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ABSTRACT
Aberrations in the epigenetic landscape are a hallmark of cancer. Alterations in enzymes that are “writers,”
“erasers,” or “readers” of histone modification marks are common. Bromodomains are “readers” that bind
acetylated lysines in histone tails. Their most important function is the regulation of gene transcription by
the recruitment of different molecular partners. Moreover, proteins containing bromodomains are also
epigenetic regulators, although little is known about the specific function of these domains. In recent
years, there has been increasing interest in developing small molecules that can target specific
bromodomains. First, this has helped clarify biological functions of bromodomain-containing proteins.
Secondly, it opens a new front for combatting cancer. In this review we will describe the structures and
mechanisms associated with Bromodomain and Extra-Terminal motif (BET) inhibitors and non-BET
inhibitors, their current status of development, and their promising role as anti-cancer agents.
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Introduction

The different cells of an organism contain the same DNA
sequence but they are able to differentiate and maintain differ-
ent phenotypes that express different biological functions.
These processes are possible due to epigenetics. The term “epi-
genetics” was coined by C.H. Waddington in 19391 and later
defined as heritable changes in gene expression that are not due
to any alteration in the DNA sequence.2 Aberrancies in epige-
netic regulation are frequent in cancer, the best known epige-
netic mark being DNA methylation. In general terms, cancer
cells undergo global hypomethylation of their DNA, and local-
ized hypermethylation of some gene promoters, specifically in
tumor-suppressor genes.3

Apart from changes in DNA methylation, covalent modifi-
cation of histones is an important mechanism in the epigenetic
landscape. Histones can undergo several types of modification,
the most common being phosphorylation, acetylation, methyla-
tion, ubiquitination, and sumoylation.4 Disruption of normal
histone modification patterns is common in cancer, as are
mutation and deregulation of the enzymes responsible for add-
ing, removing, or recognizing these histone marks.5

Lysine acetylation is one of the main modifications occur-
ring in histone tails and it has been widely studied in the con-
text of the histone code. Acetylation of chromatin has generally
been associated with its open state and transcriptional activa-
tion, although more recent studies have found some acetylation
marks to be responsible for the compaction of chromatin,6 pro-
tein stability,4 and the regulation of protein-protein
interactions.

e-N-acetylation of lysine residues on the amino-terminal
tails of histones is regulated by histone acetyltransferases
(HATs) and histone deacetylases (HDACs). The former act as
“writers,” adding acetyl groups, the latter are “erasers,” which
remove these acetyl marks. These enzymes are often aberrantly
expressed in cancer, suffering mutations and being subjected to
other deregulation mechanisms. For example, in the HAT
group, we can find inactivating mutations in CBP (KAT3A)
and p300 (KAT3B) of B cell lymphomas,7 monoallelic loss of
KAT5 in human lymphomas, breast and head and neck can-
cers,8 and homozygous deletion of KAT6B in small cell lung
cancer.9 Additionally, HDAC deregulation results in the silenc-
ing of tumor-suppressor genes or overexpression of oncogenes.
For example, HDAC1, HDAC3 and HDAC6 are overexpressed
in tumors.10 These studies have provided the basis for the
development of HAT11 and HDAC inhibitors, some of which
had already proved successful in clinical oncology.10 However,
they have two common weaknesses: a lack of efficacy and a
lack of specificity.

Bromodomains (BRDs) are “readers” of acetyl marks in his-
tone tails, targeting chromatin-modifying enzymes and other
protein machinery to specific sites in the chromatin, thus regulat-
ing gene transcription. They appear to be a potential druggable
epigenetic target, which has encouraged the discovery and devel-
opment of several small-molecule inhibitors in recent years.

In this review we will summarize the bromodomain inhibi-
tors discovered so far, focusing on their molecular mechanisms
in cancer and their developmental status. For convenience, we
will classify them as BET and non-BET inhibitors.
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Bromodomains

Bromodomains are a family of evolutionarily conserved motifs
identified for the first time in the early 1990s in the brahma
gene of Drosophila melanogaster.12 BRDs bind the acetylated
lysines in histone tails, the recognition of the acetyl group being
decisive for the recruitment of other chromatin factors and
transcriptional machinery, and thereby the regulation of gene
transcription (Fig. 1).

A total of 61 bromodomains were found in 46 different
proteins of the human proteome.13 They are classified into
eight subfamilies on the basis of their structure (Fig. 2).
They share a highly conserved structure consisting of a left-
handed bundle of four a-helices (aZ, aA, aB, aC), linked by
flexible loop regions known as ZA and BC loops, which are
variable in sequence and charge and which form the acetyl
binding site. Despite the variations in the loop regions of the
various bromodomains, the amino acid residues responsible
for the recognition of the acetyl lysine are highly conserved,
asparagine (Asn) and tyrosine (Tyr) residues being present
where a specific hydrogen bond and water-mediated
interactions, respectively, occur with the acetyl group.14 The
cooperative binding of two acetyl groups by a single bromo-
domain has also been reported in BRD3, BRD413 and
BRDT.15 Some structural studies16 suggest the possibility
of binding di-acetylated peptides by two bromodomains in
tandem, such as in the transcription-initiation factors TAF1
and TAF1L, in which two bromodomains are separated by
sequences of fewer than 20 residues.13

The hydrophobic nature of the acetylated lysine-binding
pocket of the bromodomain, which is optimal for the interac-
tion of the charge-neutralized acetylated lysine, and the fact
that the strength of this protein-protein interaction is compara-
tively low, make these domains particularly targetable by small
molecules that interfere with this interaction.17 In recent years,
numerous discoveries about the potential of new bromodomain
inhibitors have been published.

BET bromodomains

The bromodomain and extra terminal (BET) family has been
thoroughly investigated. It is made up of BRD2, BRD3, BRD4,
and BRDT, all of which are ubiquitously expressed, except for
BRDT, which is only expressed in testis. Their main features
are two bromodomains in tandem (BD1 and BD2) in the N-ter-
minal and a C-terminal extra-terminal (ET) domain.

BRD4 and BRD2 play an important role in transcription
elongation by recruiting the positive transcription elongation
factor complex (P-TEFb) through its BRDs to acetylated chro-
matin.18 P-TEFb is composed of cyclin-dependent kinase-9
(CDK9) and its activator, cyclin T. Efficient transcription
requires the phosphorylation of the C-terminal repeat domain
(CTD) of RNA polymerase II (RNAP II). It has been reported
that BRD4 recruits P-TEFb to acetylated chromatin and plays a
role in activating the CDK9 kinase subunit, whereby it acts as
an important transcription regulator. In addition, BRD4 con-
trols the release of active P-TEFb from its inactive complex
with HEXIM1 protein and 7S snRNA. Recruitment of P-TEFb
by BRD4 is crucial for transcriptional initiation and elongation,
and for the expression of genes controlling cell proliferation.18

BET proteins are highly involved in cancer, directly regulating
the expression of certain cancer-related genes, such as c-MYC.
Avoiding the binding of BET proteins at the MYC locus with
BET inhibitors leads to a reduction in cell proliferation.19

BRD4 regulates NF-kb-dependent genes, preventing degra-
dation of Rel A, which maintains NF-kb activity, and so plays
an important role in NF-kb-driven cancers.20 In breast cancer,
BRD3/4 interacts with WHSC1, promoting ESR1 transcription
and thereby contributing to tamoxifen resistance in ER-positive
breast cancer.21

The BET family also functions as cell cycle regulators. BRD4
is important in regulating the expression of genes required for
M to early G1 phase transition,18,22 while BRD2 provides a scaf-
fold on the chromatin for recruiting the key transcriptional cell
cycle-regulatory genes E2F1 and E2F2. BRD2 can also interact

Figure 1. Overview of bromodomain inhibition. Bromodomains recognize acetylation marks in histone tails and recruit transcriptional machinery promoting target gene
transcription, such as in the case of c-MYC. Bromodomain inhibitors prevent interaction between the bromodomain and the acetyl group, causing the downregulation of
certain genes. Bromodomains play a key role in gene transcription regulation.
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with the SWI/SNIF complex, regulating the expression of genes
such as cyclin D1 (CCND1).

BRD4 is a global regulator of gene transcription, so its inhi-
bition would be expected to cause the global downregulation of
gene activity. However, BRD4 inhibition only downregulates
few hundred genes, most of which are very important in
tumorigenesis. The molecular basis of this selectivity can be
explained by the fact that BRD4, in addition to occupying gene
promoters, has a strong preference for enhancers and super-
enhancers, the latter frequently being present in key genes of
hematological and solid tumors, such asMYC.23

Other bromodomains

As well as BET bromodomains, BRDs are present in other pro-
teins that play important roles in the epigenetic landscape and
in cancer development.

Histone methyltransferase ASH1L and the mixed-lineage
leukemia (MLL) gene product contain one BRD. Both are

associated with actively transcribed genes.24 The BRPF (bromo-
domain and PHD finger-containing) family consist of BRPF1,
BRPF2 and BRPF3, which function as scaffolds for assembling
HAT complexes of the MOZ/MORF family. Bromodomains
are also present in transcriptional coactivators like tripartite
motif-containing proteins (TRIMS) and TBP-associated factors
(TAFs).17

ATPase family, AAA domain containing 2 (ATAD2) con-
tains an ATPase region and a bromodomain located in the
C-terminal. ATAD2 is overexpressed in a wide variety of can-
cers, such as colorectal,25 gastric,26 endometrial,27 cervical,28

and ovarian29 cancers, in which it increases cell proliferation.
Its overexpression is already used as a poor prognosis marker.
ATAD2 is an E2F target regulated by the pRb-E2F pathway,
and is important for access to the S phase of the cell cycle.
ATAD2 is localized in the same chromosome arm as MYC, and
is co-amplified with it in several tumors. In fact, it contributes
to tumor development by binding theMYC oncogene and stim-
ulating its transcriptional activity.30 ATAD2 is also associated

Figure 2. Structure-based phylogeny of the human bromodomains and their inhibitors. There are 61 bromodomains in 46 bromodomain-containing proteins. Roman
numerals indicate the eight major structural classes. The phylogenetic tree is derived from data obtained Filipakoupoulos at al. (ref 17). The specific inhibitors described
in this review are indicated next to the corresponding bromodomain.
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with other oncogenic transcription factors, like the androgen
receptor (AR)31 and estrogen receptors (ER).32 ATAD2 expres-
sion is itself stimulated by androgens and estrogens and simul-
taneously works as a coactivator of AR and ER, contributing to
carcinogenesis in prostate and breast cancers.31,32 Little is
known about the specific function of the ATAD2 bromodo-
main, but its importance in cancer development means there is
increasing interest in finding bromodomain inhibitors for it.
This can help elucidate its function and establish it as a novel
target for anti-cancer drug development.

BAZ2A and BAZ2B are members of the BAZ protein family.
They contain a PHD finger located near a homologous bromo-
domain in the C-terminal part of the protein.33 BAZ2A (also
known as TIP5) is a component of the NoRC nuclear remodel-
ing complex, which is essential for rRNA silencing.34 Addition-
ally, BAZ2A is overexpressed in prostate cancer and is
important for maintaining cell growth. BAZ2A directly inter-
acts with EZH2 to epigenetically silence genes repressed in
metastasis, playing a different role that is independent of
rRNA.35 Very little is known about the function of BAZ2B,
apart from the recently published histone binding preferences
of its bromodomain.36

Several HATs also contain bromodomains that are simulta-
neously “writers” and “readers” of acetyl groups. The p300/
CBP-associated factor PCAF (also known as KAT2B) acetylates
histones H3 and H4,37 regulating the expression of several
genes, like insulin, and several transcription factors, including
p53,38 FOX1,39 and p27,40 that alter various important molecu-
lar pathways in cancers such as glioblastoma and medulloblas-
toma.41 However, little is known about the specific function of
the PCAF bromodomain. There is heightened interest in find-
ing specific inhibitors against it, because it will probably cause
the loss of PCAF acetylation function. In fact, PCAF bromodo-
main inhibitors have already been developed for the treatment
of HIV. They work by preventing the interaction between the
PCAF bromodomain and acetylated HIV Tat protein42 which is
a potent inhibitor of HIV replication.43 In the context of cancer,
several molecules targeting PCAF bromodomain are being
developed,43,44 but they have not been clinically tested yet.

CREBBP (also known as CBP and KAT3A), the cAMP
response binding protein, and its highly homologous EP300
(also known as p300 or KAT3B), adenoviral E1 binding protein,
are two HATs that, in addition to the HAT domain, contain a
CREB binding domain, several zinc finger domains, a plant
homology domain (PHD) and a bromodomain. These bromo-
domains bind the acetylated lysine 382 of p53. This interaction
is required for p53 recruitment of CREBBP after DNA damage,
a step which is crucial for p53 transcriptional activation of p21
in cell cycle arrest.45 CPB/p300 is a transcriptional coactivator
that binds to several transcription factors and acetylates specific
sites in chromatin (reviewed by Dancy et al.46), causing its relax-
ation and subsequent transcriptional activation.47 These pro-
teins also acetylate some transcription factors, modulating their
activity. Besides that, CBP and EP300 play a key role in the
development of many human cancers (reviewed by Iyer et al.48).
Acetyltransferase activity is critical for the function of CBP/
EP300, so some inhibitors are known to disrupt their catalytic
domain.49 There is now great interest in the development of spe-
cific bromodomain inhibitors for CBP/EP300.

Bromodomain-containing protein 9 (BRD9) is a known
component of the chromatin-remodeling BAF SNF/SWI com-
plex. Little is known about its function but a role in cancer has
been described. A recent study reported that AML cells require
BRD9 to sustain MYC transcription and thereby increase pro-
liferation.50 Bromodomain-containing protein 7 (BRD7) is very
similar to BRD9 and is a subunit of PBAF SWI/SNF. Several
studies have described BRD7 as a tumor suppressor gene,51

whose expression is partially or completely suppressed in sev-
eral types of cancer, such as colorectal cancer,52 ovarian can-
cer,53 hepatocellular carcinoma,54 small-cell lung cancer,55

endometrial carcinoma,56 and breast cancer, in which it acts as
a partner of BRCA1.57 Due to the close homology between the
BRD9 and BRD7 bromodomains, co-inhibitors exist.

Bromodomain inhibitors

BET inhibitors

The first known inhibitors of the BET bromodomain family
were (C)-JQ1, reported by the Structural Genomics Consor-
tium (SGC) and the Dana-Faber Cancer Institute,58 and
I-BET762, reported by GlaxoSmithKline (GSK).59,60

When thieno-triazolo-1,4-diazepine (JQ1) (Fig. 3) was first
reported, it was tested in NUT midline carcinoma (NMC).58

BRD4 forms a fusion protein with nuclear protein in testis (NUT)
protein, BRD4-NUT oncoprotein, which plays a key role in the
differentiation and proliferation of this aggressive squamous cell
carcinoma.61 JQ1 binds competitively to acetyl-lysine binding
motifs and displaces the BRD4 fusion oncoprotein from chroma-
tin, producing squamous differentiation and specific anti-prolifer-
ative effects in xenograft models and cell lines of NMC.58

After the first report, a large number of studies were pub-
lished showing the efficacy of JQ1 in hematological malignan-
cies62-66 and in a variety of solid tumors such as
glioblastoma,67,68 medulloblastoma,69-71 hepatocellular carci-
noma,72,73 colon cancer,74,75 pancreatic cancer,76-78 prostate
cancer,79-82 lung cancer,83-87 and breast cancer.21,88-94

The MYC oncoprotein regulates transcription and alters cell
proliferation in acute myeloid leukemia,62 Burkitt’s lym-
phoma,63 multiple myeloma,64 and B cell acute lymphoblastic
leukemia,65 diffuse large B cell lymphoma.66 In these hemato-
logical cancers, BET inhibition by JQ1 downregulates MYC
transcription and genome-wide MYC-dependent target genes,
promoting cell cycle arrest and cellular senescence. Even
though MYC downregulation is the most common and impor-
tant effect of BET bromodomain inhibition in hematological
malignancies, other genes and mechanisms are also affected.
For example, in acute lymphoblastic leukemia, JQ1 causes a sig-
nificant deletion of interleukin 7 receptor gene (IL7R),65 and in
diffuse large B cell lymphoma it leads to the significant downre-
gulation of MYC and E2F1 target genes66 and an alteration of
others such as POU2AF1 (which encodes the OCA-B transcrip-
tional coactivator protein), BCL6, IRF8, and PAX5.66

In the case of solid tumors, the treatment of a panel of a group
of genetically heterogeneous glioblastoma (GBM) samples with
JQ1-induced G1 cell cycle arrest and apoptosis and produces
expression changes in key genes such as c-MYC, p21, hTERT,
BCL¡2, and BCL¡ XL.67 Moreover, the common mutation,

326 M. P�EREZ-SALVIA AND M. ESTELLER



EGFRvIII, of the epidermal growth factor receptor (EGFR) sensi-
tizes GBM cells to this drug. EGFRvIII regulates c-MYC levels
through SOX9- and FOXG1-mediated regulation of BRD4.68 In
MYC-amplified medulloblastoma, JQ1 reduced cell viability and
downregulated its expression, causing inhibition of MYC-associ-
ated transcriptional targets.69 The treatment also altered the
expression of cell cycle genes and p53 signaling.70 Additionally,
JQ1 promoted senescence in medulloblastoma cells by activating
cell cycle kinase inhibitors and reducing E2F activity. JQ1 also
attenuated stem cell signaling in MYC-driven medulloblastoma.71

BRD4 is overexpressed in hepatocellular carcinoma (HCC).
Treatment with JQ1 induced G1 cell cycle arrest by repressing
MYC expression and caused the upregulation of p27 and the pro-
apoptotic gene BIM.72 Furthermore, inhibition of BRD4 by JQ1 in
liver cancer repressed E2F2 cell cycle regulation, E2F2 overexpres-
sion being a marker of poor prognosis in HCC patients.73

A recent study in colon cancer stated that BRD4 plays a
key role in proliferation, JQ1 having an anti-growth effect,
especially in tumors characterized as having the CpG island
methylator phenotype (CIMP).74 This is due to the presence
of a CIMP-associated super-enhancer that regulates MYC
transcription and from which CCAT1, a long noncoding RNA
colon cancer-associated transcript 1, is transcribed, which sig-
nificantly increases sensitivity to JQ1.74 Another study
reported that combination of JQ1 with arsenic sulfide (As4S4)
in gastric and colon cancer cells inhibited BRD4 and c-MYC,
synergistically activating p53.75

In pancreatic ductal adenocarcinoma (PDAC), JQ1 inhibited
tumor progression in patient-derived xenograft models, reduc-
ing CDC25B expression, a regulator of cell cycle progression,
independently of MYC.76 By contrast, a study in PDAC mouse
models77 found that tumor reduction by JQ1 was due to MYC
activity inhibition together with inflammatory signals. Addi-
tionally, combination of the HDAC inhibitor SAHA and JQ1
produced upregulation of p57, a pro-apoptotic gene whose
transcription is repressed by MYC and usually silenced in
PDAC.77 Resistance to JQ1 has also been studied in pancreatic
cancer cells.78 The main mechanism was the increased expres-
sion of JQ1 target genes that remain dependent on MYC,
which, in turn, was co-regulated by GLI2.78

Androgen receptor (AR) is a key element in castration-resis-
tant prostate cancer (CRPC) progression, partly due to its over-
expression.79 Therapies targeting AR signaling have shown
limitations creating a need for identifying new therapies. In
2014, Asangani et al. reported JQ1 potential activity in CRPC80

showing that JQ1 reduces the levels of AR target gene transcrip-
tion in AR-positive cells, inhibiting BRD4 localization in AR
target loci. Prostate tumor xenograft mice treated with JQ1 also
showed significant tumor reduction.80 JQ1 has been broadly
studied in an attempt to find a means of overcoming resistance
to endocrine-based therapies in prostate cancer (PCa).81 The
expression of androgen receptor variants (AR-Vs) is associated
with resistance to AR-targeting endocrine therapies. JQ1 down-
regulates AR-V transcription and protein expression, inhibiting

Figure 3. BET bromodomain inhibitor molecules. (C)-JQ1, I-BET762, OTX015, I-BET151, CPI203, PFI-1, MS436, CPI-0610 chemical structures are shown. RVX2135, FT-1101,
BAY1238097, INCB054329, TEN-010, GSK2820151, ZEN003694, BAY-299, BMS-986158, ABBV-075, GS-5829, and PLX51107 are BET bromodomain inhibitors that are under
clinical trial and whose structure has not been disclosed.
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Table 1. BET inhibitors

Compound Tumor type Status References/Clinical Trials Identifier

(C)-JQ1 Hematologic Malignancies Preclinical 62–66
Lung cancer Preclinical 83–87
Breast cancer Preclinical 21,88–94
Prostate cancer Preclinical 79–82
Pancreatic cancer Preclinical 76–78
Colon cancer Preclinical 74,75
Hepatocellular cancer Preclinical 72,73
Glioblastoma Preclinical 67,68
Medulloblastoma Preclinical 69–71

I-BET762 (GSK525762) Hematologic Malignancies Clinical trials NCT01943851
NUT Midline Carcinoma Clinical trials NCT01587703
Small cell lung cancer
Non-small cell lung cancer
Colorectal cancer
Neuroblastoma
Castration resistant prostate cancer
Triple negative breast cancer
Estrogen receptor positive (ER positive)breast cancer
MYCN driven solid tumor subjects
Healthy females subjets in combination with

Itraconazole and Rifampicin
Clinical trials NCT02706535

Multiple myeloma Preclinical 96
Prostate cancer Preclinical 97

OTX015(MK-8628) NUT Midline Carcinoma Clinical trials NCT02698176
Triple Negative Breast Cancer
Non-small Cell Lung Cancer NCT02259114
Castration-resistant Prostate Cancer
Pancreatic Ductal Adenocarcinoma
Acute Myeloid Leukemia Clinical trials NCT02698189
Diffuse Large B-cell Lymphoma NCT01713582

99Acute Lymphoblastic Leukemia
Multiple Myeloma
Acute Myeloid Leukemia (in combination with Azacitidine) Clinical trials NCT02303782
Glioblastoma multiforme Preclinical/Clinical trials 98

NCT02296476
I-BET151 (GSK1210151A) Mixed lineage leukemia Preclinical 100

Myeloma Preclinical 96
Glioblastoma Preclinical 102
Acute myeloid leukemia Preclinical 103
Melanoma Preclinical 104,105

CPI203 Mutiple myeloma (resistant to bortezomib and melphalan) Preclinical 106
Pancreatic neuroendocrine tumors (PanNET) Preclinical 107
Mantle cell lymphoma (bortezomib resistant) Preclinical 108

RVX2135 Myc-induced murine lymphoma Preclinical 109
PFI-1 Leukemia Preclinical 110
MS436 Compound report Compound discovery 111

FT-1101 Acute Myeloid Leukemia Clinical trials NCT02543879
112Acute Myelogenous Leukemia

Myelodysplastic Syndrome

CPI-0610 Lymphoma Clinical trials NCT01949883
Multiple Myeloma Clinical trials NCT02157636
Acute Leukemia Clinical trials NCT02158858

113Myelodysplastic Syndrome
Myelodysplastic/Myeloproliferative Neoplasm
Myelofibrosis

BAY1238097 Hepatocellular carcinoma Clinical trials NCT02369029
114Lung cancer

NUT midline carcinoma
Melanoma

Lymphoma
INCB054329 Advanced solid tumor Clinical trials NCT02431260

115Hematologic malignancies

TEN-010 Advances solid malignancies Cliniacla trials NCT01987362
116NUT Midline Carcinoma

GSK2820151 Solid tumors Clinical trials NCT02630251

ZEN003694 Metastatic Castration-Resistant Prostate Cancer Clinical trials NCT02705469
In combination with Enzalutamide NCT02711956

(Continued on the next page )
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cell growth driven by AR-Vs in vitro and in vivo.81 Another
study revealed that JQ1 inhibits the interaction between BRD4
and ERG, a transcription factor aberrantly upregulated in pros-
tate cancer. This interaction seems to be essential for ERG-
mediated cell invasion in this type of cancer.82 All these studies
support the potential activity of BET inhibitors in prostate can-
cer. In fact, clinical trials with I-BET762, GSK525762,
ZEN003694, GS-5829, and OTX015 to treat castration-resistant
prostate cancer are currently underway (Table 1).

In non-small cell lung cancer (NSCLC), JQ1 was found to be
effective in several lung adenocarcinoma cell lines due to its
suppression of the oncogenic transcription factor FOSL1 and
its targets.83 JQ1 treatment also produced tumor regression in
NSCLC KRAS mutant mice by inhibiting MYC function. How-
ever, KRAS and, simultaneously, liver kinase B1- (LKB1-)
mutated mice were not sensitive to JQ1.84 Nevertheless, human
lung adenocarcinoma tumors with loss of wild type LKB1 have
poor outcome and high invasiveness mediated by upregulation
of MYC via an increase in MZF1 expression and can be over-
come by treatment with JQ1.85 Small cell lung cancer (SCLC)
cell lines are especially sensitive to growth inhibition by JQ1,
not due to changes in MYC expression, but because of the
downregulation of the lineage-specific transcription factor
achaete-scute homolog-1 (ASCL1), which is overexpressed in
more than 50% of SCLC patients.86 JQ1 disrupts the interaction
between BRD4 and ASCL1 enhancer.87

Several studies were made concerning JQ1 treatment in
standard therapy-resistant breast cancer models. For exam-
ple, in tamoxifen-resistant breast cancer, JQ1 demonstrated
anti-tumor activity in mouse models and a synergistic activ-
ity with fulvestrant, an ER degrader.21 Tamoxifen has been
the first-line treatment for estrogen receptor alpha (ERa)-
positive breast tumors, although resistance to this drug is
very common.88 JQ1 effect stems from its capacity to sup-
press the classic ERa signaling pathway. WHSC1, a histone
H3K36 methyltransferase, is a positive regulator of ERa sig-
naling in breast cancer that is recruited to the ERa gene by
BRD3/4. JQ1 inhibits this interaction, slowing the rate of
cell growth in tamoxifen-resistant breast cancer cells.21

Another study reported that JQ1 blocks the transition of
RNA polymerase II from initiation to elongation induced by

estrogen (E2), establishing that BET proteins are mediators of
E2-induced transcriptional activation.89 Upregulation of MYC
driven by BRD4 was observed in everolimus-resistant ERC
breast cancers. Depletion of MYC resensitized cells to everoli-
mus, and JQ1 in combination with this drug decreased tumor
growth in xenograft models.90 Moreover, the combination of
JQ1 with HDAC inhibitors such as mocetinostat resulted in a
greater reduction in cell viability for triple-negative and ERC
breast cancer cells.91 This synergistic effect was associated with
the decreased expression of genes that play a key role in cell
cycle progression and a significant increase in the expression of
genes from the ubiquitin-specific protease (USP17) family,
which were able to diminish the activity of the RAS/MAPK
pathway, resulting in reduced cell viability.91 In vitro and
in vivo triple-negative breast cancer (TNBC) models were
found to be more highly sensitive to BET inhibitors than to
more resistant luminal lines. JQ1 treatment results in growth
inhibition by cell cycle arrest in G1 and apoptosis. Similar
results were obtained treating TNBC xenografts.92 Data show
that JQ1 selective disruption of super-enhancer-associated
genes alters transcriptional pathways involved in cell prolifera-
tion, tumor invasion and survival.92 Another study in TNBC
reported that treatment with JQ1 resulted in a reduction of
transcription factors like the DEP domain containing 1
(DEPDC), Forkhead box M1 (FOXM1), and Lim domain only
4 (LM04). It also suggests that BET inhibitors could be a new
targeted therapy for TNBC, the most aggressive form of breast
cancer, for which treatment is currently limited to chemother-
apy.93 Moreover, TNBC is the breast cancer subtype most fre-
quently associated with hypoxia.95 JQ1 modulated 44% of
hypoxia-responsive genes,94 most of which were downregu-
lated, including carbonic anhydrase 9 (CA9) and vascular endo-
thelial growth factor A (VEGF-A). This study concluded that
BET inhibitors jointly target angiogenesis and the hypoxic
response, making it an effective anti-tumor combination.94

At the same time as the apparition of JQ1, another diazepine-
based compound, I-BET762 (GSK525762) (Fig. 3), was indepen-
dently reported by GSK.60 I-BET762, like JQ1, arrests the growth
of NMC-malignant cells. GSK started clinical trials for the treat-
ment of this malignancy that were subsequently extended to
other types of cancer, such as small cell lung cancer, non-small

Table 1. (Continued )

Compound Tumor type Status References/Clinical Trials Identifier

BAY-299 Compound report Compound discovery 117

BMS-986158 Advanced solid tumors Clinical trials NCT02419417

ABBV-075 Advanced Cancer Clinical trials NCT02391480
Breast Cancer
Non-Small Cell Lung Cancer
Acute Myeloid Leukemia
Multiple Myeloma

GS-5829 Metastatic Castrate-Resistant Prostate Cancer
(and in combination with Enzalutamide)

Clinical trials NCT02607228

Solid Tumors and Lymphomas
(in combination with exemestane)

Clinical trials NCT02392611

ERCbreast cancer (in combination with fulvestrant)

PLX51107 Solid Tumors Clinical trials NCT02683395
Acute Myeloid Leukemia
Myelodysplastic Syndrome

Clinical trials from https://clinicaltrials.gov/ (accessed 2016, September 20).
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cell lung cancer, colorectal cancer, neuroblastoma, castration-
resistant prostate cancer, triple-negative breast cancer, estrogen
receptor-positive breast cancer, and MYCN driven solid tumor
subjects (Table 1). I-BET762 has also been reported to exert anti-
proliferative effects and to induce apoptosis in multiple myeloma
in vitro and in vivo.96 It is also effective in prostate cancer,
whereby tumor growth is reduced by inhibiting MYC.97

OTX015 (MK-8628) (Fig. 3) is a BRD2/3/4 inhibitor under
evaluation in dose-finding studies for solid tumors as glioblas-
toma multiform. OTX015 showed a stronger anti-proliferative
effect than JQ1, and a significant anti-tumoral effect in GBM
mouse models has recently been reported.98 Treatment with
OTX015 leads to cell growth inhibition, cell cycle arrest and
apoptosis in acute leukemia cell lines, indicating that OTX015
and JQ1 have similar effects in leukemic cells.99 There are cur-
rently six clinical trials underway with OTX015 in GBM, hema-
tological malignancies and several other solid tumors like NUT
midline carcinoma, TNBC, castration-resistant prostate cancer
and pancreatic ductal carcinoma (Table 1).

I-BET151 (GSK1210151A) (Fig. 3) was reported in 2011 as
being a novel BET bromodomain inhibitor that had proved its
efficacy in mixed-lineage leukemia (MLL) cell lines at inducing
apoptosis and cell cycle arrest, due in part to a decrease in the
BCL-2,MYC, and CDK6 genes through the inhibition of BRD3/
BRD4.100 It also exhibits potent anti-myeloma activity through
transcriptional repression of MYC by avoiding P-TEFb chro-
matin occupation, and upregulation of HEXIM1, which is an
inhibitor of P-TEFb.96 I-BET151 was reported to be an alterna-
tive treatment for myeloproliferative neoplasms driven by con-
stitutively active JAK2 kinase101 and glioblastoma, in which it
inhibits proliferation by arresting cell cycle progression.102 It
was also found to be effective for treating NPM1-mutated acute
myeloid leukemia.103 In melanoma cells, on the one hand, I-
BET151 induces BIM-dependent apoptosis and cell cycle
arrest,104 while, on the other controlling NF-kB activity.105

CPI203 (Fig. 3) is a BET bromodomain inhibitor that has
shown synergetic activity with drugs that have already been clin-
ically approved for cancer treatment. Multiple myeloma cells
resistant to bortezomib and melphalan treated with CPI203 plus
bortezomib increased the apoptosis level and decreased the pro-
liferation rate.106 Furthermore, CPI203 demonstrated its efficacy
in pancreatic neuroendocrine tumors (PanNET) by downregu-
lating MYC expression, producing G1 cell cycle arrest and
almost completely inhibiting cell proliferation. It also enhanced
the antitumor effects of rapamycin in PanNET, attenuating
rapamycin-induced AKT activation, which is a major limitation
of rapamycin therapy.107 CPI203 synergistic antitumor activity
with lenalidomide, reported in bortezomib-resistant mantle cell
lymphoma, caused simultaneous MYC and IRF4 downregula-
tion and apoptosis induction.108

RVX2135 inhibits proliferation and induces apoptosis in
Myc-induced murine lymphoma, affecting many transcription
factor networks.109

PFI-1 (Fig. 3) was reported as being a BET inhibitor for
BRD2 and BRD4 that showed anti-proliferative efficiency in
leukemic cell lines. Treatment with PFI-1 produced cell cycle
arrest in G1, downregulation of MYC expression and induc-
tion of apoptosis. Unlike other BET inhibitors, PFI-1 caused
significant downregulation of Aurora B kinase, suggesting a

potential synergism between MYC and Aurora B, two potent
oncogenes that could be targeted simultaneously with this
inhibitor.110

MS436 (Fig. 3) is another BRD4 inhibitor that was reported
to inhibit NF-Kb-directed production of nitric oxide and pro-
inflammatory cytokine interleukin-6 in murine macro-
phages.111 However, since first being reported in 2013, no fur-
ther studies have been published concerning this molecule.

FT-1101,112 CPI-0610113 (Fig. 3) are novel BET inhibitors
that were reported recently and are undergoing clinical trials in
hematological cancers. BAY 1238097114 and INCB054329115

are being clinically trialed for several solid tumors and hemato-
logical malignancies. Also currently the subject of clinical trials
are TEN-010,116 for NUT-midline carcinoma and advanced
solid tumors, GSK2820151, for subjects with advanced or recur-
rent solid tumors, ZEN003694, which is for metastatic castra-
tion-resistant prostate cancer, and BMS-986158, ABBV-075,
GS-5829, and PLX51107, for several types of cancer (Table 1).

Finally, BAY-299 is an inhibitor of BRD1 and the second
bromodomain of TAF1 reported on the SGC webpage, as a col-
laboration with Bayer.117

Non-BET inhibitors

BET-family inhibitors have been extensively studied in recent
years, but far less attention has been paid to the other bromo-
domains. Given that the latter are frequently in proteins with
other epigenetic functions, such as HAT activity, finding non-
BET inhibitors will allow a better understanding of them. This
will also help identify new druggable targets for treating dis-
eases like cancer (Table 2).

In this context, Bromosporine118 (Fig. 4) is a multi-bromo-
domain inhibitor, which has been made available by the SGC.
It acts as a broad-spectrum bromodomain inhibitor and can be
useful for studying biological functions.

The ATAD2 bromodomain is known to be difficult to
drug.119 GSK reported the first micromolar inhibitor of
ATAD2, but it was not selective for the BET family.120 This
compound was then optimized to improve its activity to sub-
nanomolar and 100-fold BET selectivity.121 Studies to improve
this compound are being conducted but have not yet been
published.

Although the homologous bromodomains BAZ2A and
BAZ2B also have low predicted druggability,119 to date, two
structurally distinct selective inhibitors have been reported,
BAZ2-ICR and GSK2801 (Fig. 4).122,123

BAZ2-ICR122 was published in 2015 by the Institute of Can-
cer Research. It is suitable for use in vitro and in vivo and is
available to the scientific community for the purpose of further
investigating the biological role of BAZ2A/B. GSK2801123 was
investigated as a collaboration between GSK and SGC as found
to be a potent, selective bromodomain inhibitor of BAZ2A and
BAZ2B that acts in a competitive binding model with acetyl-
lysines. It is also suitable for treatments in vitro and in animal
models.123

BRD9 is a component of the chromatin remodeling complex
SNF/SWI BAF but its biological function has not yet been fully
elucidated.124 Its potential role in disease has encouraged
research on inhibitors, and several BRD9 chemical probes have
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been reported so far. Filippakopoulos and colleagues described
the 9-H purine scaffold as a template to be used for further
studies involving inhibition of BRD9.125 Subsequently, GSK in
collaboration with the University of Strathclyde reported
I-BRD9126 (Fig. 4), a selective BRD9 inhibitor with more than
700-fold selectivity over the BET family and 200-fold selectivity
over the highly homologous BRD7.126 The SGC and the

University of Oxford published LP99 (Fig. 4), a potent and
selective inhibitor for both BRD9 and BRD7 bromodomains,
which plays a role in regulating pro-inflammatory cytokine
secretion.127 Two other BRD9 inhibitors, BI-7273 and BI-9564,
were described by Boehringer Ingelheim and the SGC
(Fig. 4).128 These compounds exert antitumor activity in an
AML xenograft model.128 Moreover, BI-7271, BI-7273, and BI-

Table 2. Non-BET inhibitors

Target Ligand Tumor type References

Multi-bromodomain Bromosporine NT 118

BAZ2A/B BAZ2-ICR NT 122
GSK2801 NT 123

BRD9 I-BRD9 Leukemia 126
BI-7273/BI-9564 Acute Myeloid Leukemia (AML) 128
BI-7271/BI-7273/BI-7189 Acute Myeloid Leukemia (AML) 50

BRD9/BRD7 LP99 NT 127
TP-472 NT 129

BRPF family OF-1 NT 131
PFI-4 NT 132
NI-57 NT 133

SMARCA2/4 and PB1(5) PFI-3 Lunc cancer, synovial sarcoma, rhabdoid cancer, AML 138,139

CREBBP MS2126/MS7972 Osteosarcoma 142
Ischemin NT 143
I-CBP112 Leukemia and prostate cancer 144
SGC-CBP30 Multiple myeloma 146–148
PF-CBP1 NT 149
CPI-637 NT 150

NTD Not tested in cancer

Figure 4. Non-BET bromodomain inhibitor molecules. Chemical structures of non-BET inhibitors, clustered according to the specific bromodomains in which they act. Bro-
mosporine is a multibromodomain inhibitor.
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7189 BRD9 inhibitors (Fig. 4) suppressed the proliferation of
AML cells.50 The SGC website has recently added TP-472
(Fig. 4), a new inhibitor of the BRD9/7 bromodomain that is
also suitable for in vivo treatments.129

Inhibitors of BRPF family bromodomains are also being
investigated in order to elucidate their biological role and
druggability. In 2014, GSK reported a series of selective drugs
for the BRPF1 bromodomain. These are benzimidazolone com-
pounds that showed 100- and >1000-fold selectivity over
BRPF2 and BRPF3, respectively.130 The SGC disclosed OF-1 on
its website (Fig. 4), describing that it inhibits BRPF1B/2/3 bro-
modomains, and has good selectivity against other bromodo-
mains, although the closest off target is BRD4 (39-fold
selectivity).131 The SGC in collaboration with Pfizer has
reported PFI-4 (Fig. 4), a selective BRPF1B bromodomain
inhibitor, and an isoform of BRPF1 that binds to acetylated his-
tones in the opposite manner to isoform BRPF1B.132 NI-57
(Fig. 4) is another compound listed on the SGC webpage that
was discovered by them in collaboration with University Col-
lege London, and which selectively inhibits all members of the
BRPF family. The closest off target is BRD9 (32-fold selectiv-
ity), but is very selective against other bromodomains, includ-
ing those of the BET family.133 Recently, a dual inhibitor of
BRPF1 and TRIM24 was reported, which exerts good selectivity
over other bromodomains.134

SMARCA4 (BRG1), SMARCA2, and PB1 are bromodo-
main-containing proteins that are also members of the SWI/
SNF chromatin-remodeling complexes. Loss of function of
SMARCA4135 and other alterations in components of the SWI/
SNF complex are associated with cancer development. PB1
(BAF180) contains six bromodomains that are frequently
mutated in cancer.136 The SMARCA4 bromodomain is
involved in DNA damage repair.137 The SGC reported the
development of PFI-3 (Fig. 4), a bromodomain inhibitor of
SMARCA2/4 and PB1(5),138,139 which showed high selectivity
over other bromodomains. However, subsequent studies with
PFI-3 determined that the ATPase catalytic domain of
SMARCA2/4 has an indispensable role in cancer growth,
whereas bromodomain inhibition is not crucial for the process,
thereby highlighting the importance of the ATPase domain in
these proteins as a significant therapeutic target.140 A recent
study reported the optimization of a compound inhibiting the
second and fifth bromodomains of PB1 more selectively than
SMARCA2/4, and another one inhibiting PB1(5).141

CREBBP bromodomain inhibitors are the second most thor-
oughly studied group, after the BET family inhibitors. The first
attempts to do so involved inhibiting the CREBBP-p53 interac-
tion using the compounds MS2126 and MS7972 (Fig. 4).142

Treatment of U2OS cells with previously stimulated DNA
damage resulted in a dramatic decrease in p53 levels.142 Ische-
min (Fig. 4) was reported by the same group143 to be a bromo-
domain inhibitor of CREBBP that is also able to inhibit this
interaction and consequently alter the expression of p53 target
genes involved in apoptosis and DNA damage repair.143

I-CBP112 (Fig. 4) was reported by SGC and GSK as being a
novel compound for CREBBP and P300 bromodomains with
nanomolar activity and good selectivity.144 This compound
impaired the disease-initiating self-renewal leukemic cells in
vitro and in vivo.144 A recent study of I-CBP112145 reported

that this compound stimulates acetylation activity by CREBBP/
P300 acting as an activator of these HATs, contributing to its
anti-proliferative effect in cancer. It is also suggested that acti-
vation activity of I-CBP112 could help restore the balance of
acetylation levels in tumors that experience CREBBP/P300 loss
of function due to mutations, although the mechanism and net-
works involved in tumors affected by this activation are not yet
fully understood.145 SGC-CBP30 (Fig. 4) was reported by the
SGC and the University of Oxford.146 This compound is selec-
tive for CREBBP/P300 bromodomains but is not suitable for
use in vivo because it is metabolized so quickly. SGC-CBP30
was reported to suppress the Th17 response that is critical to a
variety of human autoimmune diseases.147 Moreover, I-
CBP112 and SGC-CBP30 suppress the lymphocyte-specific
transcription factor IRF4, which is crucial for the viability of
myeloma cells, and consequently targets c-MYC.148 PF-CBP1
(Fig. 4) is another selective inhibitor of the CREBBP/P300 bro-
modomain, which downregulates a number of inflammatory
genes in macrophages and the RSG4 gene in neurons149 Finally,
another CREBBP/P300 bromodomain inhibitor, CPI-637
(Fig. 4),150 was recently reported to have high potency in vitro
and selectivity over other bromodomains.

Targeting protein acetylation beyond bromodomain
inhibition and cancer: HAT activation and other
human diseases

Apart from cancer, bromodomains are key transcriptional reg-
ulators in diabetes, inflammation and cardiovascular diseases
(reviewed by Denis151 and Nicholas DA et al.152), and are con-
sidered potentially druggable to treat these disorders.

RVX-208 (RVX000222; apabelaton) was developed by
Resverlogix Corporation to treat atherosclerotic cardiovascular
diseases.153 Its use is currently being investigated in several clini-
cal trials for atherosclerosis, coronary syndromes and Alzheimer
disease.154,155 RVX-208 is an orally available BET bromodomain
inhibitor which selectively inhibits BRD2.156 It increases apolipo-
protein AI (ApoA-I) gene transcription and leads to production
of high density lipoprotein (HDL) cholesterol levels in vitro and
in vivo,157 resulting in the stimulation of reverse cholesterol
transport. It also represses inflammatory and atherosclerotic
pathways that contribute directly to cardiovascular risk.158 RVX-
208 is also being tested in patients with pre-diabetes, demonstrat-
ing effects in HDL lipidome and glucose metabolism that may
protect against the development of type 2 diabetes.159

Furthermore, some of the bromodomain inhibitors studied
for cancer therapies have also been tested in diabetes and
inflammatory diseases. For example, I-BET151 suppressed the
development of type 1 diabetes in mice.160 Another study sug-
gests that BET inhibitors may be useful to treat diabetic
patients resistant to insulin because it was observed that JQ1
increases insulin secretion in vitro and decreased intracellular
triglyceride stores in cells.161 In inflammation, JQ1 was reported
to suppress psoriasis-like skin inflammation in mice by modu-
lating RORC/IL-17A pathway.162 In addition, JQ1163 and
I-BET151164 prevented synovial inflammation in rheumatoid
arthritis synovial fibroblasts. I-BET151 also regulates IL-6 pro-
duction, decreasing the early symptoms in a multiple sclerosis
mouse model.165 I-BET762 was also reported to have high anti-
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inflammatory potential by regulating the expression of key
inflammatory genes.59 Moreover, a recent study described that
inhibition of BET bromodomain also suppresses vascular
inflammation by inhibiting NF-kB and MAPK activation.166

Aberrant protein acetylation is common in cancer as well as in
other disorders such as neurological and cardiac disease. Besides
bromodomain inhibition, HAT activation emerged as other
potential strategy in treating diseases through modulation of pro-
tein acetylation levels and consequent gene expression regulation.
Several positive modulators of HATs have been identified in the
last few years. CTPB, an anacardic acid derivative, was reported
as a selective activator of p300 (KAT3B) HAT activity but not
PCAF (KAT2B), which enhanced HAT-dependent transcrip-
tional activation.167 Posterior studies reported long chain alkyli-
denemalonates (LoCAMs) as a novel class of HAT modulators
with a powerful apoptotic effect.168 Important to highlight in this
family of compounds are the unique properties of pentadecylide-
nemalonate 1b (SPV106), that leads to PCAF (KAT2B) acetyla-
tion activity increase, together with its inhibitory properties
against CBP (KAT3A) and p300 (KAT3B).168,169 This inspired
the synthesis of SVP106 analogs that feature different levels of
activity modulation for KAT2B and KAT3B simultaneously.170

SPV106 has been successfully used in neurological171 and cardio-
logical172,173 studies where the acetylation activity of KAT2B was
investigated. Moreover, in cardiac mesenchymal cells, SPV106
recovered differentiation and proliferation in patients with diabe-
tes.174 Additionally, TTK21 was reported as an activator of CBP
(KAT3A) and p300 (KAT3B), which was able to promote neuro-
genesis and increased long-term memory in adult mice.175 These
HAT positive modulators may be useful for a better understand-
ing the biology of HATs and also may open new treatment strate-
gies for cancer as well as for other diseases frequent in developed
societies like cardiac and brain disease.

Concluding remarks

Since the discovery of the high potency of (C)-JQ1 and I-BET762
in NMC and subsequently in other types of cancer, a large num-
ber of bromodomain inhibitors have been developed. Currently,
several clinical trials of BET inhibitors, representing a new family
of compounds for cancer-targeted therapy, are underway. Discov-
ery of non-BET inhibitors will also help elucidate the possible role
(s) of bromodomain-containing proteins in cancer, and reveal
new druggable targets for combating this disease. The problems
of specificity should be overcome in the near future, but bromo-
domain inhibitors already show great potential as new drugs in
cancer therapy. Progress in this field of research should reveal
new molecular targetable pathways, and even novel biomarkers
that predict bromodomain-inhibitor sensitivity, which would
represent a significant step toward personalizedmedicine.
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