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Collective clinical and immunologic findings of defects in the CD27–CD70 axis

indicate a primary immunodeficiency associated with terminal B-cell development

defect and immune dysregulation leading to autoimmunity, uncontrolled viral infection,

and lymphoma. Since the molecular mechanism underlying this entity of primary

immunodeficiency has been recently described, more insight regarding the function

and profile of immunity is required. Therefore, this study aimed to investigate

stimulated antibody production, polyclonal vs. virus-specific T-cell response, and

cytokine production of a CD70-deficient patient reported previously with early-onset

antibody deficiency suffering from chronic viral infections and B-cell lymphoma. The

patient and her family members were subjected to clinical evaluation, immunological

assays, and functional analyses. The findings of this study indicate an impaired ability

of B cells to produce immunoglobulins, and a poor effector function of T cells was

also associated with the severity of clinical phenotype. Reduced proportions of cells

expressing the memory marker CD45RO, as well as T-bet and Eomes, were observed

in CD70-deficient T cells. The proportion of 2B4+ and PD-1+ virus-specific CD8+ T

cells was also reduced in the patient. Although the CD70-mutated individuals presented

with early-onset clinical manifestations that were well-controlled by using conventional

immunological and anticancer chemotherapies, with better prognosis as compared with

CD27-deficient patients, targeted treatment toward specific disturbed immune profile

may improve the management and even prevent secondary complications.

Keywords: primary immunodeficiency, inborn errors of immunity, CD70 deficiency, class-switching recombination,

T-bet, Eomes, PD-1

INTRODUCTION

Common variable immunodeficiency (CVID) is the most common symptomatic primary immune
deficiency (PID) characterized by reduced production of immunoglobulins (Igs), predisposing
affected individuals to recurrent infections (1, 2). Selected patients may also suffer from
autoimmunity, chronic enteropathy, lymphoproliferative disorders, and malignancy (1, 3).

The genetic defects underlying the disease have only been identified in a minority of CVID
patients (4, 5). Approximately 5–10% of patients harbor mutations in the TNFRSF13B gene (TACI)
(6). Disease-causing mutations in TNFRSF13C (BAFFR), encoding one of the ligands for TACI (7);
T-cell co-stimulation gene encoding inducible co-stimulator (ICOS) (8); B-cell co-receptor complex
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genes including CD19, CD81, CD20, and CD21 (9–12); genes
encoding the lipopolysaccharide-responsive vesicle trafficking
beach and anchor containing protein (LRBA) (13); cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) (14); Ras-related C3
botulinum toxin substrate 2 (RAC2) (15); phosphatidylinositol 3-
kinase (PI3K) receptor 1 (PIK3R1) (16); PI3K catalytic subunit
delta (PIK3CD); phosphatase and tensin homolog (PTEN);
protein kinase C delta (PRKCD) (17); tumor necrosis factor-
like weak inducer of apoptosis (TWEAK/TNFSF12) (18); nuclear
factor-kappa B1 (NFKB1) (19);NFKB2; and interleukin 21 (IL21)
(14) and its receptor IL21R (20) have also been described in
a few patients presenting with features of CVID. Furthermore,
mutations in tRNA nucleotidyltransferase 1 (TRNT1), IKAROS
Family Zinc Finger 1 (IKZF1), interferon regulatory factor
2 binding protein 2 (IRF2BP2), ATPase proton transporting
accessory protein 1 (ATP6AP1), Rho guanine nucleotide
exchange factor 1 (ARHGEF1), SH3 domain-containing kinase-
binding protein 1 (SH3KBP1), SEC61 translocon Subunit alpha 1
(SEC61A1), and mannosyl-oligosaccharide glucosidase (MOGS)
have been shown to be associated with the development of the
disease (2).

We have recently shown the association of defects in
the CD70–CD27 signaling pathway with clinical presentation
resembling the CVID phenotype (21–23). CD70 is a co-
stimulatory molecule expressed on several types of immune cells
including T cells, B cells, and dendritic (DC) cells. Interaction
with its ligand, CD27, leads to the signaling cascade in CD70-
positive cells via anti-apoptotic kinases, in particular PI3K
(24–26). On the other hand, CD70 is essential for triggering
the survival and proliferation of CD27-positive immune cells
through the IL-2-dependent activation of the NFκB pathway
(25, 27, 28). Previous animal studies have also implicated
the CD70/CD27 pathway in the regulation of immunity vs.
tolerance by several mechanisms including T-cell expansion
and survival, co-stimulation of antigen presentation, germinal
center formation, B-cell activation, and antibody production (29–
31). Although several correlations have been observed between
deficient patients and animal models, there are still several
immune functions and profiling that should be investigated in
these newly discovered genetic defects.

MATERIALS AND METHODS

Patients and Immunological Assays
The index family recruited to this study is the first identified
family with CD70 deficiency [with confirmed homozygous
mutation c.250delT, p.S84Pfs27X (22)]. Written informed
consent for this study was obtained from the patients and
their relatives, following the principles of the Ethics Committee
of Tehran University of Medical Sciences. The immune
profile of the index family including complete blood count,
lymphocyte subpopulations, serum Ig levels, specific antibody
levels, and autoantibodies was documented in our previous
report (22, 23, 32). Updated clinical follow-up of the family
members was provided, and for more detailed lymphocyte
phenotyping, peripheral venous blood was collected both in
ethylenediaminetetraacetic acid (EDTA) and later in Streck cell

preservative vials (Streck, La Vista, USA) to preserve cells during
transport. The samples in the preservative containing vials were
processed for flow cytometric immunophenotyping within 36 h.
Antibody combinations used for polychromatic 8-color surface
staining of lymphocytes have been described previously (33).

Specific B-Cell Functional Analyses
Peripheral blood mononuclear cells (PBMCs) were also isolated
in parallel from whole blood by Hypaque-Ficoll (GE Healthcare)
density gradient centrifugation and cryopreserved in freezing
medium (Synth-a-Freeze CTS, Life Technologies). Frozen
PBMCs were thawed and cultured at 1 × 106 cells per well
in 1ml complete RPMI 1640 (InvivoGen, USA) supplemented
with 10% FBS (HyClone Laboratories), either with medium
only, or with T-cell-independent stimulation (2.5µg/ml human
CpG oligodeoxynucleotides, InvivoGen+ 1µg/ml Anti-IgMMP
Biomedicals, USA) or T-cell-dependent stimulation (10 ng/ml IL-
10, R&D, USA+ 300 ng/ml CD40L, Immunokemi, Sweden). Cell
proliferation was measured on days 0 and 5 using the CellTiter
96 Aqueous One Solution Kit (Promega, USA), following the
instructions from the manufacturer. The Ig concentration in
the cell culture supernatant was measured at day 7 by standard
enzyme-linked immunosorbent assay (ELISA) as described
previously (6). Rabbit anti-human IgA and IgM (1:4,000, Dako,
UK) and IgG (1:4,000, Jackson ImmunoResearch, USA) were
used as capture antibodies, and peroxidase-conjugated goat anti-
human IgA, IgG, and IgM were used as secondary antibodies
(1:5,000, Dako, UK).

Specific T-Cell Functional Analyses
The protocol for intracellular staining of transcription factors and
functional markers after polyclonal and virus-specific stimulation
has been described elsewhere (34). Antibodies used for the
functional and phenotypic panels of T cells are shown in
Supplementary Table 1. LIVE/DEAD Aqua amine dye (Life
Technologies) was used to discriminate dead cells or debris.
PBMCs were analyzed on a four-laser LSR Fortessa (BD
Biosciences). Antibody capture beads (BD Biosciences) were
stained individually with all antibodies used in the experiments
for compensation setup. Gating analysis was performed using
FlowJo 8.8.7 (TreeStar, Ashland, USA). Manual gates were based
on unstained cells or fluorescence minus one (FMO) gating
strategies as previously described (34, 35). A T-cell response was
considered positive if the frequency of cytokine-producing cells
were twice the negative background and >0.1% of total CD4+ or
CD8+ T cells after background reduction.

Multidimensional Phenotype Clustering
Analysis
The manual gating of the flow cytometry data produced CD4+

and CD8+ T-cell gated data, and the fluorescence shift between
the samples was normalized using Gauss norm (36). The
visual interactive stochastic neighbor embedding (viSNE) (37)
tool was used to map the high-dimensional cytometry data
onto a two-dimensional scatterplot. In parallel, the data were
analyzed by the PhenoGraph algorithm (38) to allow automated
multidimensional clustering of the cells. The subpopulations
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determined by PhenoGraph were relayed back on to the viSNE
map. Heat maps and unsupervised hierarchical clustering of the
average fluorescence of each PhenoGraph population were used
for visualization. In summary, the flow cytometry data were
analyzed using cyt (37), PhenoGraph algorithm (38), SPICE (39),
and R environment (40).

RESULTS

The clinical manifestations [recurrent upper respiratory tract
infections, varicella pneumonia, a viral infection of the central
nervous system, Behçet’s syndrome, alopecia areata, and Epstein–
Barr virus (EBV)-mediated Hodgkin lymphoma] of two patients
from this index family with shared homozygous mutation
of c.250delT, p.S84Pfs27X have been reported (22). At the
most recent follow-up, the proband (age 33) was clinically
stable on monthly immunoglobulin replacement therapy and

prophylactic antimicrobial therapy; she only experienced only
one admission during the last 5 years due to pneumonia
and no sign of lymphoma relapse was observed; P2 (age 37)
was intellectually disabled but did not present with other
clinical manifestations and without progression of his humoral
immunodeficiency (specific antibody deficiency). Moreover,
basic humoral immunologic assays (hypogammaglobulinemia,
increased percentage of CD38+IgM+ transitional B cells and
CD27− naive B cells, and a diminished IgM−IgD−CD27+ class-
switched memory B cells) have been identified in the previous
report of these CD70-deficient patients (22), resembling B-
cell phenotype that is most similar to CVID patients who are
classified as B+smB−Trhi according to the EURO classification
(41). Our further investigation on the B-cell subset of the proband
indicated a slightly increased frequency of plasmablasts and
CD21low B cells (Table 1).

We have also reported increased frequencies of naive CD4+

and CD8+ T cells, decreases in memory T-cell subsets, and

TABLE 1 | Extended B-, T-, and NK-cell subsets within the lymphocytes of the proband with homozygous CD70 mutation.

Result Reference range

B-cell subpopulations

CD21lowCD27− immature B cells (cell/µl) 23.7↑ 1.1–12.3

CD21lowCD38+ immature transitional B cells (cell/µl) 47.4↑ 0.4–9.7

CD38+ IgM+ transitional B cells (cell/µl) 31.2↑ 0.8–8.2

CD38+ IgM− plasmablasts (cell/µl) 1.7↑ 0–1.5

CD138+ plasma cells (cell/µl) 1.2 0–14.8

CD21lowCD38low activated B cells (cell/µl) 42.4↑ 0.5–8

CD20+ B cell (% in B cells) 76.8↓ 86.1–99.4

IgA+ B cell (% in B cells) 1.6↓ 3.4–14.8

NK-cell subpopulations

CD16−CD56− immature NK-1 cells (% in NK cells) 1.1↑ 0–0.5

CD16−CD56+ immature NK-2 cells (% in NK cells) 9.6 1.7–9.6

CD16+CD56+ NK-cell mature NK cells (% in NK cells) 56.9 78.1–93.7

CD56brightCD16dim regulatory effector NK cells (% in NK cells) 8.8↑ 1–7

CD94+NKG2D+CD16+CD56+ active complex NK cells (% in NK cells) 20.1↓ 20.4–69

CD3dimCD56−CD16+ cytolytic NK cells (% in NK cells) 23.9↑ 1–10.1

T-cell subpopulations

CD4+CCR7−CCR5+ Th1 helper T cells (% in helper T cells) 9.2 4.5–25.5

CD4+CCR7−CCR3+ Th2 helper T cells (% in helper T cells) 2.5 1.5–11.3

CD25+CD127lowregulatory T cells (% in Treg cells) 61.4 34.3–98.2

CD25+CD127lowCD45RO+ memory Treg (% in Treg cells) 35.2 14–36.9

CD25+CD127lowHLA-DR+ activated Treg (% in Treg cells) 18.5 5.9–18.8

CD25+CD127lowCD45RO− naive Treg (% in Treg cells) 19.0 5.6–27.4

CD4+CD8−CCR6+ Th17-like T cells (cell/µl) 76↓ 119–463

CD45RA+CD62L+CD45RO+ helper T cells (cell/µl) 0↓ 31.2–62.3

CD45RA+CD62L+CD45RO+ cytotoxic T cells (cell/µl) 0.2↓ 36.2–69.9

CD45RA+CD62L+CD31+ RTE helper T cells (cell/µl) 324.2 119–487

CD45RA+CD62L+CD31+ RTE cytotoxic T cells (cell/µl) 406.8 64–445

CCR7+CD45RA−CD62L+ CD31− central naive helper T cells (cell/µl) 0↓ 10.4–26.4

CCR7+CD45RA−CD62L+ CD31− central naive cytotoxic T cells (cell/µl) 0.1↓ 9.8–25.3

CD4−CD8− double negative T cell (% in T cells) 8.8 3–10.2

NKT-cell subset

CD3+CD16+NKT cells (% in lymphocytes) 7.0 2.1–13.7

Bolded values indicate out of normal range. ↑ and ↓ depict increased and decreased values compared to healthy individuals reference range, respectively.
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almost normal proportions of NK cells and NK subsets
in CD70-deficient patients (22). In line with our previous
observation, a more detailed T-cell immunophenotyping was
performed for the proband to evaluated T-stem cell memory
thymic emigrated (CD45RA+CD62L+CD45RO+) helper and
cytotoxic T cells, which showed a reduced number as well
as decreased Th17-like T cells. No obvious differences in the
proportion of the invariant natural killer T cells (iNKT, TCR
Vα24-Jα18) between the proband and normal controls were
detected (Table 1).

PBMCs from the proband, the homozygous sibling, a
heterozygous relative, a healthy blood donor, and a healthy
travel control were tested in vitro for their ability to be induced
and produce immunoglobulins. The proliferation response to
the T-dependent stimuli was normal in both the proband and
the homozygous brother (Supplementary Figure 1). Cells from
the proband (with severe phenotype), but not the homozygous
brother (with milder phenotype), had a reduced ability to
respond to T-independent (anti-IgM+CpG) and T-dependent
stimuli (IL-10+CD40L) to produce IgA and IgG, especially the
latter (Figure 1).

To further analyze the T-cell profile in CD70-deficient
subjects, we developed polychromatic flow cytometry panels
to simultaneously distinguish the expression levels of multiple
phenotypic markers (CD45RO, CD27, CCR7, CD57, CD127,
CD70) and key transcription factors (T-bet and Eomes) on
CD4+ and CD8+ T cells. To achieve a high-dimensional view
of the phenotypic and transcriptional heterogeneity of CD4+ and
CD8+ T cells between the subjects, CD4+ and CD8+ T cells from
each subject were analyzed using the PhenoGraph algorithm.
PhenoGraph is an automated clustering approach that defines
biologically relevant cell populations from multiparametric
flow cytometry datasets without any subjective gating. The
hierarchical clustering identified CD70 as the main outlier, not

clustering well with other markers of T-cell differentiation.
Seventeen CD4+ T-cell and 14 CD8+ T-cell subpopulations
were identified based on the combination of the phenotypic
and transcriptional flow dataset. By employing hierarchical
clustering of the average fluorescence of each PhenoGraph
population, we were able to identify T-cell subpopulations
that clustered together into naive-, central/transitional memory
(CM/TM)-, effector memory (EM)-, and effector (Eff)-like CD4+

and CD8+ T-cell groups (Figures 2A–D). Detailed expression
levels of all T-cell markers for each population are listed in
Supplementary Tables 2, 3.

To generate comparisons of the identified T-cell clusters
between the different subjects, we applied the viSNE tool in
our analysis (37, 42). This generated a representative map
of individual cells similar to biaxial plots, but uses pairwise
distances that reflect each cell’s proximity in a high-dimensional,
rather than a two-dimensional, space (Figures 2E–J). Figure 3
illustrates the distribution of CD27 and CD70-positive CD4+

and CD8+ T cells on the representative viSNE plot. A general
absence of CD70 expression and increased intensity of CD27 in
subclusters enriched with cells from the homozygous patients
were observed. Notably, reduced proportions of cells expressing
the memory marker CD45RO, as well as T-bet and Eomes,
were observed in the proband and her homozygous brother, as
compared with the heterozygous relative and healthy control.
Furthermore, the homozygous patients demonstrated elevated
levels of naive and early differentiated T-cell markers (CCR7
and CD127), particularly for CD8+ T cells. The viSNE approach
demonstrated that approximately 70% of all CD4+ T cells
for both homozygous individuals were present within different
subclusters of naive-like CD4+ T cells, equaling twice as many
in comparison with the heterozygous relative and the healthy
control. Conversely, fewer cells were present in different EM- and
Eff-like clusters in both homozygous patients, especially for the

FIGURE 1 | In vitro production of IgA and IgG before (non-stimulated) and after stimulation with T-independent (CpG+anti-IgM) and T-dependent (IL-10+CD40L)

cytokines in the proband, the homozygous sibling, a heterozygous relative, and two healthy controls.

Frontiers in Pediatrics | www.frontiersin.org 4 April 2021 | Volume 9 | Article 615724

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Abolhassani Immune Profiling of CD70 Deficiency

FIGURE 2 | Immunologic markers of cells in CD70-deficient family. Histogram overlays of all differentiation markers (CCR7, CD27, CD57, CD70, CD127, CD45RO,

Eomes, and T-bet) for CD4+ (A) and CD8+ cells (B) in two homozygous patients, a heterozygous relative father, and a healthy control. Using an automated

density-based algorithm called PhenoGraph, 17 CD4+ T-cell (C) and 14 CD8+ T-cell (D) subclusters were identified based on the intensity of CCR7, CD27, CD57,

CD70, CD127, CD45RO, Eomes, and T-bet expression. Hierarchical Spearman clustering was performed to delineate the relationship between the different T-cell

clusters using dendograms and heat maps. The relationships between different clusters were identified as naive-, central/transitional memory- (CM/TM-), effector

(Continued)
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FIGURE 2 | memory- (EM-), and effector (Eff-) like T-cell populations. Localization of each PhenoGraph-derived subcluster and overlapped plotted viSNE map of

individuals within the viSNE map for CD4+ and CD8+ T cells was shown in (E,F) and (G,H), respectively (for more information about each PhenoGraph population,

see Supplementary Tables 4, 5). In (I,J), each subject’s phenotypic data were plotted on the viSNE map, represented with different colors (blue, proband; green,

homozygous brother; red, heterozygous father; black, healthy control). Naive-, CM/TM-, EM-, and Eff-like T-cell populations were marked within the viSNE plot based

on the subclusters that were determined using PhenoGraph in sections (E–H).

FIGURE 3 | Diagram of PhenoGraph-derived subcluster within the viSNE map, showing the level of CD27 (A,B) and CD70 (C,D) protein expression on CD4+ and

CD8+ T cells. t-SNE, t-distributed stochastic neighbor embedding.

Eff-like cluster 11 expressing both T-bet and Eomes (Figure 2E
and Supplementary Table 2). In addition, both homozygous
patients showed a general lack of CD45RO+ cells and possessed
3–6 times higher frequencies of naive-like CD8+ T cells than the
heterozygous relative and the control. Although some variation
was noted between the two homozygous patients, they possessed
low frequencies of mainly EM-like (such as clusters 3 and 8)
or Eff-like cells co-expressing both T-bet and Eomes (cluster 9)
(Figure 2G and Supplementary Table 3).

Based on the multidimensional phenotypic and
transcriptional T-cell profiling data, we next sought to
determine the functional characteristics of T cells in CD70-
deficient patients. Polyclonal stimulation using Staphylococcal
enterotoxin B (SEB) further confirmed that particularly
CD8+, but also CD4+, T cells contained low frequencies of
responding cells. The lower proportion of SEB-polyclonal CD8+

T cells was strongly associated with a higher frequency of

naive T cells in both homozygous individuals (Figures 4A,B).
The expression pattern of several effector molecules (IFNγ,
TNF, CD107a, and granzyme B) for polyclonal (SEB)-
specific T cells was subsequently assessed (Figures 4C,D and
Supplementary Tables 4, 5). The SEB stimulations confirmed
that particularly CD8+, but also CD4+, T cells possessed low
frequencies of responding cells (Figures 4C,D). By employing
SPICE analysis to determine the co-expression pattern of all
functional markers (Figures 4E,F), we observed that for both
of the homozygous patients, there was a clear lack of cells
producing two or more cytokines, indicating that Th1 and
cytolytic CD4+ T-cell polarization is severely affected by the
lack of CD70 (Figure 4E and Supplementary Table 4), as
previously demonstrated in murine models (43). In line with
the CD4+ T-cell data, polyclonal stimulations revealed that
both homozygous cases had very low frequencies of CD8+ T
cells capable of producing multiple cytokines after polyclonal
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FIGURE 4 | T-cell response and cytokine production after super-antigen simulation in CD70 deficiency. The total frequency of super-antigen (SEB)-specific (A) CD4+

and (B) CD8+ T cells (left). Pearson correlation analysis between the frequency of SEB-specific T cells and naive T cells for all subjects (right). Representative biaxial

plots of SEB-specific (C) CD4+ and (D) CD8+ T-cell expression of IFNγ together with TNF, CD107a, or granzyme B for a homozygous patient and a healthy control.

Corresponding SPICE analysis of all functional combinations (based on Boolean gating) for each patient’s SEB-specific (E) CD4+ and (F) CD8+ T-cell response

(below). Functional combinations with no detectable response (<0.05%) are not depicted in the graph.

stimulations (Figure 4F and Supplementary Table 5). The
proliferative response (Ki-67 expression) for a healthy control
and proband was also assessed following a 3-day stimulation with
the polyclonal antigen SEB. The homozygous proband possessed
fewer CD8+ T cells (23.5%) that proliferated in response against
SEB than the healthy subject (37.5%, Figure 5).

In our previous report, we presented impaired specific
immunity against Epstein–Barr virus (EBV) aligned with

high viral and antibody titers for EBV. However, we also
observed increased antibody titers against cytomegalovirus
(CMV), herpes simplex virus 1 (HSV-1), and varicella-zoster
virus (VZV) in the homozygous patients (22), suggesting
CD70 deficiency is associated with increased susceptibility to
infections by the Herpesviridae family. We, therefore, extended
our functional T-cell analyses to assess the CMV-specific T-cell
response. A barely detectable response against HCMV-pp65 was
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FIGURE 5 | The proliferative (Ki-67+) response for staphylococcal enterotoxin

B-specific CD8+ T cells following 3-day stimulations in the homozygous

patient and a healthy control.

observed both in the homozygous patients and heterozygous
individuals. The healthy control, however, clearly showed a
positive cytolytic response against HCMV-pp65 (Figures 6A–C
and Supplementary Tables 4, 5). Intriguingly, the proportion
of 2B4+ and PD-1+ CMV-specific CD8+ T cells was reduced
in the proband and the homozygous sibling compared with a
heterozygous relative and a healthy control after HCMV-pp65
stimulation (Figure 6D).

DISCUSSION

In our previous study, we have shown that the clinical and
immunologic findings on the first twoCD70-deficient individuals
indicate a terminal B-cell developmental defect and a reduced
T-cell effector function underlying their antibody deficiency,
susceptibility to viral infection, autoimmunity, and lymphoid
malignancy. CD27–CD70 interaction is not essential for B-cell
development but has been suggested to be important for B-
cell activation, germinal center (GC) formation, generation of
plasma cells, and Ig production (24, 25, 44). This was in line
with the current observations in our CD70-deficient proband
that besides hypogammaglobulinemia and reduced proportion of
switched memory B cells, the patient had an impaired ability of
B cells to secrete IgG and IgA in vitro. In CD27-deficient mice,
the levels of virus-specific Igs in the serum and the frequency
and pattern of somatic hypermutation (SHM) of GC B cells in
response to conjugated chicken γ globulin seem to be normal
(45). In a CD70-deficient mouse model, only T-cell function
has been thoroughly studied (43, 46). Nevertheless, concerning
B-cell function, these mouse models may not fully reflect the
role of CD27–CD70 in humans, as CD27 is expressed on a
much higher frequency of human GC B cells and may have a
more profound impact on GC reactions such as class-switching
recombination and SHM in human cells (25). In support of this
view, antibody deficiency is also one of the main clinical features
in CD27-deficient patients (21, 23). One question remains,
however, if the hypogammaglobulinemia is primarily due to
intrinsic B- and T-cell defects and/or whether it is secondary to
EBV or other viral infections. In several CD27-deficient patients
described previously, the serum level of Igs was normal/high

initially but subsequently declined dramatically in the months
following documented EBV infections (47, 48). The mechanism
linking hypogammaglobulinemia and viral infections, however,
remains elusive.

Of note, almost 25% of the B cells did not express
CD20 which was associated with <2% frequency of plasma
cells/plasmablast and the remission phase of lymphoma and
absence of treatment with anti-CD20 monoclonal antibodies.
Since nomutation was observed in negative or positive regulators
of CD20 (data not shown), defective CD27/CD70 signaling
might indirectly impact the CD20 regulators, a notion which
has been suggested by previous studies (25, 49–51). Moreover,
reflecting the discrepancy in the humoral immunity in these
homozygous siblings (one with CVID phenotype and another
with specific antibody deficiency), the in vitro study showed the
impaired ability of B cells to secrete IgG and IgA in proband
but not in the homozygous brother. Intriguingly, the high
percentage of CD21lowCD38low B-cell subset (10% of total B
cells) might be the reason underlying low B-cell response and
also probably the specific autoimmune response in the proband
but not the homozygous brother, a notion which was supported
by the normal count of this specific subset in the latter patient
(CD21lowCD38low B cell: 2.4%).

We have identified in our previous report that CD27–
CD70 co-stimulation is essential for T-cell activation and
CD8+ memory effector functions as illustrated by in vitro
analyses (25) and data derived from CD70 knockout mouse
models (43, 46, 52). Investigations in our patients provided
evidence for a reduced proliferative capacity and cytokine
production in both CD4+ and CD8+ T cells in response
to either polyclonal stimulation or CMV-specific antigens.
Furthermore, the patients’ T cells presented with a more
“naive”-like phenotype, with reduced expression of the memory
T-cell marker (CD45RO) as well as the transcription factors
T-bet and Eomes. These new findings support our previous
observation on EBV-specific CD8+ T cells from the patients
that exhibited a naive-like phenotype (22). Thus, although the
T-cell number and subsets were largely unaffected, the T-cell
effector function and differentiation of naive precursors into
memory cells were abnormal in CD70-deficient patients. As we
have shown in our previous study that stem cell-like memory
(CD45RA+CCR7+CD95−) has been decreased in association
with increased naive markers on CD4 and CD8T cells, our new
observation supports that stem cell-like memory emigrant T cells
(CD45RA+CD62L+CD45RO+) are reduced, but total recent
thymic emigrant T-cell (CD45RA+CD62L+CD31+) subsets
were normal both in helper and cytotoxic T cells in the
proband with CD70 deficiency. Considering the recurrent
viral (particularly EBV) infection in the proband and distinct
functional role of stem cell-like memory compared to other naive
emigrant T cells (despite shared similar recirculation patterns and
distribution), the CD70–CD27 axis is critical for the development
of the former subset with minimally differentiated T cells (53).

Moreover, although NK-cell effector function was normal in
CD70−/− mice (46), a reduction of several activation-regulating
markers on NK cells was observed in the CD70-deficient
proband. In this context, failure to trigger CD27 on NK cells
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FIGURE 6 | T-cell response and cytokine production after CMV-pp65 antigen simulation in CD70 deficiency. (A) FACS plots of the IFNγ vs. granzyme B, TNF, and

CD107a CMV-pp65-specific CD8+ T-cell response for the proband, the homozygous sibling, a heterozygous relative, and a healthy control. Corresponding SPICE

analysis of all functional combinations (based on Boolean gating) for each patient’s CMV-specific (B) CD4+ and (C) CD8+ T-cell response. (D) FACS plots of the IFNγ

vs. PD-1 and 2B4 CMV-pp65-specific CD8+ T-cell responses.
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through CD70 directly affects NK activity by decreasing effector–
target conjugate formation and IFNγ production of freshly
isolated CD27hiCD56bright NK cells (54, 55). The spectrum of
viral infections seen in CD70-deficient patients is reminiscent
of those in other patients with NK-cell deficiencies (e.g.,
GATA2 and FCGR3A mutations) presenting with susceptibility
toHerpesviridae virus infection due to defect in targeted NK-cell-
mediated defenses by downmodulating major histocompatibility
complex (MHC) class 1 (56). Taken together, reduced T-cell
function and a subtle defect in NK cells may thus underlie
the susceptibility to Herpesviridae virus infection in these
patients. This also suggests that although several other T-cell
co-stimulation pathways exist, such as the OX40/OX40L (57)
and 4-1BB/4-1BB-L pathways, the CD27/CD70 interaction has a
unique functional role in fine-tuning T-cell-mediated immunity
to virus infections.

Behçet’s syndrome and alopecia areata were diagnosed in
the proband, thereby providing a potential link between CD70
deficiency and a higher risk for autoimmunity. Behçet’s syndrome
is a rare, systemic inflammatory vascular disorder with unknown
etiology, although associations with HLA-B∗51 and several
non-MHC loci including IL23R-IL12RB2 and IL-10 have been
described (58). Besides, environmental factors such as infections,
especially viral infections, have been considered to trigger the
disease in genetically predisposed individuals (59). Notably,
although not diagnosed as Behçet’s syndrome, several CD27-
deficient patients also suffer from uveitis and EBV-induced
oral/perianal ulcers, which are typical signs of this syndrome
(21). Furthermore, there have also been some indications that
the onset of alopecia areata is associated with EBV infection
(60). Our data would therefore suggest that uncontrolled or
chronic viral infections, especially with EBV, due to lack of
CD27–CD70 co-stimulation, trigger the autoimmunity observed
in the index patient. The CD27–CD70 axis has also been
suggested to play a role in central tolerance and the development
of regulatory T cells (Tregs) (61, 62) and Th17 cells (63).
Moreover, overexpression of CD27 and its soluble form and
surprisingly also a higher expression of CD70 have been
documented in several types of autoimmune disorders including
systemic lupus erythematosus, rheumatoid arthritis, multiple
sclerosis, and psoriasis (64, 65). Thus, additional mechanisms
may explain the phenotype of our patient, and dysregulation of
the CD27–CD70 pathway can contribute to various forms of
inflammatory and autoimmune disorders, although additional
investigations are required to fully understand the mechanisms
involved (66).

The lymphoid malignancy observed in the CD70-deficient
proband and various other cancers in the familymembers suggest
that CD70 has a potential role in preventing tumorigenesis.
There are two major, mutually nonexclusive hypotheses (67): [1]
CD27–CD70 interaction is important for generating NK- and
T-cell-mediated antivirus responses; thus, the CD70 mutations
cause a defective response to the Herpesviridae family, leading
to lymphoid proliferation and malignancy; and [2] CD27–CD70
interaction is important for generating NK- and T-cell-mediated
antitumor responses, and thus, mutations in CD70 could be
considered as a mechanism of immune evasion where malignant

TABLE 2 | A summary of new findings of patients with CD70 deficiency.

Key findings

• Reduced proportions of cells expressing the memory marker

CD45RO, as well as T-bet and Eomes, were observed in

CD70-deficient T cells.

• The proportion of 2B4+ and PD-1+ virus-specific CD8+ T cells was

reduced in the patients.

• Th17 cells and central naive T cells were significantly reduced in

CD70-deficient proband.

Despite increased naive markers on CD4 and CD8T cells, stem

cell-like memory emigrant T cells (CD45RA+CD62L+CD45RO+) were

reduced, but the total recent thymic emigrant T-cell

(CD45RA+CD62L+CD31+) subset was normal both in helper and

cytotoxic T cells.

• Almost 25% of the CD19+ B cells did not express CD20 markers in

the proband with severe clinical presentation.

• In vitro impaired ability of B cells to produce immunoglobulins and a

poor effector function of T cells was associated with the severity of

clinical phenotype in patients.

• Expansion of CD21–CD38– subset could be a reason underlying low

B-cell response and also probably the specific autoimmune

response in the proband but not the homozygous brother.

cells escape circumvent NK- and T-cell surveillance. In line
with these notions, somatic mutations and deletions affecting
both alleles of CD70 have been observed in diffuse large B-
cell lymphomas (DLBCLs), supporting its potential role as a
tumor suppressor (68, 69). However, paradoxically, a higher
expression of CD70 in DLBCL is associated with an unfavorable
prognosis, and constitutive expression of CD70 has also been
described in other types of lymphomas including Hodgkin’s
lymphoma and mantle cell lymphoma, as well as solid tumors
such as clear cell, ovarian, and nasopharyngeal carcinomas (70).
Thus, several oncogenic roles of CD70 have been proposed,
including recruitment of CD27+ Treg, induction of apoptosis
of lymphocytes, and skewing toward T-cell exhaustion (71–73).
Therapies targeting the CD27/CD70 axis have furthermore been
shown to have some, though not dramatic, clinical effects in
kidney cancer patients (70). Our patient lacked CD70 expression,
had an EBV+ lymphoma, and showed impaired CD8+ T-cell
memory and effector functions. Furthermore, the heterozygous
family members presented with various types of cancers. Thus,
our result would argue for a tumor suppressor role for CD70,
although further analyses would be required to dissect the
function of the CD27–CD70 axis in tumorigenesis.

In conclusion, we have extended our previous observation of
the first cases of CD70 deficiency in humans (Table 2). Based
on the current study, although CD70 appears not to be essential
for T- and B-cell development, together with its ligand CD27,
it plays a unique role in T-cell-mediated (T-cell activation and
CD8+ memory effector function) and B-cell-mediated (B-cell
activation, GC formation, generation of plasma cells) immunity.
Impaired B-cell Ig induction, poor effector, andmemory function
of T cells with reduced proportions of CD45RO, T-bet, and
Eomes were documented in these patients and need to be
evaluated in the future on other patients reported with this group
of primary immunodeficiency.
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