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Abstract
Many time series problems feature epidemic changes—segments where a parameter
deviates from a background baseline. Detection of such changepoints can be improved
by accounting for the epidemic structure, but this is currently difficult if the background
level is unknown. Furthermore, in practical data the background often undergoes nui-
sance changes, which interfere with standard estimation techniques and appear as
false alarms. To solve these issues, we develop a new, efficient approach to simulta-
neously detect epidemic changes and estimate unknown, but fixed, background level,
based on a penalised cost. Using it, we build a two-level detector that models and
separates nuisance and signal changes. The analytic and computational properties of
the proposed methods are established, including consistency and convergence. We
demonstrate via simulations that our two-level detector provides accurate estimation
of changepoints under a nuisance process, while other state-of-the-art detectors fail.
In real-world genomic and demographic datasets, the proposed method identified and
localised target events while separating out seasonal variations and experimental arte-
facts.

Keywords Changepoint detection · Piecewise stationary time series · Segmentation ·
Stochastic gradient methods

1 Introduction

The problemof identifyingwhen the probability distribution of a time series changes—
changepoint detection—has been studied since the middle of the 20th century. Early
developments stemmed from operations research (Page 1954). However, as automatic
and continuous data collection becamemore common,many newuse cases for change-
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point detection have arisen, such as seismic events (Li et al 2016), epidemic outbreaks
(Texier et al 2016), gravity wave search (McNabb et al 2004), and network traffic
spikes (Hochenbaum et al 2017). Stimulated by such practical interest, the growth of
corresponding statistical theory has been rapid, as reviewed in Aminikhanghahi and
Cook (2016), Niu et al (2016) and Truong et al (2020).

Different applications pose different statistical challenges. If a single drastic change
may be expected, such as when detecting machine failure, the goal is to find a method
with minimal time to detection and a controlled false alarm rate (Lau and Tay 2019).
More often, both the number and locations of changepoints must be estimated; the
challenge then is to achieve this in a computationally efficient way. Some problems,
such as peak detection in sound (Mesaros et al 2017) or genetic data (Hocking et al
2017), feature epidemic segments— changepoints followed by a return to the back-
ground level—and incorporating this constraint can improve detection or simplify
post-processing of outputs.

Current detection methods that do incorporate a background level assume it to be
stable throughout the data (e.g., Fisch et al 2018; Zhao and Yau 2019). However, this
is not realistic in common applications. In genetic analyses such as measurements
of protein binding along DNA there may be large regions where the background
level is shifted due to structural variation in the genome or technical artefacts (Zhang
et al 2008). Similarly, a standard task in sound processing is to detect speech in the
presence of dynamic background chatter (Mesaros et al 2017). In various datasets from
epidemiology or climatology, such as wave height measurements (Killick et al 2012),
seasonal effects are observed as recurring background changes and will interfere with
the detection of shorter events. Methods that assume a constant background will be
inaccurate in these cases, while ignoring the epidemic structure entirely would cost
detection power and complicate the interpretation of outputs.

Our goal is to develop a general method for detecting epidemic changepoints in the
presence of nuisance changes in the background. Furthermore, we allow the two types
of changes to affect the same parameter, and assume that they are only distinguished
by their duration: this would allow analysis of the examples above, which share the
property that the nuisance process is slower. The closest research to ours is that of
Lau and Tay (2019) for detecting failure of a machine that can be switched on, and
thus undergo an irrelevant change in the background level. However, the setting there
concerned a single changewith known background and nuisance levels; in contrast, we
are motivated by the case where multiple changes may be present, with only duration
distinguishing their types. Detection then requires two novel developments: (1) rapid
estimation of local background level, (2) modelling and distinguishing the two types
of potentially overlapping segments.

These developments are presented in this paper as follows: after a background sec-
tion we present a new algorithm that simultaneously detects epidemic changepoints
and estimates the unknown background level (Sect. 3). The convergence and consis-
tency of this algorithm are proved. While this algorithm is of its own interest, we use it
to build a detector that allows local variations in the background, i.e., nuisance changes,
in Sect. 4. In Sect. 5 we investigate the algorithms using simulations, before showing
how the proposed nuisance-robust detector can be applied to two problems: detect-
ing histone modifications in human genome, while ignoring structural variations, and
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detecting the effects of the COVID-19 pandemic inmortality data, robustly to seasonal
effects. Compared to state-of-the-art methods, the proposed detector produced lower
false-alarm rates (or more parsimonious models), while retaining accurate detection
of true signal peaks.

2 Background

In the general changepoint detection setup, the data is a sequence x0:n = {x0, . . . , xn},
split by changepoints 0 < τ1 < τ2 < · · · τk < n into k+1 segments. The observations
within each segment are drawn from a distribution f (x; θ), with potentially different
values of parameter θ for each segment. The most common example is the change in
mean of a Gaussian, i.e., for each t ∈ [τi , τi+1), xt ∼ N (μi , σ

2), for known, fixed
σ 2. (We assume θ ∈ R

1 to keep notation clearer, but multidimensional problems are
also common.)

The aim is to estimate the number and position of all changepoints {τi } in the data. A
common approach is to use a penalised likelihood cost: define a segment cost function
C(xa:b; θ) = − log f (xa:b; θ), and a penalty p(k) for the number of changepoints k.
The full cost of xτ0+1:τk+1 (where τ0 = −1 and τk+1 = n) with segment parameters θ

then is (here and further vectors are denoted in bold):

F(n; τ , θ , k) =
k∑

i=0

C(xτi+1:τi+1; θi ) + p(k). (1)

Changepoint number andpositions are estimatedbyfinding F(n) = min F(n; τ , θ , k).
Such estimation has been shown to be consistent for a range of different data generation
models (Fisch et al 2018; Zheng et al 2019).

For this problem, computing the true minimum is hard—a naïve brute force
approach would require O(2n) tests. Approaches to reducing this fall into two broad
classes: (1) simplifying the search by memoisation and pruning of paths (Jackson et al
2005; Killick et al 2012); (2) using greedy methods to find approximate solutions
faster (Fryzlewicz 2014; Baranowski et al 2019). In both classes, there are methods
that can consistently estimate changepoints in linear time under certain conditions.

The first category is more relevant here. It is based on the Optimal Partitioning
(OP) algorithm (Jackson et al 2005). Let the data be partitioned into discrete blocks
Bi : ⋃

i Bi = x0:n , so Bi ∩ Bj = ∅,∀i �= j . A function V that maps each set of blocks
Pj = {Bi } to a cost is block-additive if:

∀P1, P2, V (P1 ∪ P2) = V (P1) + V (P2). (2)

If each segment incurs a fixed penalty β = p(k)/k, then the cost F defined in (1) is
block-additive over segments, and can be defined recursively:

F(s) = min
t

(F(t) + C(xt+1:s) + β) .
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In OP, this cost is calculated for each s ≤ n, and thus its minimisation requiresO(n2)
evaluations ofC . Furthermore, when the cost functionC is such that for all a ≤ b < c:

C(xa:c) ≥ C(xa:b) + C(xb+1:c) (3)

then at each s it can be determined that some candidate segmentations cannot be
“rescued” by further segments, and so they can be pruned from the search space. This
approach further reduces the complexity, and gave rise to the family of algorithms
called PELT, Pruned Exact Linear Time (Killick et al 2012). Note that OP and PELT do
not rely on any probabilistic assumptions and find the exact minimum. Other pruning
schemes are available as well, with different constraints (Maidstone et al 2016).

In this paper, we focus on the epidemic variation of the basic changepoint model—
here, a change in regime appears for a finite time and then the process returns to the
background level. The pairs of changepoints si , ei define segments, outside of which
the data is drawn from a background distribution fB . The data model then becomes:

f (xt ) =
{
fS(xt ; θi ) if ∃i : si ≤ t ≤ ei
fB(xt ) otherwise.

(4)

Various methods for multiple changepoint detection in this setting have been proposed
(Jeng et al 2010; Fisch et al 2018; Zhao and Yau 2019). These use a cost function that
includes a separate term C0 for the background points:

F(n; {(si , ei )}k , θ , k) =
k∑

i=1

C(xsi :ei ; θi ) + C0({xt : t /∈
⋃

i

[si , ei ]}; θ0) + p(k) (5)

A common choice for the background distribution is some particular “null” case of
the segment distribution family, so that fB(x) = fS(x; θ0) andC0(·) = − log fB(·) =
C(·; θ0). However, while the value of θ0 is known in some settings (such as two copies
of DNA in genetic data), often it needs to be estimated. Since θ0 is shared across all
background points, the cost function is no longer block-additive as in (2), and OP and
PELT algorithms cannot be directly applied.

One solution is to substitute the unknown parameter with some robust estimate of
it, based on the unsegmented series x0:n . The success of the resulting changepoint
estimation then relies on this estimate being sufficiently close to the true value, and
so the non-background data fraction must be small (Fisch et al 2018). This is unlikely
to hold in our motivating case, when nuisance changes in the background level are
possible.

Another option is to define:

F(n; θ0) = min
k,{(si ,ei )}k ,{θi }k

F(n; {(si , ei )}k, {θi }k, θ0, k),

which can beminimised usingOP or PELT, and thenminimise it over θ0 using gradient
descent (Zhao and Yau 2019). The main drawback of this approach is an increase in
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computation time proportional to the number of steps needed for the outer optimisation
(typically > 20).

3 Detection of changepoints with unknown background level

To solve the epidemic model in (4) efficiently when the background is unknown
and large proportion of non-background data is possible, we introduce Algorithm 1.
Similarly to other epidemic changepoint detectors, the algorithm seeks to minimise
the penalised likelihood-based cost (5). This is done using OP in steps 3–12, which
involves recalculating the optimal segmentation for each new data point.

The main innovation is that we update the estimate of θ0 after each point (step 6):
if the new data point is determined to come from the background distribution, the
estimate is recalculated from the current background points. For full generality, the
algorithm is presented with any estimator g for the background parameter, although
we will focus on the case where g is the sample mean or variance. These can be
updated using their recursive formulas, which is particularly fast, requiring onlyO(1)
operations at each point.

The iterative updating produces a good estimate in a single pass over the data, and
so is more computationally efficient than aPELT (Zhao and Yau 2019), which repeats
the entire segmentation with many possible θ0 values. Because the proposed algorithm
simultaneously segments and estimates the background, it is also more accurate and
robust than methods that attempt to estimate θ0 from unsegmented data, such as CAPA
(Fisch et al 2018).

The algorithm as stated here includes a second pass over the data (step 13), repeating
the segmentationwith the final estimate of θ0. The purpose is to update the changepoint
positions that are close to the start of the data and so had been determined using less
precise estimates of θ0. This simplifies the theoretical performance analysis, but an
attractive option is to use this algorithm in an online manner, without this step. We
evaluate the practical consequences of this omission explicitly in Sect. 5.

The algorithm also includes a search length parameter l: this may be set to limit
segment duration based on prior knowledge (as will be used later in the paper for
signal segments), or kept unlimited, as l = n.

We will demonstrate some theoretical properties of this approach next. In Sect. 5
we investigate its performance with simulations.

3.1 Convergence

The changepointmodel can be understood as a function over an interval that is sampled
to obtain n observed points.We explore the properties of the algorithm as the sampling
density increases: in this setting, the number and strength of changes are fixed, but the
length of segments grows as o(n).

Theorem 1 Consider the problem of an epidemic change in mean, with data x0:n
generated as in (4). Assume the pdf fB(x) and marginal pdf of segment points fS(x)
are symmetric and strongly unimodal, with unknown background mean θ0, and that
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Algorithm 1 Detection of changepoints with unknown background level

1: Input: C0,C, β, x0:n ; an estimator g
2: Initialize F(0) = 0, B(0) = {x0}, θ0 = g(B(0))
3: for t ∈ 1, . . . , n do
4: Calculate FB = F(t − 1) + C0(xt ; θ0), and FS = min1≤v≤l F(t − v) + C(xt−v+1:t ) + β

5: if FB < FS then
6: Assign B(t) = B(t − 1) ∪ xt , and recalculate θ0 as g(B(t))
7: else
8: Assign B(t) = B(t − v) (here v: argmin FS in step 4)
9: Store changepoint t
10: end if
11: F(t) = min{FB , FS}
12: end for
13: Repeat steps 3-12, without updating θ0
14: Output: θ0 and changepoints

data points within each segment are iid. Denote by wt the estimate of θ0 obtained by
analysing x0:t by Algorithm 1. The sequence {wt } converges:

1. to the true background value θ0 almost surely if
∫ ∞
−∞ x fS(x)dx = θ0.

2. to a neighbourhood (θ0 − ε, θ0 + ε) almost surely, where ε → 0 as the number of
background points n between successive segments n → ∞.

We refer the reader to Supplementary Material S1 for the proof. It is based on a
result by Bottou (1998), who established conditions in which an online minimisation
algorithm almost surely converges to the optimum. We show that in the first case,
the updating process in our algorithm satisfies these conditions directly. (This case
could arise with various combinations of fixed θi , or, for example, if the segment
means are modelled as coming from a Gaussian prior centred around θ0.) In the
second case, weak changes may be missed and cause wt to deviate from θ0. Then
the conditions can be satisfied by defining update cycles comprising points between
successive misclassifications. As n increases, weaker changes get detected accurately,
so the frequency of misclassification drops and convergence improves.

3.2 Consistency for Gaussian data

As the sampling density increases, more accurate estimation of the number and loca-
tions of changepoints is expected; this property is formalised as consistency of the
detector. Fisch et al (2018) showed that detectors based on minimising penalised cost
are consistent for Gaussian data, and their result can be adapted to prove consistency
of Algorithm 1. The strengthened SIC penalty α log(n)1+δ is used. Additionally, fol-
lowing Fisch et al (2018), we set the following minimum signal strength bound:

∀i, (ei − si )	i > log(n)1+δ, (6)
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where 	i represents the strength of change associated with segment i , relative to the
background parameters μ0, σ0:

	i = min(	̃i , 	̃
2
i ), with 	̃i = log

(
(μ0 − μi )

2 + 2(σ 2 + σ 2
i )

4σ0σi

)
.

Theorem 2 Let the data x0:n be generated from the epidemic changepoint model (4),
with fB and fS Gaussian, and the changing parameter θ be either its mean or variance
(assume the other parameter is known). Further, assume (6) holds for k changepoints.
Analyse the data using Algorithm 1 with penalty β = α log(n)1+δ , α, δ > 0. The
estimated number and position of changepoints will be consistent, i.e. ∀ε > 0, n > B:

P

(
k̂ = k,max{|ŝi − si |, |êi − ei |} <

A

	i
log(n)1+δ,∀1 ≤ i ≤ k

)
≥ 1 − Cn−ε, (7)

for some A, B,C that do not increase with n.

The proof is given in Supplementary Material S2. We use the connection between
Algorithm 1 and stochastic gradient descent to establish error bounds on the back-
ground parameter estimates. These bounds then allow us to apply a previous
consistency result (Fisch et al 2018) to our case.

Remark Theorem 2 still holds if the other parameter is not known, but estimated to

a precision ofO
(√

log(n)/n
)
. As shown in Fisch et al (2018), if the non-background

contamination is limited, this is satisfied by robust estimators such as the interquartile
range for scale.

Standard PELT-style pruning can be applied to Algorithm 1, with most likelihood-
based costs. We detail the corresponding implementation and show that it does not
change the optimisation result in Supplementary Material S3.

4 Detecting changepoints with a nuisance process

4.1 Problem setup

In this section, we consider the changepoint detection problem when there is an
interfering nuisance process. We assume that this process, like the signal, consists
of segments, which we denote by sNj , eNj . Data within these segments is generated
from a nuisance-only distribution fN , or from some distribution fN S if a signal occurs
at the same time. In total, four states are possible, so the overall model of data is:

f (xt ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fN S(xt ; θi , θ
N
j ) if ∃i, j : t ∈ [si , ei ] ∩ [sNj , eNj ]

fS(xt ; θi ) if ∃i : t ∈ [si , ei ], t /∈ ∪ j [sNj , eNj ]
fN (xt ; θN

j ) if ∃ j : t ∈ [sNj , eNj ], t /∈ ∪i [si , ei ]
fB(xt ) otherwise.

(8)
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We add two more conditions to ensure identifiability:

1. The nuisance process evolves more slowly than the signal process, so min(eNj −
sNj ) > max(ei − si ).

2. Signal segments are either entirely contained within a nuisance segment, or entirely
out of it:

∀i, j, either [si , ei ] ⊂ (sNj , eNj ), or [si , ei ] ∩ [sNj , eNj ] = ∅. (9)

Remark In practice, there should be a sufficient gap between these lengths to allow
for error in s, e estimates, typically of order o(log n). This is satisfied in our setting
where the changepoint positions are fixed. Violating the second condition produces
several shorter segments which cannot be unambiguously resolved, but in practice will
result in one or more detections near the true signal segment and thus is not a major
obstacle.

To define the penalised cost of such a model, let XS = ⋃
i xsi :ei , XN = ⋃

j xsNj :eNj ,
set penalties p(k) = βk, p′(m) = β ′m for the numbers of signal and nuisance
segments, respectively, and cost functions CNS, CS, CN , C0 corresponding to the
log-likelihoods of each of the distributions in (8). Then the full cost is:

F(n; {(si , ei )}k , k, {(sNj , eNj )}m ,m, θ) = C0(x0:n \ (XS ∪ XN )) +
k∑

i=0

CS(xsi :ei \ XN ; θi )

+
m∑

j=0

(
CN (xsNj :eNj \ XS; θN

j ) +
k∑

i=0

CNS(xsNj :eNj ∩ xsi :ei ; θi , θ
N
j )

)
+ βk + β ′m. (10)

4.2 Proposedmethod

To minimise the cost in (10), first notice that it can also be expressed, using k j as the
number of signal segments that overlap a nuisance segment j and k0 = k −∑

k j , as:

F(n; {(si , ei )}k, k, {(sNj , eNj )}m,m, θ) = C0(x0:n \ (XS ∪ XN ))

+
k0∑

i=0

CS(xsi :ei \ XN ; θi ) + βk0 +
m∑

j=0

(C ′(xsNj :eNj ) + β ′).

with C ′(·) = F(·; {(si , ei )}k j , {θ}k j , k j ), the standard epidemic cost in (5). That is,
over each proposed nuisance segment sNj : eNj , an epidemic changepoint problemwith

unknown background parametermust be solved. Condition (9) ensures thatC ′,CS,C0

are independent (do not share any points or parameters), so F is block-additive and
can be minimised by OP.

A method to minimise this cost is outlined in Algorithm 2. In it, an outer loop
proceeds over the data to identify segments by the usual OP approach. Length bound
l determines what type of cost is applied: signal segment cost CS , or nuisance (with
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potential signals) cost C ′. If C ′ is needed, it is minimised in an inner loop using
Algorithm 1. This is a key difference from related methods: evaluating more complex
cost C ′ is only possible because of the efficiency of Algorithm 1. Thus, the parameter
l allows incorporating prior knowledge about signal duration to distinguish segment
types, and should ideally be set so that min(eNj − sNj ) > l > max(ei − si ).

By Theorem 2, this process will estimate the number and positions of true segments
consistently given accurate assignment of sNj , eNj . However, the latter event is subject
to a complex set of assumptions on relative signal strength, position, and duration of
the segments. Therefore, we do not attempt to describe these in full here, but instead
investigate the performance of the method by extensive simulations in Sect. 5.3.

Algorithm 2 Adaptive segmentation by changepoint detection

1: Input: C0,CS ,CN ,CNS , β, β ′, l, x0:n
2: Initialize F(0) = 0, lists of segments chpS = ∅, chpN = ∅
3: for t ∈ 1, . . . , n do
4: for t ′ ∈ 0, . . . , t − l − 1 do
5: Apply Algorithm 1 to xt ′+1:t , store returned cost as C ′ and changepoints as chpNS(t ′)
6: FN (t ′) = F(t ′) + C ′ + β ′
7: end for
8: FB = F(t − 1) + C0(xt )
9: FS = min1≤v≤l F(t − v) + CS(xt−v+1:t ) + β

10: FN = min FN (t ′)
11: Assign F(t) = min{FB , FS , FN }
12: if F(t) = FB then
13: Assign chpS(t) = chpS(t − 1), chpN (t) = chpN (t − 1)
14: else if F(t) = FS then
15: Assign chpS(t) = chpS(t − v) ∪ (t − v, t) with v = argmin FS
16: chpN (t) = chpN (t − 1)
17: else
18: Assign chpS(t) = chpS(t ′) ∪ chpNS(t ′)
19: chpN (t) = chpN (t ′) ∪ (t ′, t) with t ′ = argmin FN
20: end if
21: end for
22: Output: changepoint positions chpS(n) = {(ŝi , êi )} and chpN (n) = {(ŝ Nj , êNj )}

Algorithm 2 is stated assuming that a known or estimated value of the parameter θ0,
corresponding to the background level without the nuisance variations, is available.
In practice, it may be known when there is a technical noise floor or a meaningful
baseline that can be expected after removing the nuisance changes. Alternatively, θ0
may be substituted by a robust estimate, or the method can be modified to estimate
it simultaneously with segmentation, using a principle similar to Algorithm 1. No
relation between the distributions fB, fS, fN , fN S is assumed, although in subsequent
sections we will mostly focus on the challenging case when both signal and nuisance
changes affect the same parameter.

123



J. Juodakis, S. Marsland

4.3 Pruning

In the proposed method, the estimation of the mean of segment j is sensitive to the
segment length, therefore the cost C ′ is not necessarily block-additive (3), and so it
cannot be guaranteed that PELT-like pruningwill be exact. However, we can establish a
local pruning scheme that retains the exact optimumwith probability→ 1 as n → ∞.

Proposition 1 Assume data x0:n is generated from a Gaussian epidemic changepoint
model, and that the distance between changepoints is bounded by some function A(n):

∀i, j, j ′ : min{|sNj − eNj ′ |, |si − sNj |, |ei − eNj |} > A(n).

At time t, the solution space is pruned by removing:

kpr ,t = {k : F(k − 1) + C ′(xk:t ) ≥ min
m

F(m − 1) + C ′(xm:t ) + α log(n)1+δ}. (11)

Here m ∈ (t − A(n); t], k ∈ (t − A(n); t], k �= m. Then ∀ε > 0, there exist constants
B, n0, such that when n > n0, the true nuisance segment positions are retained with
high probability:

P

(
∀ j : sNj /∈

⋃

t

kpr ,t , e
N
j /∈

⋃

t

kpr ,t

)
≥ 1 − Bn−ε .

The proof is given in Supplementary Material S4. The assumed distance bound
serves to simplify the detection problem: within each window (t − A(n), t], at most
1 true changepoint may be present, and the initial part of Algorithm 2 is identical
to a standard epidemic changepoint detector. It can be shown that other candidate
segmentations in the pruning window are unlikely to have significantly lower cost
than the one associated with sNj , eNj , and therefore s

N
j , eNj are likely to be retained in

pruning.
This scheme only prunes within windows of user-set size A(n) and so is less effi-

cient. By choosing large A(n), the efficiency can be increased, but that may violate the
data generation model and cause some true changepoints to be lost. However, assum-
ing that the overall estimation of nuisance changepoints is consistent, Proposition 1
extends to standard pruning over the full dataset. We show that this holds empirically
in Sect. 5.3.

5 Simulations

In this section,wepresent the simulations used to evaluate the performance of themeth-
ods. The corresponding R code is available at https://github.com/jjuod/changepoint-
detection.
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5.1 Algorithm 1 estimates the background level consistently

Firstly, we tested that Algorithm 1 estimates the background parameter accurately
(Theorem 1). Datasets were generated under three different scenarios with changes in
mean:

One segment Gaussian with one signal segment: n data points were drawn as
xt ∼ N (θt , 1), with θt = 3 at times t ∈ (0.3n; 0.5n], and 0 otherwise (background
level).

Multiple Gaussian with multiple signal segments: n data points were drawn as
xt ∼ N (θt , 1), with:

θt =

⎧
⎪⎨

⎪⎩

−1 when t ∈ (0.2n; 0.3n] ∪ (0.7n; 0.8n]
1 when t ∈ (0.5n; 0.6n]
0 otherwise.

Heavy tail Heavy tailed data with one signal segment: n data points were drawn
from the generalized t distribution as xt ∼ T (3) + θt , with θt = 2 at times t ∈
(0.2n; 0.6n] and 0 otherwise.

We generated time series for each of the three scenarios with values of n between 30
and 750, with 500 replications for each n. Note that the segment positions remain the
same for all sample sizes, so the increase in n could be interpreted as denser sampling
of the underlying function.

Each time series was analysed using Algorithm 1 to estimate θ0. The maximum
segment length was set to l = 0.5n and the penalty to β = 3 log(n)1.1. The cost was
computed using the Gaussian log-likelihood function with the true variance value.
This means that the cost function was mis-specified in Scenario 3, and so provides a
test of the robustness of the algorithm (although the variance was set to 3, as expected
for T (3)).

For comparison, we analysed the data using the R package anomaly (Fisch et al
2018), which estimates θ0 as the median of the entire time series x1:n . The method
allows separating segments of length 1, but we treated them as standard segments. We
also implemented the profile aPELT algorithm (Zhao and Yau 2019) by adding an
optimisation loop over the possible θ0 values to a PELT-style detector. The original
paper also allows for series starting in a segment,whichwedid not implement as it is not
the case in our simulations. Both comparisonmethods used the samemaximum length,
penalty and background variance values as Algorithm 1. As the oracle efficiency limit,
based on the CLT, we show the quantiles ofN (0, σ 2/

√
nB), with nB the total number

of background points.
As seen in Fig. 1, Algorithm 1 produced consistent and efficient estimates of the

background level. The anomaly estimator, based on non-segmented data, was often
biased, although may be preferrable at low n, where other estimates showed large
variance. The optimization of aPELT sometimes settled in local minima in which the
background was estimated entirely from non-background points, causing major errors
even at large sample sizes. At n > 400, our algorithm provides the lowest total error
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Fig. 1 Consistency of the background level estimation. Time series simulated in three different scenarios
were analysed by Algorithm 1 (shown in red). Lines are the inter-quartile range (solid) and 5–95% range
(faint) of the background parameter estimates observed in 500 replications. For comparison, we show the
ranges of background estimates obtained from two other segmentation algorithms and an oracle estimator
(mean of true background points)

and near-oracle performance in all tested scenarios, even with the mis-specified cost
function in the heavy tail scenario.

5.2 Segment positions are accurately estimated by Algorithm 1

The same setup was used to evaluate the consistency of estimated segment number
and positions. From the simulations described above, we extracted the mean number
of segments reported by each method, and also calculated the true positive rate (TPR)
as the fraction of simulations in which the method reported at least 1 changepoint
within 0.05n points of each true changepoint.

In all three scenarios, the TPR for the proposed Algorithm 1 approaches 1 (Table
1). When the signal is strong (one segment scenario), the segmentation was accurate
even at n = 30. In scenario heavy tail, the algorithm correctly detected changes at the
true segment start and end, but tended to fit the segment as multiple ones, due to the
heavy tails of the t distribution. The comparison methods performed similarly to ours
in the multiple scenario, but showed more false alarms or lower TPR in the other two
scenarios. This is consistent with their estimation results seen in Fig. 1, and highlights
the importance of accurately determining the background for good segmentation.

We also retrieved the changepoint positions that were estimated in step 12 of Algo-
rithm 1. This corresponds to its online usage, in which segmentation is not repeated
after the first pass over the data. This had very little impact on the result accuracy
(Table ST1 in Supplementary Material S6), suggesting that this simplification can be
safely used.
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Table 1 Consistency of the estimated changepoints

Scenario n Mean # seg. TPR

Alg. 1 Anomaly aPELT Alg. 1 Anomaly aPELT

One segm. 30 1.12 1.15 1.10 0.916 0.942 0.934

90 1.06 1.25 1.16 0.998 0.998 1.000

180 1.04 1.42 1.66 0.996 1.000 0.986

440 1.03 2.13 2.06 0.994 1.000 0.986

750 1.01 2.68 2.27 0.998 1.000 0.990

Multiple 30 0.53 0.37 0.29 0.000 0.002 0.002

90 1.12 1.06 1.03 0.010 0.022 0.008

180 1.83 1.99 1.86 0.128 0.168 0.124

440 2.89 2.97 2.96 0.814 0.866 0.868

750 3.02 3.02 3.02 0.982 0.972 0.984

Heavy 30 0.66 0.56 0.47 0.124 0.080 0.082

90 1.41 1.45 1.38 0.594 0.510 0.646

180 1.86 2.17 1.88 0.860 0.766 0.846

440 2.83 3.70 3.07 0.984 0.930 0.858

750 3.86 5.10 4.09 1.000 0.986 0.840

Time series simulated in three different scenarios were analysed using Algorithm 1 or two other epidemic
detectors, in 500 replications for each n. The mean number of reported segments and the TPR (fraction
of replications when a changepoint was detected within 0.05n of each true changepoint) are shown. The
number of true segments was 1, 3, and 1 for the one segm., multiple and heavy scenarios, respectively

Finally, in each iteration we also calculated the cost F(n) (i.e., log-likelihood of
the fitted Gaussian changepoint model, with penalty β) to evaluate if the algorithm
achieves the stated optimization objective. The minimum reached by Algorithm 1 was
as good as, or even smaller than, the cost based on true segmentation (Table ST2
in Supplementary Material S6). Very little differences between the full and online
versions of the algorithm were seen.

5.3 Algorithm 2 recovers true segments under interference

We generated time series under three different scenarios. In each, points x1:n were
drawn from a Gaussian distribution with changes in mean. Series were generated for
n between 30 and 220, in 1000 replications at each n.

Scenario 1Asignal segment overlapping a nuisance segment: xt ∼ N (θ S
t +θN

t , 1),
with θ S

t = 2 when t ∈ (0.3n; 0.5n], 0 otherwise, and θN
t = 2 when t ∈ (0.2n; 0.7n],

0 otherwise.
Scenario 2 A nuisance segment and two non-overlapping signal segments: xt ∼

N (θ S
t + θN

t , 1), with:

θN
t = 1.5 when t ∈ (0.2n; 0.4n], 0 otherwise.
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θ S
t =

⎧
⎪⎨

⎪⎩

3 when t ∈ (0.5n; 0.6n]
−3 when t ∈ (0.7n; 0.8n]
0 otherwise.

Scenario 3 Many weak signal segments: xt ∼ N (θ S
t , 1), θ S

t = θ j when t/n ∈
(0.1 j; 0.1 j + 0.05] for j = 1, . . . , 9; 0 otherwise. Segment means are random, θ j ∼
Unif(−4, 4).

Each series was analysed by five methods. Besides Algorithm 2 (proposed), we
used the epidemic detectors anomaly and aPELT as in the simulations above. All
penalties for these methods were set to 3 log(n)1.1. The sparsemethod is an epidemic
detector designed for sparse segments with a known background level (Jeng et al
2010). It performs a greedy search over all possible intervals up to length l. We used a
penalty of

√
2 log(nl), recommended by the original publication. All of these methods

allow a maximum segment length, which we set to l = 0.33n in scenario 1, 0.15n in
scenario 2, 0.2n in scenario 3. Global background parameters μ0 = 0, σ = 1 were
also provided to all methods (although aPELT will re-estimate μ0 on its own).

As an example of a different approach, we included the narrowest-over-threshold
detector implemented in R package not, with default parameters. This is a non-
epidemic changepoint detector that was shown to outperform most comparable
methods (Baranowski et al 2019). Since it does not include the background-signal
distinction, we define signal segments as regions between two successive change-
points where the mean exceeds μ0 ± σ0.

For evaluation, we declared a true positive if a changepoint of the correct type (i.e.,
start or end of a signal segment)was reportedwithin 0.05n points of a true changepoint.
Using these, the true positive rate and mean localization error were calculated as
defined in the Supplementary Material. We also calculated positive predicted value
(PPV) as the fraction of true positives among all the reported segments: higher values
of this metric correspond to lower false discovery rate, or e.g., lower review effort if
the reported segments would be subject to further manual inspection. Furthermore, in
scenario 1, we extracted the estimate of θ corresponding to the detected segment (or
the one closest to the true position if multiple were detected). The average of these
over the replications was reported as θ̂ S .

We also compared Algorithm 2 when applied without pruning, or with global prun-
ing as in (11), with m ∈ (0; t − l) at each t . In scenarios 1 and 2, pruning changed the
result in only 4 out of 10,000 runs; some more differences (in ≤ 2% of the runs) were
observed in scenario 3. As the results were mostly identical, we only present those
obtained with pruning from here on.

We observed that the proposed method (with pruning) successfully detected true
signal segments, with much fewer false positives than the other methods (Fig. 2). The
number of nuisance detections was accurate in scenario 1, and slightly underestimated
in favour of more signal segments in scenario 2, most likely because the simulated
nuisance length was close to the cutoff l. As expected, the reference methods that do
not include nuisance segments in the model identify them as multiple changepoints;
as a result, the number of segments was over-estimated up to 3-fold (Fig. 2).
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Fig. 2 Relative bias in the number of changepoints estimated by the proposed Algorithm 2 (pruned), and
four alternative detectors. Data simulated in 1000 replications. For the proposed algorithm, bias is calculated
separately in signal (solid line) and nuisance (dashed) segments

We verified that the proposed method reported the number and position of the
true segments as accurately as the other methods. There were no major differences
in absolute localization error or the fraction of true changepoints captured between
the proposed and the top methods (Supplementary Tables S3, S4). This was also
specifically tested in scenario 3: it had no nuisance segments, but the ability to estimate
themdid not harm the proposedmethod, and it performed on parwith the best detectors
(Fig. 2). The short and weak segments here were difficult to detect in general, and
not performed consistently worse, showing the benefits of utilising the background
structure, especially at smaller sampling densities.

Thus, themain practical benefit of the proposedmethod is themuch smaller number
of false alarms per true detection. This is summarized by the PPV metric in Table 2,
which shows that ourmethod consistently outperforms the others throughout scenarios
1 and 2, and is on par in scenario 3. In addition, the other models are also unable to
capture the signal-specific change in mean θ S : anomaly estimated θ̂ S = 4.00, and
not estimated θ̂ S = 3.98 for the segment in scenario 1 at n = 220. These values
correspond to the sum of the signal and nuisance effects. While the estimation is
accurate and could be used to recover the signal-specific change by post-hoc analysis,
our proposed method estimated it directly, as θ̂ S = 2.01 in scenario 1 at n = 220.

As the length bound parameter l is key to separating the segment types in our
method, but likely will not be precisely known in practice, we repeated the scenario
1 simulations with different l values. The proposed algorithm was not particularly
impacted in the range of values tested, and consistently produced around 1 signal seg-
ment and a TPR of 0.70–0.71 (Supplementary Table S5). The other epidemic detectors
were affected more, in particular the sparsemethod, for which the TPR dropped from
0.54 to 0.07 when l was increased from 0.25n to 0.33n. This example highlights the
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Table 2 The positive predictive value (PPV) of changepoint estimation by the proposed Algorithm 2 and
alternative detectors

Scenario n Proposed anomaly aPELT sparse not

1 30 0.618 0.329 0.337 0.300 0.315

60 0.719 0.297 0.303 0.203 0.304

150 0.940 0.330 0.329 0.180 0.328

220 0.950 0.331 0.329 0.161 0.330

2 30 0.868 0.731 0.805 0.691 0.639

60 0.878 0.655 0.706 0.653 0.708

150 0.955 0.560 0.572 0.598 0.666

220 0.975 0.526 0.535 0.569 0.663

30 0.994 0.992 0.993 0.989 0.819

60 0.892 0.985 0.979 0.983 0.787

150 1.000 0.999 0.999 0.999 0.996

220 0.968 0.998 0.997 0.998 0.987

Data simulated in 1000 replications. The PPV is the number of reported changepoints that are correct (within
0.05n of a true signal changepoint) divided by the total number of reported detections. The best results in
each row are highlighted

potential dangers of using greedy algorithms when overlapping segments are present.
Note however that the tested l values are overestimates of the maximum signal length:
otherwise any signal segments exceeding the specified l will be identified as nuisances
by the proposed method, and the detection power reduced correspondingly.

6 Real-world data

In this section, we present the results of real data analysis using the proposed
method. Data sources and additional experiment details are presented in Supplemen-
tary Material S5. The corresponding R code is available at https://github.com/jjuod/
changepoint-detection.

6.1 ChIP-seq

As an example application of the algorithms proposed in this paper, we demonstrate
peak detection in chromatin immunoprecipitation sequencing (ChIP-seq) data. The
goal of ChIP-seq is to identify DNA locations where a particular protein of interest
binds, by precipitating and sequencing boundDNA. This produces a density of binding
events along the genome that then needs to be processed to identify discrete peaks.
Typically, some knowledge of the expected peak length is available to the researcher.
Furthermore, the background level may contain local shifts of various sizes, caused
by sequencing bias or true structural variation in the genome (Zhang et al 2008). The
method proposed in this paper is designed for such cases, and can potentially provide
more accurate and more robust detection.
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Fig. 3 ChIP-seq read counts and analysis results. Counts provided as mean coverage in 500 bp windows for
a non-specific control sample (top) and H3K27ac histone modification (bottom), chromosome 1. Segments
detected in the H3K27ac data by the method proposed here (Algorithm 2) and three other detectors are
shown under the counts. Note that the proposedmethod can produce longer nuisance changes overlapped by
signal segments. not does not specifically identify background segments; we show the ones with relatively
low mean in light colour

We used two binding density series obtained in ChIP-seq experiments (see Sup-
plementary Material S5 for details). Broad Institute H3K27ac data is not annotated,
but includes a control track which reveals the presence of some nuisance variation
(Fig. 3, top). UCI/McGill dataset was previously used for evaluating peak detectors
(Hocking et al 2017, 2018). It includes annotations based on visual inspection. These
are weak in the sense that they indicate peak presence or absence in a region, not their
exact positions, to acknowledge the labelling subjectivity. The series were analysed
by the proposed Algorithm 2, anomaly, not, and PeakSegDisk (Hocking et al 2018),
a changepoint detector developed specifically for ChIP-seq data. The penalties of all
four detectors were calibrated to similar sensitivity, using the Broad Institute control
track (see Supplementary Material S5). Note that the proposed algorithm was used
with a cost based on Gaussian likelihood, as presented so far, even though the data are
positive counts.

In the H3K27ac data, all methods detected the two most prominent peaks, but
produced different segmentations for smaller peaks and more diffuse change areas
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(Fig. 3, bottom). All three reference detectors marked a broad segment in the area
around 120,600,000 bp. Based on comparison with the control data, this change is
spurious, and it exceeds the 50 kbp bound set for target segments. While this bound
was provided to the anomaly detector, it does not include an alternative way to model
these changes, and therefore still reports one or more shorter segments. In contrast,
our method accurately modelled the area as a nuisance segment with two overlapping
sharp peaks, even with data clearly deviating from the assumed Gaussian model.

Using not, the datawas partitioned into 16 segments. By defining segmentswith low
mean (θ < μ̂0+σ̂0) as background,we could reduce this to 8 signal segments; however,
then the short peaks around 120,200,000 bp are missed, which fit the definition of
signal (< 50 kbp) and were retained by the proposed method. This data illustrates that
choosing the post-processing required for most approaches is not trivial, and can have
a large impact on the results. In contrast, the parameters required for our method have
a natural interpretation and may be known a priori or easily estimated, and the outputs
are provided in a directly useful form.

In the UCI data, segment detections also generally matched the visually determined
labels (Fig. 4). However, our method produced the most parsimonious models to
explain the changes, reporting two nuisance segments and a single sharp peak around
62,750,000 bp. The nuisance segments correspond to broad regions of mean shift,
whichwere also detected by anomaly and not, but using 6 and 7 segments, respectively.
Notably, PeakSeg differed considerably: as this method does not incorporate a single
background level, but requires segments to alternate between background and signal,
the area around 62,750,000 bp was defined as background, despite having a mean of
4.5 μ̂0. In total, 12 segments were reported by this method. This shows that the ability
to separate nuisance and signal segments helps produce more parsimonious models,
and in this way minimises the downstream efforts such as experimental replication of
the peaks.

The visual annotations provided for this region are shown in the first row in Fig. 4.
Note that they do not distinguish between narrow and broad peaks (single annotations
in this sample range up to 690 kb in size). Furthermore, comparison with such labels
does not account for finer segmentation, coverage in the peak area, or the number of
false alarms outside it. For these reasonswe are unable to use the labels in a quantitative
way.

For a quantitative comparison of the detectors, we use SIC. The proposed method is
favoured in the Broad dataset, producing SIC of 3644, whilePeakSeg, not and anomaly
had an SIC of 4474, 22251, and 3781, respectively. The smallest SIC values in UCI
data were also produced by anomaly (5012) and our method (5045), while not resulted
in an SIC of 14572 and PeakSeg 8339. Thus, in addition to the practical benefits, the
nuisance-signal structure can provide a better fit to these series than models that allow
only one type of segments.

6.2 Europeanmortality data

The recent pandemic of coronavirus disease COVID-19 prompted a renewed interest
in early outbreak detection and quantification. In particular, analysis of mortality data
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Fig. 5 Weekly deaths in Spain, in the 60–64 years age group, over 2017–2020 (black points). Detection
results using the method proposed in this paper and three alternative methods shown as lines below

provided an important resource for guiding the public health responses to it (e.g., Baud
et al 2020; Yuan et al 2020).

We analysed weekly mortality in 60–64 year age group in Spain over a four year
period, using the four methods introduced earlier. Besides the impact of the pan-
demic, this data contains longer nuisance increases corresponding to winter seasons.
As before, Gaussian likelihood was assumed for the proposed Algorithm 2.

The detected segments are shown in Fig. 5. Three of the methods, anomaly, Peak-
Seg, and Algorithm 2, detected the sharp spikes around the pandemic period. However,
anomaly and PeakSeg also marked one winter period as a signal segment, while ignor-
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ing the others. Six segments were created by not, including a broad peak extending
past the bounds of the pandemic spike. In contrast, the proposed method marked two
sharp pandemic spikes, while also labelling all winter periods as nuisance segments.
The resulting detection is again parsimonious and flexible: if only short peaks are of
interest, our method reports those with lower false alarm rate than the other methods,
but broader segments are also marked accurately and can be retrieved if relevant. It
should be noted that the data also contains a secular increasing trend, and our method
reports an additional nuisance segment in 2020. Such trends or periodic patterns, if
expected in the data, could be removed e.g. by applying an ARMA model, and then
changepoint detectors could be more readily applied to the residuals.

As in the ChIP-seq data, comparing the results by SIC identifies our method as
optimal for this dataset (SIC of 1898 for Algorithm 2 vs. 2032, 2189, and 2388 for the
other methods). Note that the SIC penalizes both signal and nuisance segments, so in
this case our model still appears optimal despite having more parameters.

7 Discussion

In this paper, we have presented a pair of algorithms for improving detection of epi-
demic changepoints. Similarly to stochastic gradient descent, the iterative updating
of the background estimate in Algorithm 1 leads to fast convergence while allowing
large fraction of non-background points. This is utilised in Algorithm 2 to analyse
nuisance-signal overlaps. We have shown in the simulations that the algorithms out-
perform state-of-the-art methods, producing better background estimates and fewer
false positives. While the simulations and theoretical analysis focus on the specific
model of Gaussian data and step-like changes, practical results show that the detec-
tion is robust and can be usefully applied to data that strongly deviates from these
assumptions.

With the PELT-style pruning, the computational complexity of Algorithm 2 isO(n)

in the best case, which is similar to state-of-the-art methods (Killick et al, 2012;
Hocking et al, 2018). However, this is stated in the number of required evaluations of
the segment cost functionC . It is usually implicitly assumed thatC is recursive, so that
adding each new data point requires onlyO(1) operations. In our case, evaluatingC is
itself a segmentation task, and this constraint would not be achievable with segmenters
that require many passes over the data, such as aPELT (Zhao and Yau 2019) or even
more complex ones (Ma et al 2020). The online form of Algorithm 1was thus essential
to create the overlap detector: based on PELT, it can be updated recursively in O(1)
time, and allows running the full Algorithm 2 in linear time.

While many simpler methods for classic changepoint detection are available, mod-
els incorporating the epidemic structure are more accurate in weak-signal settings, as
seen in our simulations. Furthermore, the epidemic methods directly output periods
of interest without manual post-processing. This is necessary, for example, in speech
detection (Mesaros et al 2017) or observatory data analysis (McNabb et al 2004),where
the identified segments are further processed automatically. However the major practi-
cal benefit of this framework is the ability to define and separate non-target segments,
using only univariate data, as used in this paper. With multidimensional data, if the
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nuisances affect only a known subset of the variables, it may be possible to use these
to estimate and remove the nuisances first, similar to Gao et al (2018). More generally,
a common strategy for multidimensional changepoint detection is to first map such
data to lower-dimensional series, e.g. by projection (Grundy et al 2020) or summing
univariate contrast statistics over the dimensions (Zhang et al 2010). This produces a
univariate series which can then be analysed by standard algorithms, including ours,
in a variety of situations.

We anticipate that the nuisance-signal separation will aid downstream processing,
reducing the false alarm rate or the manual load if the detections are reviewed. Despite
that, it is difficult to evaluate this benefit at present: while there are recent datasets
prepared specifically for testing changepoint detection (Hocking et al 2017; van den
Burg and Williams 2020), they are based on labelling all visually apparent changes.
In future work, further application-specific comparisons could measure the impact of
neutralising the nuisance process.
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org/10.1007/s00362-022-01307-x.
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Royal Society of New Zealand Te Apārangi under Grants 17-MAU-154 and 17-UOA-295.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. This research
is supported by the New Zealand Marsden Fund, administered by the Royal Society of New Zealand Te
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