co-crystallized inhibitors
were used to determine the active binding sites of the target pro-
teins. The docking protocol’s results were verified by re-docking
the co-crystallized ligands (erlotinib and TAK-285) inside the active
sites of EGFRWT and EGFRT790M, respectively. The root mean square
deviations (RMSDs) of erlotinib and TAK-285 re-docked conformers
and co-crystallized conformers, respectively, were 1.5 and 0.90,
demonstrating the docking process’ validity (Figures 8 (A), 10 (A)).

The binding energy of erlotinib as a co-crystallized ligand was
�8.24 kcal mol�1.The quinazoline moiety been located in the

Figure 3. Correlation between EGFRWT inhibition and cytotoxicity on MCF-7, HepG-2, HCT-116 and A549 cell lines.
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adenine pocket of EGFRWT, where the pyrimidine rings creating
one hydrogen bonding with Met769 with a distance of 2.22 Å. The
quinazoline molecule’s phenyl ring was integrated into pi-Sigma
linkages with Lue694 and Leu820. The terminal ethynylphenyl
moiety was coupled with the hydrophobic pocket I, resulting,
hydrophobic interactions with Ala719, Val702 and Lys721 residues.
In the hydrophobic region II, two 2-methoxyethoxy groups were
discovered generating hydrophobic interactions with Gly772
and Leu694 residues and one hydrogen bond with Cys773
(Figure 8 (B)).

The binding mode of target compound 15 was similar to that
of erlotinib. It interacts with the active site through two hydrogen
bonds with Asp831 and Lys721 amino acids with a distance of

3.09 and 3.14 Å, respectively and by hydrophobic interactions
with Leu694 and Val702 amino acids with bond lengths of
4.32 and 4.60Å, respectively [binding score¼�7.50 kcal mol�1]
(Supplemental data).

Compound 16 interacted with the active site by two interac-
tions, two hydrogen bonds with Arg779 and Lys721 amino acid
with a distance of 3.07 and 2.79 Å, respectively, and by hydropho-
bic interactions with Lys889 amino acid with a distance of 3.72
and 4.34Å, respectively [binding score¼�7.38 kcal mol�1]
(Figure 9).

Finally, the interactions between compound 17 and the active
site are represented by four hydrogen bonds with Lys851, Lys721
and Phe699 amino acids with a distance of 3.14, 3.14, 2.98

Figure 4. (A) EGFR degradation activities of compounds in A549 cells. Cells were treated for 48 h with concentration of 0.1 and 1mM. (B) Effects of concentration-
dependent EGFR degradation by compounds 15–21 in A549 cell lines. Cells were treated for 48 h with a concentration from 1 nM to 10mM. EGFR protein was exam-
ined by Western blotting analysis and EGFR degradation rate was quantified by densitometry and normalised to the corresponding density of b-actin protein (n 1=4 3).
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and 3.14Å respectively [binding score¼�7.68 kcal mol�1]
(Supplemental data).

The docked compounds 15–21 have revealed good binding
affinities against EGFRT790M (energy score �7.58 to �8.41 kcal
mol�1, Table 3). As a co-crystallized ligand, TAK-285’s pyrrolo[3,2-
d]pyrimidine moiety occupied the adenine pocket of EGFRT790M

(energy score �8.18 kcal mol-1). ALa734 and Leu718 have devel-
oped hydrophobic contacts with it. With a bond length of 2.23 Å,
the pyrimidine moiety made one hydrogen bond with Met793.
The terminal 3-(trifluoromethyl) phenoxy group was integrated
into the hydrophobic pocket I, resulting in hydrophobic interac-
tions at Lys745 and Ile759. With a bond length of 1.41 Å, the tri-
fluoromethane group formed one hydrogen bond with Lys745.
The N-ethyl-3-hydroxy-3-methylbutanamide moiety occupied the

hydrophobic region II, forming one hydrogen bond with Ser720
with a length of 1.79 Å. With Lys745 Val726 and Met790, the cen-
tral phenyl moiety formed pi-Sigma connections (Figure 10).

Compound 15 bonded with two significant hydrogen bonds
with Glu762 and Lys745 amino acids with a distance of 3.11 and
2.84 Å, respectively, and by hydrophobic interactions with Leu718
amino acid with a distance of 4.47 Å [binding score¼�7.95 kcal
mol�1] (Supplemental data).

Compound 16 had a binding mechanism that was similar to
TAK-285, it interacts with the active site through two hydrogen
bonds with Ser720 and Lys745 amino acids with a distance of
3.28 and 3.36Å, respectively, and by hydrophobic interactions
with Leu718 amino acid with bond lengths of 4.54 Å [binding
score¼�7.58 kcal mol�1] (Figure 11).

Figure 5. (A) EGFR time-dependent degradation by compound 16 in A549 cell lines. Cells were treated with100 nM of 15–21 for indicated time points. Western blot-
ting was used to evaluate EGFR protein, and densitometry was used to measure EGFR degradation, which was adjusted to the density of b-actin protein (n 1=42).
(B) Compounds 15 and 16 have EGFR degradation and phosphorylation inhibitory action in A549 cells. The cells were exposed to concentrations of 0.1, 0.3, and 1mM.
Erlotinib were utilised for comparison.
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Compound 17 showed a binding mode identical to TAK-285, it
interacts with the active site through four hydrogen bonds with
Asp837, Cys797, Leu718, and Met790 amino acids with a distance
of 3.48, 3.39, 4.20, and 3.03 Å [binding score¼�7.73 kcal mol�1]
(Supplemental data). The previously mentioned interactions indi-
cate the importance of aromatic moieties, the H-acceptor and H-
donor in the designed ligands; this also maintains an appropriate
lipophilicity of the designed compound to introduce appropriate
pharmacokinetics.

3. Experimental section

3.1. General chemistry

All reagents in this study were provided from Merck, Aldrich, and
Fluka. Thin-layer chromatography (TLC) was used to monitor all
reactions, with precoated plates of silica gel G/UV-254 of 0.25mm

thickness (Merck 60F254) and UV light (254 nm/365 nm) for visibil-
ity. The attenuated total reflection (ATR) method was used to
measure infra-red spectra with an FT-IR-ALPHBROKER-Platinum-
ATR spectrometer and NMR spectra were performed on Bruker
Spectrophotometer (400MHz, 100MHz for 1H-13C NMR, respect-
ively). Chemical shifts are measured in d values parts per million
(ppm) with comparison to the internal reference tetramethylsi-
lane (TMS).

Coupling constants (J) for 1H NMR were given in Hertz and
expressed as (s) for singlet, (d) for doublet, (t) for triplet, (q) for
the quartette, and (m) for multiplet, DMSO-d6 was used as a solv-
ent. Microanalyses (C, H, N, and S) and the results were within ±
0.4% of the theoretical values.

Quinoxaline derivatives (1–3), isatin hydrazides (4 and 5),
benzoxazole hydrazide 6, benzothiazole hydrazide 7 and com-
pounds 8–14 were synthesised according to the reported
procedures.32–36,44

Figure 6. The distribution of MCF-7, HepG-2 and HCT-116 cells after treatment with compound 16.
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3.1.1. General procedure for preparation of compounds 15–21
To NMP (1ml) solution of key intermediate 14 (0.2mmol, 1 eq),
was added to solution of compounds (1–7) (0.2mmol, 1eq), DIPEA
(3eq) was added. The mixture was heating under reflux at 80 �C
overnight, mixture was diluted with ethyl acetate before being

washed with saturated sodium bicarbonate, water, and brine. The
organic layer was dried over sodium sulphate, filtered, and evapo-
rated under reduced pressure, after which it was purified using
column chromatography.

3.1.1.1. N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2-(2-
(2-(3-oxo-3,9-dihydro-2H-pyrazolo[3,4-b]quinoxalin-2-yl)ethoxy)e-
thoxy)acetamide (15). White crystals (yield 56%); IR (KBr) � cm�1:
3304-3294 (NH), 3085 (CH aromatic), 2910 (CH aliphatic), 1703
(C¼O); 1H NMR d ppm; 11.29 (s, IH, NH quinoxalin, exchangeable
with D2O), 10.72 (br, IH, NH pomalidomide, exchangeable with
D2O), 10.07 (br, IH, NH piperidine, exchangeable with D2O),
8.09–8.07 (d, 2H, J¼ 8.8 Hz, Ar-H), 7.92 (t, 2H, J¼ 7.6 Hz, Ar-H), 7.60
(t, 1H, J¼ 7.6 Hz, Ar-H), 7.45–7.43 (d, 2H, J¼ 8.4 Hz, Ar-H), 5.09 (t,
1H, J¼ 8Hz, CH), 4.62 (s, 2H, CH2), 3.45–3.21 (m, 6H, CH2), 2.95 (t,
2H, J¼ 7.8 Hz, CH2), 2.60 (t, 2H, J¼ 7.6 Hz, CH2), 2.09–2.07 (m, 2H,

Figure 7. (A) and (B) Apoptosis effect of compound 16 on MCF-7, HepG-2, and HCT-116 cells. (C) Effect compound 16 on caspase-3 levels.

Table 3. The binding free energies of docking the target compounds 15–21
against EGFRWT and EGFRT790M.

Compounds EGFRWT (Kcal mol–1) EGFR790M (Kcal mol–1)

15 �7.50 �7.95
16 �7.38 �7.58
17 �7.68 �7.73
18 �8.23 �8.13
19 �8.65 �8.41
20 �8.14 �8.37
21 �8.31 �7.97
Erlotinib �8.24 —
TAK-285 — �8.18
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CH2);
13C NMR d ppm; 179.60, 178.50, 177.80, 177.47, 166.50,

156.68, 154.56, 151.21, 142.30, 139.40, 137.57, 134.40, 131.28,
130.19, 128.98, 128.26, 127.56, 126.58, 124.56, 110.69, 70.81, 69.68,
69.39, 68.18, 56.15, 49.78, 26.50, 24.56; Dept-135 NMR d ppm;
70.81 (exchangeable), 69.68 (exchangeable), 69.39 (exchangeable),
68.18 (exchangeable), 49.78 (exchangeable), 26.50 (exchangeable),
24.56 (exchangeable). Anal. Calcd for C28H25N7O8 (587.55): C,
57.24; H, 4.29; N, 16.69; found: C, 57.37; H, 4.18; N, 16.60, %.

3.1.1.2. N-(2-(2, 6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2-
(2-(2-(2-(4-methyl-3-oxo-3, 4-dihydroquinoxaline-2-carbonyl)
hydrazinyl)ethoxy)ethoxy) acetamide (16). White crystals (yield
60%); IR (KBr) � cm�1: 3305-3272 (NH), 3035 (CH aromatic), 2889
(CH aliphatic), 1699 (C¼O); 1H NMR d ppm; 11.07 (br, IH, NH,
CONHNH, exchangeable with D2O), 10.60 (br, IH, NH piperidine,
exchangeable with D2O), 10.09 (s, IH, NH pomalidomide,
exchangeable with D2O), 7.97–7.95 (d, 2H, J¼ 8.4 Hz, Ar-H), 7.93 (t,
2H, J¼ 7.6 Hz, Ar-H), 7.58 (t, 1H, J¼ 7.6 Hz, Ar-H), 7.35–7.33 (d, 2H,

J¼ 8.4 Hz, Ar-H), 6.21 (br, IH, NH, CONHNH, exchangeable with
D2O), 4.92 (t, 1H, J¼ 7.2 Hz, CH), 4.59 (s, 2H, CH2), 3.90–3.88 (m,
6H, CH2), 3.45 (s, 3H, CH3), 2.95 (t, 2H, J¼ 7.4 Hz, CH2), 2.60 (t, 2H,
J¼ 7.6 Hz, CH2), 235–2.33 (m, 2H, CH2);

13C NMR d ppm; 168.52,
168.14, 167.80,167.21, 162.76, 153.47, 152.21, 150.87, 142.76,
138.25, 136.67, 134.67, 131.21, 130.07, 128.76, 128.13, 127.47,
125.18, 123.47, 111.21, 68.81, 68.05, 67.68, 67.07, 58.21, 47.80,
28.45, 27.80, 23.47; Dept-135 NMR d ppm; 68.81 (exchangeable),
68.05 (exchangeable), 67.68 (exchangeable), 67.07 (exchangeable),
47.80 (exchangeable), 27.80 (exchangeable), 23.47 (exchangeable);
Anal. Calcd for C29H29N7O9 (619.59): C, 56.22; H, 4.72; N, 15.82;
found: C, 56.30; H, 4.59; N, 15.90, %.

3.1.1.3. N-(2-(2-(2-(2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindo-
lin-4-ylamino)-2-oxoethoxy)ethoxy)ethoxy)ethyl)-3-oxo-3,4-dihydro-
quinoxaline-2-carboxamide (17). White crystals (yield 58%); IR
(KBr) � cm�1: 3335-3299 (NH), 3027 (CH aromatic), 2889 (CH ali-
phatic), 1695 (C¼O); 1H NMR d ppm; 11.11 (br, IH, NH

Figure 8. (A) 2D image of the superimposition of the re-docked conformers of erlotinib over the co-crystallized conformers (B) Erlotinib docked into the active site
of EGFRWT.

Figure 9. 2D diagram representation of compound 16 in the EGFRWT binding site.
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quinoxaline, exchangeable with D2O), 10.95 (br, IH, NH piperidine,
exchangeable with D2O), 10.45 (s, IH, NH pomalidomide,
exchangeable with D2O), 7.98–7.96 (d, 2H, J¼ 8.4 Hz, Ar-H), 7.86 (t,
2H, J¼ 7.6 Hz, Ar-H), 7.57 (t, 1H, J¼ 7.6 Hz, Ar-H), 7.48–7.46 (d, 2H,
J¼ 8.4 Hz, Ar-H), 6.83 (s, IH, NH, NHCH2, exchangeable with D2O),
4.95 (t, 1H, J¼ 7.2 Hz, CH), 4.57 (s, 2H, CH2), 4.15 (t, 2H, J¼ 7.6 Hz,
CH2), 3.85–3.83 (m, 6H, CH2), 3.58 (t, 2H, J¼ 7.6 Hz, CH2), 2.85–2.83
(m, 2H, CH2), 2.48 (t, 2H, J¼ 8Hz, CH2), 2.15 (t, 2H, J¼ 8Hz, CH2);
13C NMR d ppm; 178.63, 177.28, 176.51, 175.45, 164.62, 157.77,
156.24, 150.87, 144.56, 139.54, 137.82, 134.67, 131.41, 130.38,
129.17, 127.98, 127.19, 126.98, 123.47, 114.56, 79.60, 73.47, 69.98,
69.19, 67.80, 60.60, 54.56, 27.19, 26.98, 23.47; Dept-135 NMR d

ppm; 79.60 (exchangeable), 73.47 (exchangeable), 69.98
(exchangeable), 69.19 (exchangeable), 67.80 (exchangeable), 54.56
(exchangeable), 27.19 (exchangeable), 26.98 (exchangeable), 23.47
(exchangeable); Anal. Calcd for C30H30N6O10 (634.60): C, 56.78; H,
4.77; N, 13.24; found: C, 56.63; H, 4.63; N, 13.32, %.

3.1.1.4. N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2-(2-
(2-(2-(4-((2-oxoindolin-3-ylidene)amino)benzoyl)hydrazineyl)ethox-
y)ethoxy)acetamide (18). Yellowish white crystals (yield 52%); IR
(KBr) � cm�1: 3297-3288 (NH), 3025 (CH aromatic), 2881 (CH ali-
phatic), 1693 (C¼O); 1H NMR d ppm; 11.11 (s, IH, NH isatin,

Figure 10. (A) 3D images of the superimposition of the re-docked conformers of TAK-285 over the co-crystallized conformers. (B) Co-crystallized ligand (TAK-285)
docked into the active site of EGFRT790M.

Figure 11. 2D diagram representation of compound 16 in the EGFRT790M binding site.
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exchangeable with D2O), 10.76 (s, IH, NH piperidine, exchangeable
with D2O), 10.15 (br, IH, NH pomalidomide, exchangeable with
D2O), 9.65 (s, IH, NH, CONHNH, exchangeable with D2O), 7.98–7.96
(d, 4H, J¼ 8Hz, Ar-H.), 7.90 (t, 4H, J¼ 7.8 Hz, Ar-H), 7.68 (t, 1H,
J¼ 7.8 Hz, Ar-H), 7.50–7.48 (d, 2H, J¼ 8Hz, Ar-H), 6.43 (s, IH, NH,
CONHNH, exchangeable with D2O), 4.95 (t, 1H, J¼ 7.8 Hz, CH), 4.29
(s, 2H, CH2), 3.88 (t, 4H, J¼ 7.6 Hz, CH2), 3.67 (t, 4H, J¼ 7.8 Hz,
CH2), 3.06 (t, 2H, J¼ 7.6 Hz, CH2), 2.57–2.55 (m, 2H, CH2);

13C NMR
d ppm; 174.56, 169.98, 169.19, 167.80, 167.19, 166.80, 164.50,
157.50, 156.56, 154.56, 150.50, 144.56, 140.81, 139.56, 137.50,
131.40, 130.19, 129.50, 126.50, 124.56, 123.47, 119.80, 119.19,
117.80, 114.60, 113.47, 69.98, 69.60, 68.40, 67.18, 64.40, 54.81,
29.78, 21.40; Dept-135 NMR d ppm; 69.98 (exchangeable), 69.60
(exchangeable), 68.40 (exchangeable), 67.18 (exchangeable), 54.81
(exchangeable), 29.78 (exchangeable), 21.40 (exchangeable); Anal.
Calcd for C34H31N7O9 (681.66): C, 59.91; H, 4.58; N, 14.38; found: C,
60.03; H, 4.45; N, 14.29, %.

3.1.1.5. N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2-(2-
(2-(2-(4-(1-methyl-2-oxoindolin-3-ylideneamino)benzoyl)hydraziny-
l)ethoxy)ethoxy)acetamide (19). Yellowish white crystals (yield
56%); IR (KBr) � cm�1: 3315-3294 (NH), 3022 (CH aromatic), 2921
(CH aliphatic), 1705 (C¼O); 1H NMR d ppm; 11.07 (s, IH, NH
piperidine exchangeable with D2O), 10.41 (br, IH, NH pomalido-
mide, exchangeable with D2O), 9.52 (s, IH, NH, CONHNH,
exchangeable with D2O), 8.09–8.07 (d, 4H, J¼ 8.4 Hz, Ar-H.), 7.96 (t,
4H, J¼ 7.6 Hz, Ar-H), 7.76 (t, 1H, J¼ 7.6 Hz, Ar-H), 7.43–7.41 (d, 2H,
J¼ 8.4 Hz, Ar-H), 6.29 (s, IH, NH, CONHNH, exchangeable with
D2O), 4.86 (t, 1H, J¼ 7.8 Hz, CH), 4.59 (s, 2H, CH2), 3.96 (t, 4H,
J¼ 7.6 Hz, CH2), 3.74 (t, 4H, J¼ 7.8 Hz, CH2), 3.51 (s, 3H, CH3), 2.96
(t, 2H, J¼ 7.6 Hz, CH2), 258-2.56 (m, 2H, CH2);

13C NMR d ppm;
171.40, 170.50, 169.98, 167.98, 166.50, 164.60, 163.47, 159.98,
157.98, 156.50, 151.40, 144.60, 143.47, 139.98, 137.98, 131.50,
130.60, 129.47, 127.60, 126.50, 123.47, 119.98, 119.50, 117.60,
116.50, 114.60, 69.80, 69.60, 68.47, 67.18, 63.47, 54.56, 26.47,
24.60, 23.40; Dept-135 NMR d ppm; 69.80 (exchangeable), 69.60
(exchangeable), 68.47 (exchangeable), 67.18 (exchangeable), 54.56
(exchangeable), 24.60 (exchangeable), 23.40 (exchangeable); Anal.
Calcd for C35H33N7O9 (695.69): C, 60.43; H, 4.78; N, 14.09; found: C,
60.29; H, 4.94; N, 14.17, %.

3.1.1.6. 2-(2-(2-(2-(2-(benzo[d]oxazol-2-ylthio)acetyl)hydrazinyl)e-
thoxy)ethoxy)-N-(2-(2,6-dioxopiperidin-3-yl)-1, 3-dioxoisoindolin-4-
yl)acetamide (20). White crystals (yield 50%); IR (KBr) � cm�1:
3337-3289 (NH), 3031 (CH aromatic), 2859 (CH aliphatic), 1691
(C¼O); 1H NMR d ppm; 10.76 (s, IH, NH piperidine, exchangeable
with D2O), 10.15 (br, IH, NH pomalidomide, exchangeable with
D2O), 9.57 (s, IH, NH, CONHNH, exchangeable with D2O), 8.07–8.05
(d, 2H, J¼ 8.4 Hz, Ar-H), 7.97 (t, 2H, J¼ 7.8 Hz, Ar-H), 7.79 (t, 1H,
J¼ 7.8 Hz, Ar-H), 7.57-7.55 (d, 2H, J¼ 8.4 Hz, Ar-H), 6.76 (s, IH, NH,
CONHNH, exchangeable with D2O), 4.55 (t, 1H, J¼ 8.4 Hz, CH), 4.15
(s, 2H, CH2), 3.92 (s, 2H, CH2), 3.77-3.75 (m, 6H, CH2), 3.56 (t, 2H,
J¼ 7.8 Hz, CH2), 2.77- 2.75 (m, 2H, CH2), 2.57 (t, 2H, J¼ 8.6, CH2);
13C NMR d ppm; 174.40, 171.80, 170.50, 169.60, 169.19, 168.18,
166.50, 152.80, 142.80, 140.60, 138.18, 136.50, 127.80, 126.50,
124.80, 124.40, 119.70, 117.80, 112.80, 69.60, 69.19, 68.18, 66.50,
63.47, 52.80, 42.80, 29.60, 28.18; Dept-135 NMR d ppm; 69.60
(exchangeable), 69.19 (exchangeable), 68.18 (exchangeable), 66.50
(exchangeable), 52.80 (exchangeable), 42.80 (exchangeable), 29.60
(exchangeable), 28.18 (exchangeable); Anal. Calcd for C28H28N6O9S
(624.63): C, 53.84; H, 4.52; N, 13.45; S, 5.13; found: C, 53.95; H,
4.38; N, 13.38, S, 5.03%.

3.1.1.7. 2-(2-(2-(2-(2-(benzo[d]thiazol-2-ylthio)acetyl)hydrazinyl)e-
thoxy)ethoxy)-N-(2-(2, 6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-
yl)acetamide (21). White crystals (yield 52%); IR (KBr) � cm�1:
3299-3287 (NH), 3029 (CH aromatic), 2899 (CH aliphatic), 1690
(C¼O); 1H NMR d ppm; 11.22 (s, IH, NH piperidine, exchangeable
with D2O), 10.92 (s, IH, NH pomalidomide, exchangeable with
D2O), 10.33 (br, IH, NH, CONHNH, exchangeable with D2O), 8.09-
8.07 (d, 2H, J¼ 8.4 Hz, Ar-H), 7.97 (t, 2H, J¼ 7.6 Hz, Ar-H), 7.79 (t,
1H, J¼ 7.6 Hz, Ar-H), 7.57- 7.55 (d, 2H, J¼ 8.4 Hz, Ar-H), 6.88 (s, IH,
NH, CONHNH, exchangeable with D2O), 4.57 (t, 1H, J¼ 7.6 Hz, CH),
4.12 (s, 2H, CH2), 3.95 (s, 2H, CH2), 3.77-3.75 (m, 6H, CH2), 3.57 (t,
2H, J¼ 7.6 Hz, CH2), 2.79 (t, 2H, J¼ 7.6, CH2), 2.57-2.55 (m, 2H,
CH2);

13C NMR d ppm; 172.80, 171.80, 170.69, 169.88, 169.09,
167.80, 167.09, 154.88, 142.80, 141.60, 139.88, 139.09, 127.88,
127.09, 124.88, 124.09, 119.60, 118.18, 114.80, 69.88, 69.09, 68.18,
67.80, 64.80, 57.80, 50.78, 24.80, 21.40; Dept-135 NMR d ppm;
69.88 (exchangeable), 69.09 (exchangeable), 68.18 (exchangeable),
67.80 (exchangeable), 57.80 (exchangeable), 50.78 (exchangeable),
24.80 (exchangeable), 21.40 (exchangeable); Anal. Calcd for
C28H28N6O8S2 (640.69): C, 52.49; H, 4.41; N, 13.12; S, 10.01; found:
C, 52.60; H, 4.29; N, 13.04, S, 9.95%.

3.2. Biological evaluation

3.2.1. In vitro antiproliferative activities
Using the MTT assay technique, the antiproliferative properties of
target compounds 15–21 were evaluated in vitro against MCF-7,
HepG-2, HCT-116, and A549 cell lines.39,40,50,51 The used cell lines
were procured from ATCC (American Type Culture Collection). The
anti-proliferative activity was quantified in the following way. At a
density of 3–8� 103 cells per well, human cancer cell lines were
introduced to 96-well plates. The wells were then incubated at
37 �C for 12 hours in 5% CO2 incubator. To determine the DMSO
content, the culture media was swapped with 0.1ml of fresh
medium containing graded amounts of the test compounds for
each well. Incubation time for the wells was two days. The cells
were then cultured in 100 ml MTT solution (5 mg ml�1) for another
4 hours in each well.

The absorbance of each well was measured at 490 nm with an
automated ELISA reader system (TECAN, CHE) after MTT-formazan
crystals were dissolved in 100 ml of DMSO. The IC50 values were
calculated using nonlinear regression fitting models (Graph Pad,
Prism Version 5). The results were expressed as means ± SD and
were based on the average of three separate, duplicate trials.

3.2.2. Egfrwt and EGFRT790M kinase inhibitory assay
The inhibitory actions of target compounds 15–21 against both
EGFRWT and EGFRT790M were investigated further after they dem-
onstrated promising IC50 values against target cell lines. This test
used HTRF44 assay with EGFRWT and EGFRT790M (Sigma). For the
first 5minutes, the evaluated compounds were incubated with
EGFRWT and/or EGFRT790M and their substrates in the enzymatic
buffer. ATP (1.65 mM) was allowed to react to start the enzymatic
activity. The assay was performed at 37 �C for 30minutes. The
addition of EDTA-containing detection reagents halted the pro-
cess. After one hour detection period, GraphPad Prism 5.0 was
used to calculate the IC50 values. For each concentration, three
separate trials were carried out.
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3.2.3. Western bolt assay
Cells were seeded in 6-well plates at 1� 106 per well, incubated
at 37 �C with 5% CO2 for 24 h before drug exposure. Cells were
treated with different concentrations of synthesised compounds
for 96 h, then collected and suspended in lysis buffer (Beyotime)
and centrifuged for 20min at 12000 rpm, later removed the insol-
uble material. The same amounts of proteins were loaded and
separated by 8% sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinylidene
fluoride membranes (Millipore) after that. The results were
detected by an enhanced chemiluminescence system (Mill-pore).
The anti-EGFR was diluted at1:1000 (Cell Signalling Technology)
were diluted at 1:2000. Anti-actin and the secondary antibodies
(Xi’an Zhuangzhi Biotechnology Co., Ltd.) were diluted at 1:5000
and 1:10000, respectively.

3.2.4. Cell cycle analysis
MCF-7, HepG-2, and HCT-116 cells were given the most active
compound 16 at concentrations of 3.92, 3.02 and 3.32 mM for
24 hours, respectively. The cells that had been tested were then
trypsinized and washed in sterilised phosphate buffer saline (PBS).
The collected cells were fixed with cold ethanol (100%, 1.5ml).
According to the manufacturer’s instructions, a Cycle TESTTM
PLUS DNA Reagent Kit was used to dye the cells (BD Biosciences,
San Jose, CA). A flow cytometer was used to assess cell-cycle
distribution.52

3.2.5. Cell apoptosis assay
MCF-7, HepG-2, and HCT-116 cells were seeded and grown over-
night, then treated for 24 hours with compound 16 at concentra-
tions of 3.92, 3.02, and 3.32mM, respectively, to test if it caused
apoptosis. The negative control was chosen to be DMSO. The cells
were then collected and washed twice in PBS. The cells were sep-
arated using centrifugation. An apoptosis detection kit (BD
Biosciences, SanJose, CA) was used in this investigation. Following
the manufacturer’s instructions, the cells were dyed with Annexin
V-FITC and propidium iodide (PI) in the binding buffer for
20minutes at 37 �C in the darkness. A flow cytometer was used to
assess the binding of Annexin V-FITC and PI. The frequencies in all
quadrants were investigated using the Flowjo program.53

3.2.6. Caspase-3 determination
Caspase-3 activation was measured using a Caspase-3 ELISA
Kit (KHO1091).

3.3. In silico studies

3.3.1. Docking studies
From the Protein Data Bank (PDB) (http://www.pdb.org), the
crystal structures of the target enzymes EGFRWT (PDB ID: 4HJO)
and EGFRT790M (PDB ID: 3W2O) were downloaded. The docking
analysis was performed using the Molecular Operating
Environment (MOE) using the reported procedure45,47 as described
in Supplementary Data.

4. Conclusions

We have developed a new class of EGFR PROTACs degraders
which were based on pomalidomide. All compounds were eval-
uated for antiproliferative effects in vitro and demonstrated potent

inhibitory effect on MCF-7, HepG-2, HCT-116, and A549 cell lines.
Compound 16 showed to be 5.55, 4.34, 5.04, and 7.18 folds more
active than erlotinib in MCF-7, HepG-2, HCT-116, and A549 cells,
respectively. For the target compounds 15–21, inhibitory proper-
ties against two isoforms, EGFRWT and EGFRT790M, were examined.
The target compounds showed promising activities towards both
wild-type and mutant forms. Compound 16 revealed to be the
most effective EGFR inhibitor with IC50 values of 0.10 and 4.02 mM
against EGFRWT and EGFRT790M, respectively. To have a better
understanding of the effect of the target compounds on cancer
cell growth inhibition, docking experiments were conducted to
fully visualise and interpret compounds’ inhibitory profile against
EGFRWT and EGFRT790M, and they revealed that the majority of the
target compounds have comparable binding mechanisms with the
target co-crystallized ligand. Therefore, this study presents com-
pound 16 as a potential promising candidate as an EGFR inhibitor.
The western blotting assays analysed the effect of EGFR degrad-
ation and the results showed the promising compounds 15 and
16 induced degradation of EGFR in A549 cells with the DC50 val-
ues of 43.4 and 32.9 nM, respectively. Cellular protein-controlling
machinery UPS was involved in this process, compound 16 could
effectively degrade EGFR protein through ubiquitination and
reached the maximum degradation rate (Dmax ¼ 96%) at 72 h.
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