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Abstract: Osteoarthritis (OA), the most common form of arthritis, is associated with metabolic
diseases and gut microbiome dysbiosis. OA patients often take supplements of collagen hydrolysates
(CHs) with a high peptide content. Following digestion, some peptides escape absorption to induce
prebiotic effects via their colonic fermentation to generate short-chain fatty acids (SCFAs), branched-
chain fatty acids (BCFAs) and colonic gases (NH4 and H2S). The capacity of CHs to generate microbial
metabolites is unknown. Proteomic analysis of two CHs (CH-GL and CH-OPT) demonstrated
different native peptide profiles with increased peptide diversity after in vitro gastric and small
intestinal digestion. Subsequent 24 h fermentation of the CH digests in a dynamic gastrointestinal
(GI) digestion model containing human fecal matter showed that CH-OPT increased (p < 0.05) H2S,
SCFAs (propionic, butyric and valeric acids), BCFAs, and decreased NH4 in the ascending colon
reactor with no major changes seen with CH-GL. No major effects were observed in the transverse
and descending vessels for either CH. These findings signify that CHs can induce prebiotic effects in
the ascending colon that are CH dependent. More studies are needed to determine the physiological
significance of CH-derived colonic metabolites, in view of emerging evidence connecting the gut to
OA and metabolic diseases.

Keywords: nutraceutical; in vitro digestion; collagen hydrolysate; short-chain fatty acids; branched-
chain fatty acids; osteoarthritis; ammonium; hydrogen sulfide; antioxidant; peptide sequencing

1. Introduction

Osteoarthritis (OA) is the most common form of arthritis, affecting 50% of people
over 75 years old, and accounting for 25% of visits to family doctors [1–3]. OA results
in pain, mobility limitations and significant swelling in joint areas, most often in the
knees and hips. Risk factors include aging, genetic predisposition, previous injuries,
sex, but is also highly associated with metabolic diseases and conditions such as obesity,
diabetes, hypertension and dyslipidemia [4–8]. The link between metabolic diseases
and OA has become increasingly significant, such that the 2021 Osteoarthritis Research
Society International (OARSI) Virtual World Congress held dedicated sessions on metabolic
pathways and disorders contributing to OA [9]. Additionally, OA is also associated with
an increased risk of metabolic syndrome [10,11]. In a comprehensive study of the National
Health and Nutrition Examination Survey III cohort, results showed that the prevalence of
metabolic syndrome was increased in patients with OA, regardless of age and BMI [10].
Further studies, following approximately 1000 patients over 20 years, have established
that type 2 diabetes is a significant risk factor for severe OA, again independent of age and
BMI [10].

The treatment options for OA are currently limited; however, several clinical trials
have shown that ingestion of collagen hydrolysates (CHs) allows for decreased pain and
increased mobility [12–18]. CH supplements contain a cocktail of peptides and amino
acids (AAs); however, it is possible that these peptides are further broken down into
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bioactive peptides (BAPs) in the stomach and small intestine (SI) [19–23]. BAPs found in
collagen products, such as Pro-Hyp, have been shown to decrease the loss of chondrocytes,
prevent cartilage thinning, regulate genes associated with joint integrity, reduce the loss of
subchondral bone as well as regulate inflammation by inhibiting cytokines such as tumor
necrosis factor-α [24–26]. Other BAPs noted in CHs, such as Gly-Pro-Hyp, also have a
variety of biological functions which include acting as an inhibitor of dipeptidylpeptidase-
IV (DPP-IV), a protein linked to type 2 diabetes, as well as being involved in platelet
aggregation [27,28]. Antioxidant capacity is another bioactivity of CH-derived peptides
that is screened, as this could reduce reactive oxygen species damage affecting the metabolic
diseases associated with OA such as type 2 diabetes [23,29–33]. This could be also relevant
as clinical studies have shown that an increased fecal antioxidant content is associated with
improved gut function and health [34].

Despite the potential impact of BAPs on human health, a recent review has highlighted
the need for more detailed studies on the production of BAPs during digestive processes in
view of the sparse information on this topic [35]. Previous work involving in vitro digestion
of aged beef meat demonstrated generation of BAPs, although a comprehensive characteri-
sation of the peptides generated was not performed [36]. To date, the impact of digestive
processes on the breakdown of CH-derived peptides has been sparsely investigated. Hy-
drolysates of Alaska pollock skin collagen that underwent simulated gastrointestinal (GI)
digestion showed the generation of low-molecular-mass peptides as assessed by reverse
phase high performance liquid chromatography HPLC [21]. The digests were associated
with increased metal-chelating activity, angiotensin-converting enzyme (ACE) and DPP
IV-inhibitory activities as well as enhanced antioxidant capacity [21].

Prebiotics are dietary components that can induce beneficial changes in the growth,
activity or composition of microorganisms found in the GI tract, otherwise known as
the microbiota. Microbial fermentation products of prebiotics have been implicated to
provide several health benefits upon the host [37]. Prebiotics have been shown to regulate
inflammation, exhibit antioxidant activity as well as reduce symptoms associated with
metabolic disorders such as arthritis [5,38–41]. Enzymatic hydrolysis of proteins in the SI
can yield peptides that bypass intestinal absorption of the host to be fermented by colonic
bacteria [42]. Consequently, it is conceivable that the rich content of peptides and AAs
present in CHs leads to the generation of microbial nitrogenous fermentation products
in the colon. As the definition of a prebiotic now includes fermented proteins, peptides
and AAs [43], investigation into the prebiotic effects of CHs could be important for OA as
gut health has been linked to joint health [5,38]. In that regard, a recent study on obesity
showed a direct link between OA and the gut microbiome, and its effects on systemic
inflammation [5]. Supplementation of the prebiotic oligofructose altered the GI microbiota
of OA and obese mice to a more favorable and healthier microbiota, which was associated
with prevention of cartilage loss and improved joint structure [4]. Therefore, further
insights as to how CHs impact on gut microbial fermentation is warranted, particularly as
patients are increasingly utilizing these products to mitigate the symptoms of OA [44,45].

Short-chain fatty acids (SCFAs) are well established products of fermentation of
prebiotics and their production is an indicator of a healthy microbial community [46].
SCFA assessment includes acetic, propionic and butyric acids, which are normally present
in ratios ranging from 3:1:1 to 10:2:1 [40]. SCFA production is considered one of the major
benefits associated with prebiotics and the relative abundance of fecal SCFAs has been
used as a biomarker of gut health as well as overall systemic health [47,48]. Although only
a small fraction of SCFAs is absorbed, there are numerous biological functions attributed to
SCFAs that are under active investigation. For example, butyric acid has been implicated
in the control of inflammation [49], appetite [50] and liver mitochondrial function [51].
Although less is known about minor SCFAs such as valeric and caproic acids, they also
have the potential to affect human health [52,53].

CH supplementation could also lead to increased microbial production of branched-
chain fatty acids (BCFAs; isobutyric, isovaleric, isocaproic acids), which are products
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derived from colonic microbial fermentation of branched-chain AAs. The health impact
of BCFAs is still under debate. Increased production of BCFAs has been associated with
preventing irritable bowel syndrome [54] whereas other studies have increasingly linked
exposure to BCFAs with insulin resistance and obesity [55]. Other biomarkers of large
intestinal GI health include ammonium (NH4) and hydrogen sulfide (H2S), which are
often attributed to an over abundant quantity of proteins and some AAs available for
fermentation, which can promote dysbiosis [46,56,57]. Increased production of these
gases in the GI tract can adversely affect human health [46], although recent reports have
indicated that low levels of H2S may help to avoid GI damage associated with taking
nonsteroidal anti-inflammatory drugs (NSAIDS) [58].

For discovery-related investigations pertaining to nutrient and microbial metabolite
assessment, human trials are limiting and impractical [59,60]. Furthermore, animal studies,
often using rodents, are generally slow, costly and predictions of digestion and micro-
biota changes do not always align with human clinical data due to species differences in
nutrient utilization, metabolic activity and host microbiota [61–63]. As an alternative, dy-
namic in vitro GI models can closely mimic human upper intestinal digestion and recreate
the colonic environment similar to human in vivo conditions [59,60]. Accordingly, such
models are increasingly being utilized to predict peptide digestibility and microbiome
analysis [35,64], and assessment of SCFAs, BCFAs and colonic gases that provide informa-
tion on the functional activity and compositional profiles of the gut microbiota [47,48,56].
As CHs continue to be widely available for OA patients, our study was designed to ad-
dress the significant gaps in the literature concerning the digestibility of CHs and their
potential prebiotic effects, which could impact human health. To determine the peptide
profile of two commercially available CH products, upper intestinal digestion followed by
proteomics analysis was completed. To observe the production of colonic microbial metabo-
lites after CH digestion and fermentation, a dynamic multistage computer-controlled GI
model was used to determine the SCFA, BCFA, NH4 and H2S content as well as changes in
antioxidant capacity.

2. Materials and Methods
2.1. Upper Intestinal in Vitro Digestion of Collagen Hydrolysates

The two bovine-sourced CH products used for this study were Original Formula
(Genacol, Blainville, QC, Canada) (CH-GL) and Selection (Uniprix, Saint-Léonard, QC,
Canada) (CH-OPT). Upper intestinal digestion involving the stomach and SI was adapted
from Alemán et al., 2013 and Miranda et al., 2013 [20,65]. CHs (1200 mg) were digested in
reactor vessels placed in a Versa Water Bath at 37 ◦C (Fisher Scientific, model 224, Waltham,
MA, USA), with continuous stirring and the pH was monitored and adjusted throughout
digestion (Fisher Scientific, S90528, Waltham, MA, USA). Exactly 1 mL of an enzyme
solution of α-amylase (0.70783 g in 1.5 mL ddH2O; Sigma-Aldrich, A3176, St. Louis, MO,
USA) was added to each vessel and incubated for 15 min at a pH of 6.9. A pepsin solution
(1.167 g; Sigma-Aldrich, P7125, St. Louis, MO, USA) was prepared in 0.1 M HCL, of which
2 mL was added and the pH was adjusted to 2. The vessels were incubated for 30 min.
Following this, 2 mL of a bile solution (0.9 g/L pancreatin (Sigma-Aldrich, P7545, St. Louis,
MO, USA), 6 g/L bile extract (Sigma-Aldrich, B8631, St. Louis, MO, USA), and 12 g/L
sodium bicarbonate) prepared in ddH2O was added. The pH was adjusted to 8 and the
solution incubated for 120 min. The digesta was then rapidly cooled on ice and frozen
to stop the enzymatic processes. Subsamples of the digesta were filtered using a 0.45 µm
Millipore syringe-driven filter and stored at −20 ◦C until analysis.

2.2. Peptide Profile
2.2.1. Matrix Assisted Laser Desorption/Ionization (MALDI)

Upper intestinal digesta were processed using Matrix Assisted Laser Desorption/Ionization
Time-of-Flight (MALDI-TOF). Samples were centrifuged for 10 min to eliminate floating
particles and then ZipTiped (ThermoFisher Scientific 87782, Waltham, MA, USA), as per
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the manufacturer’s instructions. From the ZipTiped samples, 1 µL was placed onto a
MALDI target (MTP 384 target ground steel BC) and left to fully air dry. Once dried, 1 µL
of matrix (10 mg/mL α-cyano-4-hydroxycinnamic acid, with 1:1 acetonitrile and 0.1%
trifluoroacetic acid) was added on top of the sample and again left to air dry completely.
The loaded plates were then inserted in the MALDI-TOF/TOF instrument. Profiling was
performed on a MALDI-TOF/TOF Ultraflextreme mass spectrometer equipped with a
SmartBeam II Nd:YAG 355 nm laser operating at 2000 Hz (Bruker Daltonics, Billerica, MA,
USA). MS data were acquired by accumulating 1500 laser shots per spot in a mass range
of 300–4000 Da. External calibration was carried out using a homemade standard peptide
mix. Data analysis was performed with FlexAnalysis 3.4 (Bruker Daltonics).

2.2.2. Proteomic Analysis

Both CH samples before and after upper intestinal digestion were assessed for pep-
tide diversity. Samples were reduced and alkylated with dithiothreitol (Sigma-Aldrich,
10197777001, St. Louis, MO, USA) and iodoacetic acid (Sigma-Aldrich, I4386, St. Louis,
MO, USA) respectively, then digested with mass spectrometry (MS)-grade trypsin (Thermo
Fisher Scientific 90057, Waltham, MA, USA). Samples in 2% acetonitrile, 98% water, 0.1%
formic acid were loaded onto a Thermo Acclaim Pepmap precolumn (Thermo, 75 µM
ID X 2 cm, C18, 3 µM beads) and then onto an Acclaim Pepmap Easyspray analytical
column separation (Thermo, 75 µM × 15 cm, C18, 2 µM beads) using a Dionex Ultimate
3000 uHPLC at 220 nL/min with a 120 min analytical gradient of 2–35% organic solvent
(0.1% formic acid in acetonitrile). The column was flushed using 80% organic solvent for
20 min before re-equilibrating back to 2% organic solvent for 20 min. Blank solvent was
injected in between samples and the column was then flushed for 60 min at 80% organic
solvent and equilibrated with 2% organic solvent for 20 min. Peptides were sequenced
using a Thermo Orbitrap Fusion mass spectrometer (120,000 FWHM resolution at 200 amu
in MS1; mass range 375–2000, sprayer voltage +1850V). MS/MS sequencing was performed
using higher-energy collisional dissociation (HCD) fragmentation (30%; 15,000 resolution,
1.8 amu wide quadrupole isolation) at top speed for all peptides with a charge of 2+ or
greater using a cycle time of 3 s before the next MS1. An MS/MS exclude time of 12 s
was used. Peptide data was searched and compared using the Mascot 2.3 search engine
(Matrix Science, Boston, MA, USA) against bovine sequences (Uniprot), corresponding to
the source of the materials. Database search results were loaded onto Scaffold Q+ Scaf-
fold_4.4.8 (Proteome Sciences, Addlestone, Surrey, UK) for analysis. Peptide sequences
determined were from 300 to 4000 m/z. BIOPEP-UWM database was used to search for
BAP sequences [66].

2.3. Dynamic In Vitro Gastrointestinal Digestion of Collagen Hydrolysates

An established dynamic computer-controlled GI model was used to digest the CH
products, which has been previously validated [67,68]. The model consists of five bioreactor
vessels: stomach, SI, ascending colon, transverse colon and descending colon. For each
vessel, the pH was continuously measured and adjusted by a computer system, with either
the addition of 0.2 M NaOH or 0.5 M HCl. The temperature of the GI model was kept at
37 ◦C and was monitored and controlled by flowing water through double-jacketed reactor
vessels in which the GI bioreactor components are found. The model components are
attached by plastic tubing and the contents of the reactor vessels were moved by peristaltic
pumps. The vessel contents were continuously agitated using magnetic stir plates. The
colonic vessels were inoculated with fecal matter and allowed to stabilize over a two-week
period to allow for optimal bacterial growth. The two bovine-sourced CH products (CH-
GL and CH-OPT) used for upper intestinal digestion (Section 2.1) were again used in the
dynamic digestion model. A CH treatment dose of 1200 mg was added to a GI food mixture,
as previously described by Ekbatan et al., (2016) [68] and Gaisawat et al., (2019) [69], and
which was slowly pumped into the stomach vessel. The treatment dose was based on
the daily dose of the Genacol Original Formula® that was shown to reduce joint pain in
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clinical trials [12,13,18] and the same dose was used for the upper intestinal digestions
(see Section 2.1). To our knowledge, no information is available regarding the clinical
efficacy of the Selection CH product. An enzyme solution of α-amylase (Sigma-Aldrich,
A3176, St. Louis, MO, USA) prepared in sterile deionized water was added to the GI
food mixture to replicate salivary digestion. Pepsin (Sigma-Aldrich, P7125, St. Louis,
MO, USA) prepared in 0.1 M HCl was added to the stomach vessel and 35 mL of a bile
solution composed of pancreatin (Sigma-Aldrich, P7545, St. Louis, MO, USA), bile extract
(Sigma-Aldrich, B8631, St. Louis, MO, USA) and sodium bicarbonate were added to the SI,
as described by Ekbatan et al., (2016) and Gumienna et al., (2011) [68,70]. Sub-samples from
each vessel were obtained at times 0, 8, 16 and 24 h and filtered using a 0.45 µm Millipore
syringe-driven filter. Two separate digestion runs were completed for each treatment,
with a washout/re-stabilization period of 3 days between treatments. Previous in vitro
fermentation experiments have also utilized two separate digestion runs [71].

2.4. Colonic Gases
2.4.1. Ammonium (NH4) Content

The following method was adapted from Gaisawat et al., (2019) [72]. A 1000 ppm
stock solution of NH4 (Sigma-Aldrich, A4418, St. Louis, MO, USA) was prepared in water,
along with subsequent dilutions for the standard curve. Samples (50 µL) or standards were
pipetted into a 96-microplate well in triplicate. To each well, 25 µL of a citrate reagent,
25 µL of freshly prepared hypochlorite reagent and 145 µL of deionized water were added.
The citrate reagent comprised of 5 g trisodium citrate (Sigma-Aldrich, 1110371000, St.
Louis, MO, USA) with 2 g of NaOH in 100 mL deionized water with 30 µL of salicylate
nitroprusside reagent (7.813 g sodium salicylate (Sigma-Aldrich, S3007, St. Louis, MO,
USA) with 0.125 g sodium nitroprusside (Sigma-Aldrich, 1614501, St. Louis, MO, USA) in
100 mL of deionized water, and adjusted to pH 6.5). The hypochlorite reagent was made
with 1 g Na3PO4 with 2 mL 2 M NaOH, 10 mL Javex bleach in 100 mL deionized water and
pH adjusted between 12 and 13. The microplate was covered, gently rocked back and forth,
and allowed to sit at room temperature (RT) for 30 min. The absorbance of the samples
and standards was read using a microplate reader (µQuant, 140084, BioTek Instruments,
Winooski, VT, USA) at 650 nm. The concentrations of the samples were calculated using an
external calibration curve, where linearity was assessed using R2.

2.4.2. Hydrogen Sulfide (H2S) Content

The following spectrophotometric method was used to determine inorganic sulfide
concentration and was adapted from Gaisawat et al., (2019) [72]. A standard stock solution
of 0.1 mM sodium sulfide in oxygen free water was prepared, along with subsequent
dilutions for the standard curve. Solution A was prepared using a 5:1 ratio of zinc acetate
(2.5% in water) to NaOH (6% in water). Inside a 15 mL centrifuge tube, 0.5 mL of Solution
A was added to 0.3 mL of digesta. The tubes were shaken and centrifuged at 3000 g
for 10 min. The supernatant was carefully decanted, and the pellet washed once with
5 mL of 1.5 M NaCl (pH 8), and then with 5 mL of distilled water (pH 8). The pellet was
resuspended in 0.7 mL of water and vortexed. To each sample, 0.25 mL of 0.1% N,N-
dimethyl-p-phenylenediamine monohydrochloride (Sigma-Aldrich, D5004, St. Louis, MO,
USA) in 5.5 N HCL was added and shaken. Exactly 0.1 mL of 1.15 mM ferric chloride
(Sigma-Aldrich, 157740, St. Louis, MO, USA) in 0.6 N HCl was added. A volume of 200 µL
of each sample and standard was pipetted into a 96-well microplate in duplicate and
allowed to incubate for 30 min at RT. The absorbance of the samples and standards was
read at 650 nm using a microplate reader (µQuant, Bio-tek Instruments, model: 140084,
Winooski, VT, USA). The concentration of the samples was calculated using an external
calibration curve, where linearity was assessed using R2.
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2.5. Short- and Branched-Chain Fatty Acids

The SCFA and BCFA content was measured using a gas chromatograph system
equipped with a flame ionization detector (GC-FID) (6890A series, Agilent Technolo-
gies, Santa Clara, CA, USA) using an adapted method from Ekbatan et al., (2016) and
Gaisawat et al., (2019) [68,69]. Pre-filtered subsamples from the GI model for each colonic
vessel were obtained, and then diluted 1:1 with methanol. A 1 µL volume was injected into
the GC-FID system. An HP-INNOWAS 30 m fused capillary column (Agilent Technologies,
Santa Clara, CA, USA) with a 250 µm ID and a film thickness of 0.25 µm was used to
separate the SCFAs and BCFAs from both the standard mixes and samples. A flow rate of
1 mL/min of helium gas was used. The inlet and detector temperatures were set at 220 ◦C
and 230 ◦C, respectively. The oven temperature was originally set at 150 ◦C and held for
10 min and then increased by 10 ◦C/min to 180 ◦C and held for 5 min. SCFAs and BCFAs
were identified based on retention times using a standard mix (Sigma-Aldrich, 46975-U, St.
Louis, MO, USA) and quantified (mM) using an external calibration curve, based on peak
area and dilutions of the standard mix (Figure S1). Linearity of SCFA and BCFA calibration
curve was assessed using R2; all were above 0.99.

2.6. Antioxidant Capacity
2.6.1. Ferric Reducing Ability of Plasma (FRAP) Assay

The following method was adapted from Gaisawat et al., (2019) [69] and Benzie and
Strain (1996) [73]. A 1 mM stock solution of ascorbic acid (Sigma-Aldrich, A7506, St. Louis,
MO, USA) was made and subsequent dilutions completed to obtain a standard curve. A
96-well microplate was used, where 10 µL of either sample or standard was pipetted into
a well, along with 30 µL of deionized and 200 µL of a previously made FRAP solution
(acetate buffer, 2,4,6-tri(2-pyridyl)-s-triazine and ferric chloride solution combined in a ratio
of 10:1:1). The samples and standards were mixed by pipetting for 10 s and then incubated
at RT for 8 min. The absorbance was measured at 593 nm using a µQuant microplate reader
(BioTek Instruments, Winooski, VT, USA). The antioxidant capacity of the samples was
calculated using an external calibration curve, where the linearity of the curve was assessed
using R2.

2.6.2. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Assay

The method was adapted from Gaisawat et al., (2019) [69] and is based on the reduction
of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). A standard curve was made from
a 50 mM Trolox stock solution, with subsequent dilutions using methanol. A 1 mM stock
DPPH solution was diluted with methanol to obtain an absorbance between 0.9–0.5 to form
a working solution. Exactly 100 µL of gut digesta sample or standard was pipetted into a
96 well plate, along with 150 µL of DPPH working solution and left to incubate at room
temperature for 30 min in the dark. Absorbance was measured at 517 nm using a µQuant
microplate reader (BioTek Instruments, Winooski, VT, USA). The antioxidant capacity of
the samples was calculated using an external calibration curve, where the linearity of the
curve was assessed using R2.

2.7. Statistical Analysis

Data is reported as mean ± standard error of the mean (SEM). For each treatment,
differences between timepoints were assessed using a one-way ANOVA, followed by
Dunnett’s post hoc test, using time 0 h as control. All analyses were completed using
JMP Pro (JMP®, Version 15.1.0, 2019 SAS Institute Inc., Cary, NC, USA) and results were
considered statistically significant if p < 0.05. Figures were made using GraphPad Prism
(Version 9.0.1 for Windows, GraphPad Software, San Diego, CA, USA.)
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3. Results
3.1. Peptide Profile

Before digestion, CH-GL had 62 peptide sequences not shared with CH-OPT, whereas
CH-OPT had 17 peptide sequences not found in CH-GL (Table S1). Additionally, 3 pep-
tide sequences were shared between the two types of CH brands. After upper intestinal
digestion, both CH products had an increase in peptide diversity (Table S2). CH-GL
had 300 peptide sequences not found in CH-OPT after digestion, whereas CH-OPT had
574 sequences not observed in CH-GL. After digestion, 138 peptide sequences were shared
between CH-GL and CH-OPT.

Sequences released after digestion were searched using the BIOPEP-UWMTM database
to determine the bioactivity of the peptides metabolized; no bioactive peptide sequences
were found, regardless of CH treatment. However, some sequences known to be bioactive
registered in BIOPEP were found within the peptides, and often at the c-terminus of the
peptide sequences, which could be released upon further digestion. Specifically, the BAPs
PR and PQ which have ACE-inhibitory activity, and GPV which shows ACE-inhibitory
activity as well as DPPIV inhibitory activity were found at the c-terminus of multiple
peptides post-digestion (Table S2) [36,60].

The general peptide profile of both CH products was also determined using MALDI.
Although from the same collagen source, the peptide profile, distribution, and content of
both CH products were different both before and after digestion (Figures S2–S5). After
both CH products were digested in the stomach and SI, an increase in peptide peaks was
observed. The general peptide profile and intensity of the peptide peaks were different
between CH-GL and CH-OPT for low and higher molecular weight peptides after digestion
(Figures S4 and S5).

3.2. Colonic Gases

For each colonic vessel, no significant differences in NH4 and H2S were observed
between baseline control (time 0 h) and each timepoint (8, 16, 24 h) after the digestion
of CH-GL (Figure 1). In the ascending colon, a significant decrease (p < 0.05) in NH4
(ppm) content was observed after 8, 16 and 24 h (11.64 ± 0.25, 4.71 ± 0.35, 3.81 ± 0.11,
respectively) following CH-OPT supplementation compared to 30.71 ± 3.92 at baseline
(time 0 h) (Figure 1). In the transverse colon, a decrease in NH4 (ppm) content was also
observed after CH-OPT supplementation but only after 24 h of digestion (9.55 ± 1.24),
and no difference in NH4 content was observed in the descending colon. There were no
significant changes in H2S (µM) content after digestion of CH-OPT for each timepoint
and colonic vessel except for an increase in H2S (µM) content in the ascending colon from
3.333 ± 1.238 at baseline (time 0 h) to 12.238 ± 2.810 after 16 h (p < 0.05).

3.3. SCFAs and BCFAs

In the ascending colon, no changes in SCFAs were observed after CH-GL digestion
(Table 1) whereas individual SCFA profiles showed variability between baseline control
(time 0 h) and after the digestion of CH-OPT (Table 2). Specifically, propionic acid (mM)
content increased from a baseline value of 0.50 ± 0.47 to 7.59 ± 0.59 and 6.53 ± 1.71 after
16 h and 24 h, respectively. Similarly, a significant (p < 0.05) increase in butyric acid (mM)
was also observed after 16 and 24 h (6.97 ± 0.20 and 5.78 ± 1.21, respectively) from time 0
(2.92 ± 0.21). Valeric acid also increased after 8, 16 and 24 h after CH-OPT fermentation.
No significant changes in acetic acid were reported for CH-OPT, for any timepoint. No
changes in caproic acid or heptanoic acid were observed in the ascending colon for either
CH treatment. Furthermore, for both CHs, no changes in SCFA or BCFA content were
observed in the transverse and descending colon compared to baseline (time 0 h).
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Figure 1. NH4 and H2S content for CH-GL and CH-OPT over time for each colonic region. Values are expressed as mean 
± SEM in ppm for NH4 and µM for H2S. The * symbol indicates a significant difference from control (time 0 h) (p < 0.05) 
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Figure 1. NH4 and H2S content for CH-GL and CH-OPT over time for each colonic region. Values are expressed as mean ± SEM
in ppm for NH4 and µM for H2S. The * symbol indicates a significant difference from control (time 0 h) (p < 0.05) for each treatment
and colonic region. The symbol + indicates a possible trend (p = 0.0654).
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Table 1. SCFA and BCFA for CH-GL at times 0, 8, 16 and 24 h for each colonic region.

SCFA BCFA

Time (h) Acetic Acid Propionic
Acid Butyric Acid Valeric Acid Caproic

Acid
Heptanoic

Acid
Isobutyric

Acid
Isovaleric

Acid
Isocaproic

Acid

Ascending colon
0 12.43 ± 4.43 0.08 ± 0.07 0.05 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.40 ± 0.05 0.04 ± 0.01 0.00 ± 0.00
8 24.83 ± 1.84 0.16 ± 0.05 0.05 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.23 ± 0.04 + 0.04 ± 0.00 0.00 ± 0.00
16 25.17 ± 1.95 0.18 ± 0.04 0.05 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.26 ± 0.01 0.04 ± 0.00 0.01 ± 0.01
24 21.48 ± 0.20 0.22 ± 0.06 0.05 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.19 ± 0.01 * 0.03 ± 0.01 0.01 ± 0.00

Transverse colon
0 3.10 ± 0.67 1.34 ± 1.27 4.67 ± 3.21 1.56 ± 1.24 0.43 ± 0.43 0.00 ± 0.00 0.54 ± 0.17 0.35 ± 0.18 0.01 ± 0.01
8 6.87 ± 2.68 1.52 ± 1.49 5.26 ± 2.65 1.74 ± 1.12 0.41 ± 0.38 0.00 ± 0.00 0.55 ± 0.09 0.43 ± 0.22 0.01 ± 0.01

16 10.56 ± 6.86 1.74 ± 1.72 3.85 ± 2.35 1.42 ± 1.09 0.29 ± 0.03 0.00 ± 0.00 0.40 ± 0.23 0.35 ± 0.27 0.02 ± 0.01
24 12.2 ± 10.56 1.29 ± 0.51 2.16 ± 1.14 0.85 ± 0.54 0.14 ± 0.12 0.00 ± 0.00 0.32 ± 0.10 0.26 ± 0.16 0.02 ± 0.01

Descending colon
0 4.50 ± 1.73 2.08 ± 1.90 4.56 ± 3.54 1.09 ± 1.60 0.46 ± 0.42 0.00 ± 0.00 0.79 ± 0.33 0.50 ± 0.26 0.01 ± 0.01
8 5.56 ± 1.12 1.75 ± 1.51 4.70 ± 1.98 1.80 ± 0.99 0.41 ± 0.32 0.00 ± 0.00 1.00 ± 0.53 0.60 ± 0.11 0.01 ± 0.01

16 3.83 ± 0.13 1.49 ± 1.44 3.83 ± 2.04 1.49 ± 0.98 0.40 ± 0.28 0.00 ± 0.00 0.60 ± 0.02 0.50 ± 0.17 0.02 ± 0.02
24 6.80 ± 2.98 1.51 ± 1.43 4.63 ± 0.92 1.68 ± 0.69 0.38 ± 0.26 0.00 ± 0.00 0.76 ± 0.23 0.60 ± 0.07 0.02 ± 0.02

Values are expressed as mean ± SEM in mM; SCFA: short-chain fatty acids; BCFA: branched-chain fatty acids; * indicates significant
differences from control (Time 0 h) (p < 0.05); + indicates a possible trend (p = 0.0531).

Table 2. SCFA and BCFA for CH-OPT at times 0, 8, 16 and 24 h for each colonic region.

SCFA BCFA

Time (h) Acetic Acid Propionic
Acid Butyric Acid Valeric Acid Caproic

Acid
Heptanoic

Acid
Isobutyric

Acid
Isovaleric

Acid
Isocaproic

Acid

Ascending colon
0 3.96 ± 2.18 0.50 ± 0.47 2.92 ± 0.21 2.12 ± 0.05 1.80 ± 0.22 1.50 ± 0.08 4.27 ± 1.39 2.20 ± 0.09 1.56 ± 0.05
8 8.55 ± 3.71 5.05 ± 0.43 4.90 ± 0.26 4.42 ± 0.21 * 3.65 ± 0.10 2.87 ± 0.54 3.80 ± 0.22 3.20 ± 0.13 2.66 ± 0.55
16 14.12 ± 2.73 7.59 ± 0.59 * 6.97 ± 0.20 * 5.91 ± 0.37 * 4.44 ± 1.13 3.10 ± 0.36 5.19 ± 0.13 3.69 ± 0.34 * 2.80 ± 0.18
24 14.20 ± 7.02 6.53 ± 1.71 * 5.78 ± 1.21 * 5.07 ± 0.70 * 3.83 ± 0.08 3.12 ± 0.49 4.65 ± 0.61 2.81 ± 0.17+ 2.55 ± 0.47

Transverse colon
0 3.27 ± 2.13 0.16 ± 0.03 1.68 ± 0.38 1.29 ± 0.21 0.89 ± 0.03 0.78 ± 0.16 2.67 ± 1.26 0.86 ± 0.04 0.64 ± 0.19
8 2.75 ± 0.41 0.82 ± 0.72 1.77 ± 0.50 1.52 ± 0.26 1.11 ± 0.47 0.76 ± 0.13 2.20 ± 0.10 0.98 ± 0.36 0.59 ± 0.10
16 2.94 ± 1.46 1.06 ± 1.00 1.37 ± 0.18 1.09 ± 0.03 0.82 ± 0.23 0.57 ± 0.08 2.20 ± 0.07 0.82 ± 0.10 0.52 ± 0.05
24 6.63 ± 2.54 1.52 ± 1.46 2.17 ± 0.18 1.84 ± 0.12 1.20 ± 0.37 0.91 ± 0.05 5.64 ± 0.87 1.09 ± 0.17 0.73 ± 0.02

Descending colon
0 2.43 ± 0.37 0.85 ± 0.68 2.23 ± 0.39 1.35 ± 0.17 0.83 ± 0.23 0.46 ± 0.10 1.97 ± 0.09 1.09 ± 0.07 0.40 ± 0.13
8 4.34 ± 1.07 1.21 ± 0.92 3.70 ± 0.60 2.26 ± 0.40 1.4 ± 0.0.41 0.61 ± 0.21 2.35 ± 0.11 1.76 ± 0.17 0.45 ± 0.18
16 3.84 ± 1.16 0.37 ± 0.08 3.72 ± 1.27 2.01 ± 0.05 1.34 ± 0.06 0.54 ± 0.11 3.38 ± 0.73 1.73 ± 0.15 0.52 ± 0.17
24 3.39 ± 3.39 0.43 ± 0.12 3.95 ± 1.45 2.12 ± 0.12 1.32 ± 0.01 0.54 ± 0.11 4.17 ± 0.95 1.76 ± 0.24 0.46 ± 0.13

Values are expressed as mean ± SEM in mM; SCFA: short-chain fatty acids; BCFA: branched-chain fatty acids; * indicates significant
differences from control (Time 0 h) (p < 0.05); + indicates a possible trend (p = 0.0588).

No increase in BCFA content was observed after digestion of CH-GL, although a
significant decrease in isobutyric acid (mM) was detected in the ascending colonic reactor
(Table 1). Isobutyric acid (mM) decreased from 0.40 ± 0.05 at baseline to 0.19 ± 0.01 after
24 h (p < 0.05). A trend for isobutyric acid to decrease relative to control time 0 h was also
observed at 8 h (0.23 ± 0.04) (p = 0.0531).

An increase in BCFAs in the ascending colonic reactors was observed only with
CH-OPT supplementation (Table 2). Specifically, isovaleric acid (mM) increased from
2.20 ± 0.09 at baseline to 3.69 ± 0.34 after 16 h (p < 0.05). Although not significant, a trend
for an increase in isovaleric acid was observed after 24 h (p = 0.0588).

Similarly, as observed for SCFAs, there were no changes in BCFAs in the transverse
and descending colon vessels for either CH treatment.

3.4. Antioxidant Capacity

After upper intestinal digestion, there was a significant increase in ferric-reducing
antioxidant capacity (FRAP) between a control digestion (with no CH supplementation),
CH-GL and CH-OPT (Figure 2). Both CH treatments were significantly greater in antioxi-
dant capacity compared to control. Furthermore, the antioxidant capacity of CH-GL in the
SI was greater than that of CH-OPT.
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Figure 2. Ferric-reducing antioxidant capacity of CH-GL and CH-OPT after upper intestinal digestion.
Values are expressed as mean ± SEM in µM ascorbic acid Equation. One-way ANOVA followed by
Tukey-HSD was completed where p < 0.05 was considered significant. Columns with asterisks are
significantly different (* p < 0.05, *** p < 0.001).

There were no significant differences in antioxidant capacity (DPPH and FRAP) after
CH-GL supplementation at any timepoint (8, 16, 24 h) for the ascending, transverse and
descending colonic vessels (Table S3). Conversely, after CH-OPT supplementation, a
significant increase (p < 0.05) in DPPH radical scavenging activity (mM Trolox Eq) from
baseline (17.53 ± 0.68) was seen after 16 and 24 h of digestion (28.25 ± 0.85 and 26.88 ± 1.28,
respectively), although only in the ascending colon (Table S3). No changes in DPPH
capacity were seen in the transverse and descending colon. Furthermore, no changes in
FRAP were seen after CH-OPT supplementation.

4. Discussion

This work addressed significant gaps in the literature concerning the upper intestinal
digestibility of bovine CHs and well as their potential prebiotic effects at the level of the
colon. Differences in the peptide profiles before and after upper intestinal digestion be-
tween the two CH products were observed, as supported through MALDI and proteomics
analyses. Before digestion, three peptide sequences were shared between the two CHs,
whereas 62 sequences were only found in CH-GL, and 17 sequences seen only in CH-OPT.
Although the CH products shared 138 peptide sequences after digestion, peptidomic re-
sults characterized the vast heterogeneity of peptide sequences generated after CH-OPT
and CH-GL digestion as exemplified by MALDI profiles as well as 300 peptides being
found only in CH-GL and 574 peptide sequences noted solely in CH-OPT. The difference in
peptide diversity can result from differing collagen hydrolysate preparation or purification
methods as well as upper intestinal digestion [23,31,32]. The contrasting peptide profiles
seen post-digestion between the two supplements could provide partial explanation as
to why the antioxidant capacity of CH-GL was greater after upper intestinal digestion
compared to CH-OPT. Previous studies have indicated that digestion of tuna skin collagen
hydrolysates leads to an increase in antioxidant capacity, which was associated with lower
molecular weight peptides [74]. Although the peptide sequences released after digestion
did not match any peptides from the database BIOPEP-UMW, this was the first study
to characterize peptides before and after digestion of bovine sourced CHs. Furthermore,
known BAPs such as PR, PQ, and GPV from collagen were found within the peptides
sequenced in both CH products, often at the c-terminals. It is conceivable that further
metabolism could occur in the colonic regions, easily cleaving c-terminal amino acids,
thereby releasing these BAPs. Verification of further proteolytic metabolism in the colon re-
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mains to be tested. Future use of dynamic gastrointestinal models could provide a platform
to investigate the release of BAPs after colonic metabolism and the potential physiological
significance of the BAPs. It is also important to note that novel research into identifying
bioactive peptides is still ongoing and current databases are continuously updated. Thus,
although no sequences post-digestion were identified as being bioactive, future research
might establish bioactivities for some of those sequences.

Using the in vitro dynamic GI model, new insights were obtained in terms of the
production of microbial metabolites generated via fermentation of the SI digestion end-
products of hydrolyzed collagen by human gut microbiota. Dynamic GI models, such
as the one used herein, allow for multiple and simultaneous sampling from each colonic
region, which is not possible to perform with in vivo studies due to ethical and accessibility
issues. Dynamic GI models provide a platform for higher throughput analysis of the
post-digestive end-products of nutrients, food components and their microbial metabolites.
These models provide an alternative to costly and potentially non-representative animal
studies, particularly as differences in metabolism and host microbiota can often affect
results. Such GI models have certain limitations, such as variability of fecal matter used to
inoculate the colonic vessels that can lead to differences in host microbiota composition
and metabolism. Additionally, these models do not provide information of the crosstalk
between gut microbiota and intestinal cells, which affects host inflammatory pathways and
the innate immune system.

Although both hydrolysates were derived from bovine collagen, only the CH-OPT
treatment was associated with an increase in colonic SCFA and BCFA content. Furthermore,
only CH-OPT showed an increase in H2S and antioxidant capacity with a corresponding
decrease in NH4, although those outcomes were primarily seen in the ascending colonic
region. These findings are most likely due to differences in the SI peptide profiles between
the two CH products as discussed above. In support of this contention, greater amounts
of peptide sequences larger then 6 AA residues totalling 574 in CH-OPT versus 300 in
CH-GL, remained intact following upper GI digestive processes to promote changes in
antioxidant capacity in the ascending region of the colon and induce microbial generation
of SCFAs in terms of butyric, propionic and valeric acids and the BCFA, isovaleric acid.
As no changes in SCFAs, BCFAs, H2S and antioxidant capacity were observed in the
transverse or descending colonic vessels for either CH, it is likely that insufficient amounts
of peptides reached those vessels to support further microbial fermentation and changes
to the microbiota. Studies investigating the bioavailability of CHs are needed, to verify
if peptides from CH-GL formed during digestion are absorbed locally at the GI tract
and survive after they permeate across the intestinal epithelium to enter the systemic
blood circulation. Furthermore, investigations focusing on lower MW CH peptides are
needed, as di- and tri-peptides from collagen have known bioactivity, and increased
bioavailability compared to greater MW CH peptides [19,22,35]. Analysis identifying lower
MW peptides continues to be a limitation of “peptide-centric” proteomic work, seeing as
di- and tri-peptides are too small for sequencing. These small MW peptides only generate
1+ ions, and the signal interference from other ions coming from solvents, plasticizers,
silicates, etc., overwhelm the peptide response. Larger MW peptides (15 AA+) provide
stronger signals, with mainly 2+ ions and background ionic noise does not interfere. For
this reason, many peptide sequencing approaches mainly focus on higher MW peptides.
Methodologies adapted from urine samples using liquid chromatography-MS and capillary
electrophoresis-MS/MS could provide novel approaches to detect lower MW peptide from
simulated GI digestion, but require further development and verification [75]. However,
current efforts by us to assess for lower MW BAPs, such as the di- and tri-peptides Pro-
Hyp and Gly-Pro-Hyp, are ongoing and preliminary methodology results using capillary
electrophoresis are encouraging [76].

Although there are no analogous studies involving CH fermentation, an increase in
butyrate and propionate content was observed from fermentation of casein hydrolysates us-
ing single stage, anaerobic fermentation chambers inoculated with human fecal matter [77].
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In contrast to the present work, the latter study did not include stomach and SI digestive
processes that can modify peptide profiles prior to their exposure to microbial metabolism.
Other reports have shown that wheat arabinogalactan peptides were associated with an
increase in SCFAs after 24 h, although this was assessed using in vitro batch fermentation
rather than a dynamic GI model system.

There are possible metabolic health benefits that might accrue from increased colonic
generation of propionic and butyric acids that was associated with CH-OPT supplementa-
tion [47,48], and a decrease in NH4 content [46,56], seeing as when NH4 levels are greater
then 5–10 mM, this can have negative health consequences by altering the metabolism of
intestinal cells, impairing DNA synthesis and reducing the life expectancy of cells [46].
These changes encourage the multiplication of damaged cells in the intestine with altered
metabolism. Levels of NH4 reported in this paper are closer to the lower levels reported in
the literature [46], and were decreased further after CH-OPT supplementation whereas no
change was reported with CH-GL. Besides NH4 in the colon, dysbiosis is also observed
with a high production of H2S content, which is another microbial biomarker of the large
intestine and associated with high levels of fermented protein and sulfur containing amino
acids [46,56]. Levels of H2S measured after CH supplementation were much lower than
levels shown to cause significant DNA damage (250 µM) [46]. Furthermore, H2S at low
concentrations has recently been reported to be a beneficial gas produced in the GI tract, by
helping to prevent dysbiosis and avoid GI damage associated with taking NSAIDS [58].

The benefits of SCFA production and improvements to GI gas content seen with the
CH-OPT treatment could be partially offset by the corresponding increase in isovaleric acid,
since enhanced gut exposure to BCFAs has been linked to an increased risk for diabetes
and obesity [55]. Furthermore, although not much information is currently known about
the health modulatory properties of minor SCFAs, recent research has suggested that fecal
valeric acid may serve as an indicator of gut microbial dysbiosis [52]. Hence, the increase
in valeric acid concentrations observed with CH-OPT could be indicative of adverse
changes in gut microbial composition. An additional potential concern are reports that
fecal valeric acid is positively correlated with the pro-inflammatory C-reactive protein in
patients with ischemic stroke [78]. Conversely, the conjugated base of valeric acid has been
associated with enhancing interleukin-10 production and suppressing Th17 cells, which
could provide anti-inflammatory benefits [79]. The immunomodulatory effects of valeric
acid need further investigation, particularly in relation to OA and rheumatoid arthritis as
these are conditions associated with an increase in joint and whole body proinflammatory
processes [80]. Interestingly, the lack of effect of the CH-GL on the SCFA and BCFA
production and other microbial biomarkers of NH4 and H2S indicates that this supplement
has neither prebiotic nor dysbiotic properties in contrast to CH-OPT.

As CH supplements continue to grow in popularity and are widely available for OA
patients, our study was designed to address the significant literature gaps concerning the
digestibility of CHs and their potential prebiotic effects. The effects of microbial metabolite
production after CH supplementation may not only depend on the CH product fermented,
but also on the initial dose of supplement. The treatment dose used in this study was
based on the daily dose of the Genacol Original Formula® that was shown to reduce
joint pain in clinical trials [12,13,18]. Other clinical studies, however, have used much
greater doses ranging from 5 to 35 g of hydrolyzed collagen products [14,15,17,19,81,82].
It is conceivable that with a higher initial dose of CHs, greater microbial fermentation
could have occurred due to more substrate availability for fermentation with subsequent
greater increases in SCFAs, BCFAs, colonic gas production and antioxidant capacity. The
effective dose regarding pain management but also colonic metabolite production needs to
be further investigated, as there is currently no standardized treatment dose. Our work is
the first to establish that CH products utilized by OA patients can exert prebiotic effects,
particularly in the ascending colon. Further research is needed using 16S rRNA gene
amplicon sequencing to profile gut microbiota community structure and composition
as affected by CH supplementation. It is possible that an increase in beneficial colonic
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metabolites could improve joint structure as well as prevent cartilage loss, as recent research
has suggested a connection of the gut microbiome to OA [4]. Supplementation using the
prebiotic oligofructose to obese OA mice changed the host microbiota to a healthier profile,
notably by supporting the growth of Bifidobacterium pseudolongum. Beneficial changes to
the microbiome were associated with decreased systemic inflammation, which decreased
OA progression by regulating joint inflammation, chondrocyte hypertrophy, osteophyte
formation, as well as joint mineralization.

5. Conclusions

To date, there is limited information regarding the digestion of food-derived peptides
and the effects on the gut microbiome and microbial fermentation products such as SCFAs,
BCFAs, NH4 and H2S. The present study provides the first evidence and characterization
of peptides released after upper intestinal digestion. Furthermore, this study also provides
first evidence that CHs can lead to the generation of SCFAs and BCFAs, although this
microbial metabolic activity appears to be dependent on the nature of the CH tested, which
corresponds to differing peptide diversities after upper intestinal digestion. Interestingly,
changes to biomarkers of microbial health primarily only affect the ascending colon, indi-
cating that CH products provide insufficient peptide and AA material to the transverse
and descending colon. A recent review has highlighted that, long-term dietary choices
such as greater protein content could exert effects on GI microbial populations, which has
implications towards development of metabolic diseases such as obesity and diabetes [43].
This review emphasized that important knowledge gaps exist concerning dietary protein-
mediated generation of colonic microbial molecules that could exert bioactivities towards
gut inflammation and permeability. Accordingly, it is possible that CH supplements, which
have a rich peptide content, can impact the structure and function of gut microbial commu-
nities. Dynamic GI model platforms, such the one utilized in the present study, can be a
useful tool to further investigate the impact of CH supplementation on the gut microbiota
to more fully understand the impact of these nutraceuticals on GI and systemic health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13082720/s1. Figure S1: SCFA and BCFA standard curves based on peak area and con-
centration. Linearity was assessed using R2; all were above 0.99. Figure S2: Peptide profile and
content. Lower molecular mass chromatograms (500-2000 m/z) of CHs before upper GI digestion.
Top chromatogram CH-GL, bottom chromatogram CH-OPT. Figure S3: Peptide profile and content.
Higher molecular mass chromatograms (100-5000 m/z) of CHs before upper GI digestion. Top chro-
matogram CH-GL, bottom chromatogram CH-OPT. Figure S4: Peptide profile and content. Lower
molecular mass chromatograms (300-1500 m/z) of CHs after upper GI digestion. Top chromatogram
CH-GL, bottom chromatogram CH-OPT. Figure S5: Peptide profile and content. Higher molecular
mass chromatograms (1500-4000 m/z) of CHs after upper GI digestion. Top chromatogram CH-GL,
bottom chromatogram CH-OPT. Table S1: List of the peptide sequences from CH-GL and CH-OPT
before upper intestinal digestion. Each letter is indicative of an amino acid. Table S2: List of the
peptide sequences from CH-GL and CH-OPT after upper intestinal digestion. Table S3: DPPH and
FRAP for CH-GL and CH-OPT at times 0, 8, 16 and 24 h for each colonic region.
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