

Potential Mechanisms for Why Not All Antipsychotics Are Able to Occupy Dopamine D₃ Receptors in the Brain *in vivo*

Béla Kiss1*, Balázs Krámos2 and István Laszlovszky3

¹ Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary, ² Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary, ³ Global Medical Division, Gedeon Richter Plc., Budapest, Hungary

Dysfunctions of the dopaminergic system are believed to play a major role in the core symptoms of schizophrenia such as positive, negative, and cognitive symptoms. The first line of treatment of schizophrenia are antipsychotics, a class of medications that targets several neurotransmitter receptors in the brain, including dopaminergic, serotonergic, adrenergic and/or muscarinic receptors, depending on the given agent. Although the currently used antipsychotics display in vitro activity at several receptors, majority of them share the common property of having high/moderate in vitro affinity for dopamine D_2 receptors (D_2 Rs) and D_3 receptors (D_3 Rs). In terms of mode of action, these antipsychotics are either antagonist or partial agonist at the above-mentioned receptors. Although D₂Rs and D₃Rs possess high degree of homology in their molecular structure, have common signaling pathways and similar in vitro pharmacology, they have different in vivo pharmacology and therefore behavioral roles. The aim of this review, with summarizing preclinical and clinical evidence is to demonstrate that while currently used antipsychotics display substantial in vitro affinity for both D₃Rs and D₂Rs, only very few can significantly occupy D₃Rs in vivo. The relative importance of the level of endogenous extracellular dopamine in the brain and the degree of in vitro D₃Rs receptor affinity and selectivity as determinant factors for in vivo D₃Rs occupancy by antipsychotics, are also discussed.

OPEN ACCESS

Edited by:

Peter Falkai, LMU Munich University Hospital, Germany

Reviewed by:

Davide Amato, Medical University of South Carolina, United States Xenia Gonda, Semmelweis University, Hungary

> *Correspondence: Béla Kiss

> b.kiss@richter.hu; bkiss46@gmail.com

Specialty section:

This article was submitted to Psychopharmacology, a section of the journal Frontiers in Psychiatry

Received: 29 September 2021 Accepted: 25 February 2022 Published: 24 March 2022

Citation:

Kiss B, Krámos B and Laszlovszky I (2022) Potential Mechanisms for Why Not All Antipsychotics Are Able to Occupy Dopamine D₃ Receptors in the Brain in vivo. Front. Psychiatry 13:785592. doi: 10.3389/fpsyt.2022.785592 Keywords: schizophrenia, antipsychotics, D_3 receptor, D_2 receptor, dopamine, brain occupancy

INTRODUCTION

It is widely accepted that dysfunction of the dopaminergic neurotransmitter system plays a major role in the pathophysiology of schizophrenia. The primary pharmacotherapy of schizophrenia involves the use of antipsychotics, a group of drugs representing great heterogeneity in their chemical structure, pharmacological and functional profile, as well as clinical efficacy. At present, all available antipsychotics display affinity for D₂Rs, and it is widely accepted that D₂R antagonism or partial agonism is essential for their antipsychotic efficacy. Currently used antipsychotics display medium-to-high *in vitro* affinity for D₂R as well as D₃R, and high correlation can be demonstrated between their affinities for these receptors. This is not surprising considering the high structural homology, and the *in vitro* functional and pharmacological similarities of the two receptors. On the other hand, significant differences have been demonstrated in their *in vivo* pharmacology and behavioral roles. All currently used antipsychotics, in agreement with their *in vitro* D_2R affinity, show significant *in vivo* brain D_2R occupancy at their antipsychotic effective doses. However, despite their substantial *in vitro* D_3R affinity, not all antipsychotics demonstrated *in vivo* D_3R occupancy in animals or in humans. Here, a review is given on the data available for the *in vitro* affinity for D_2Rs and D_3Rs and a hypothesis is provided as to why a group of antipsychotics do not show significant *in vivo* brain D_3R occupancy despite their notable *in vitro* D_3R affinity.

SCHIZOPHRENIA

Schizophrenia is one of the most serious and debilitating psychiatric disorder affecting about 1% of the population disregarding economic, social, or cultural background of the society (1). Schizophrenia is characterized by positive symptoms (delusions, hallucinations) negative symptoms (social and emotional withdrawal, anhedonia, lack of motivation) and cognitive dysfunction, as well. All these symptoms may be mixed with aggressive behavior, depression, or anxiety (2–4).

The early, so called "dopamine hypothesis" stated that low prefrontal dopamine activity would cause "deficit symptoms" whereas enhanced activity in mesolimbic dopamine system would be in the background of the positive symptoms (5). In fact, the increased dopamine transmission has been demonstrated by positron emission tomography (PET) (6, 7). Further, presynaptically increased synthesis of dopamine in the basal ganglia has been found [(8, 9), see for review]. Loss of glutamatergic functions is also hypothesized and is thought to explain negative symptoms (9–11).

ANTIPSYCHOTICS

Recognition of the neuroleptic action of chlorpromazine in 1952 represented a breakthrough in the drug treatment of schizophrenia (12). Chlorpromazine was soon followed by introduction of several other "neuroleptics" such as haloperidol, fluphenazine, pimozide, sulpiride, thioridazine etc. (Interestingly enough, this group of drugs was named/categorized by their side effect profile).

At the time of their discovery, the main mechanism of action of the first-generation antipsychotics was believed to be mediated by their actions on the monoaminergic system. Carlsson and Lindquist demonstrated that haloperidol and chlorpromazine increased monoamine turnover in the rat brain and these changes were attributed to the monoamine receptor antagonism action of these compounds (13). Van Rossum was the first describing that antipsychotics exert their therapeutic effects through the blockade of dopamine receptors (14). For the history of antipsychotics' discovery see the recent review by Seeman (15).

Some antipsychotics, such as clozapine, fluperlapine and melperone were found to produce weak catalepsy in rodents, with minimal extrapyramidal symptoms and serum prolactin elevation in humans, compared to the earlier typical antipsychotic drugs, such as haloperidol. Meltzer and Matsubara explored the basis of these differences by testing the affinity of 38 antipsychotics for the rat striatal dopamine D₁ receptors (D₁Rs), D₂R and serotonin 5-HT₂ receptors (5-HT₂R). They found that the 5-HT₂R/D₂R affinity ratio was the most useful means of differentiation from the typical antipsychotics. They demonstrated that compounds displaying 5-HT₂R/D₂R affinity ratio of 1.12 or higher were the ones showing the atypical characteristics (16). These findings had significant impact on the antipsychotic drug research: the primary aim was to find antipsychotics possessing a significant serotonin 5-HT_{2A} receptor (5-HT_{2A}R) affinity that would be similar or higher than that for the D_2R . The quest for compounds with $D_2R/5$ -HT_{2A}R affinity led to discovery of risperidone, asenapine, olanzapine, quetiapine, ziprasidone, blonanserin and lurasidone, collectively classified as atypical or second-generation antipsychotics.

Atypical antipsychotics, like to the typical antipsychotics, are efficacious in the treatment of positive symptoms of schizophrenia but display relatively lower propensity to cause extrapyramidal side effects. However, it was claimed that the label of "atypical" is not fully justified as they are different from first-generation antipsychotics only in their side effect profile (e.g., weight gain, alteration in metabolic parameters, cardiovascular complications) (17–19). In fact, neither group represented major step forward in the treatment of other symptoms of schizophrenia, such as negative or cognitive symptoms.

Distinct category of second-generation antipsychotics with partial agonism at dopamine D_2R , D_3R and serotonin 5-HT_{1A} receptors (5-HT_{1A}R) as well as antagonism at serotonin 5-HT_{2A}R and 5-HT_{2B} receptors (5-HT_{2B}Rs) is represented by aripiprazole, cariprazine and brexpiprazole. Amongst these three partial agonist antipsychotics, aripiprazole and brexpiprazole display preferential binding affinity for dopamine D_2R (20, 21), whereas cariprazine has higher affinity for dopamine D_3R over D_2R receptors (22). These dopamine receptor partial agonists may be referred to as third generation antipsychotics (23). These dopamine-serotonin partial agonists were originally approved for acute schizophrenia, schizophrenia maintenance, later, however, they were found to be useful in treatment of mania, bipolar disorder, and as adjunct in unipolar depression (24).

DOPAMINE RECEPTORS

Effects of dopamine are mediated through five receptors subtypes, namely D₁-, D₂-, D₃-, D₄-, and D₅-receptors. All dopamine receptors belong to G-protein coupled receptor (GPCR) family: D₁ and D₅ receptors (D₁-receptor family) stimulate cAMP signaling pathway through a G_{α s} G-proteins, whereas D₂-, D₃- and D₄-receptors (D₂-receptor family) inhibit cAMP signaling through a G_{α i/o} G-proteins (25–29).

Expression of dopamine D_1 receptors (D_1R) is the highest in basal ganglia (caudate nucleus, putamen and globus pallidus), accumbens nuclei, substantia nigra, amygdala and the frontal cortex. The cortex, substantia nigra, hypothalamus and the hippocampus express low level of dopamine D_5 receptors (D_5Rs). High levels of D_2Rs are found in the basal ganglia, while cortical regions express low level of these receptors. D_2Rs are the primary drug targets in schizophrenia, Parkinson's disease, restless leg syndrome and neuroendocrine tumors. Highest expression of dopamine D_3Rs are found mainly in the limbic system (islands of Calleja, nucleus accumbens, ventral part of caudate nucleus), with minor/low levels of expression in cortical regions. Dopamine D_4 receptors (D_4Rs) are found with relatively low level of expression in the amygdala, hippocampus, hypothalamus, cortex and, in the substantia nigra (25–28, 30– 34).

D₂Rs AS KEY TARGETS FOR THE THERAPEUTIC ACTION OF APs

In vitro Affinity and Selectivity of Antipsychotics for Dopamine Receptors of D₂R-Subtype

First and second-generation antipsychotics possess diverse structural, pharmacological (*in vitro* receptor profile, functional activity, e.g., antagonism, partial agonism, inverse agonism) and behavioral effects and side-effect profiles. However, their common property is that all display medium-to-high affinity for dopamine receptors of D₂R-subtype (i.e., D₂R, D₃R, and/or D₄R) under *in vitro* conditions (18, 35–40). The *in vitro* affinities of currently used antipsychotics for dopamine D₂R-like (i.e., D₂R, D₃R, and D₄R subtypes) and their degree of D₃R selectivity are summarized in **Table 1**.

Daily Dose and Plasma Levels of Antipsychotics Correlates With Their *in vitro* Affinity for Dopamine D₂Rs

Seeman demonstrated a close correlation between the therapeutic doses of antipsychotics and their *in vitro* D_2R receptor affinity, but no correlation was found with D_1R affinity (45, 46). Correlation between D_2R affinities, optimal occupancy of brain D_2R for antipsychotic efficacy (i.e., 60–70%) and the free plasma levels of antipsychotics were also demonstrated (47).

Antipsychotics Occupy D₂Rs in Brain

At present, it is broadly accepted that D_2R affinity is the primary mechanism for antipsychotic efficacy (18, 36, 48, 49). Positron emission tomography (PET) studies demonstrated that for the clinical efficacy of D_2R antagonist antipsychotics, a 60–75% occupancy of brain D_2R is essential (50). In case of partial agonist antipsychotics, such as aripiprazole or cariprazine D_2R occupancy can be as high as 95% at dose levels with established clinical efficacy (51–53), whereas brexpiprazole produced only 80% occupancy at the highest dose applied (54).

At present, despite the great efforts to develop non-dopamine antipsychotics, no such compounds are approved for the treatment of positive, negative, or cognitive symptoms of schizophrenia (55).

Compound		Ki (nM)	D ₃ selectivity		
	D ₂ R	D ₃ R	D ₄ R	vs. D ₂ R	vs. D ₄ R
Amisulpride	3.0	2.4	2,369	1.3	984
Aripiprazole	0.9	1.6	514	0.56	321
Asenapine	1.4	1.8	1.8	0.78	1
Blonanserin ^l	0.28	0.28	n/a	1	-
Brexpiprazole ^{ll}	0.3	1.1	6.3	0.27	5.7
Cariprazine ^{III}	0.49	0.09	>1,000	5.8	>1,000
Chlorpromazine	2	3	24	0.67	8
Clozapine	431	283	39	1.5	0.14
F17464 ^{IV}	12.5	0.12	>1,000	104	>1,000
Fluphenazine	0.5	0.7	36	0.71	51
Haloperidol	2.0	5.8	15	0.34	2.6
lloperidone	0.4	11	13.5	0.04	1.2
Loxapine	10.0	23.3	12	0.43	0.52
Lurasidone ^V	1.0	15.7	29.7	0.06	1.9
Lumateperone ^{VI}	32	n/a	n/a	n/a	-
Olanzapine ^{VII}	21	34.7	19	0.6	0.50
Paliperidone	9.4	3.2	54.3	2.9	17
Quetiapine ^{VII}	417	383	1,202	1.1	3
Risperidone ^{VII}	6.2	9.9	18.6	0.6	0.33
Ziprasidone	4.0	7.4	105	0.54	14
Zotepine	25	6.4	18	3.9	2.8

I: (41); II: (21); III: (22); IV: (42); V: (43); VI: (44); VII: (39).

n/a, no data available.

A part of affinity data were taken from Ellenbroek an Cesura (37), and the PDSP data base (https://pdsp.unc.edu/pdspweb). The same data base-derived data for major antipsychotics are given in Gross and Drescher (38) and Kaar et al. (40), however, the affinities were somewhat different even though they were taken from the same data base. Receptor affinity data for major antipsychotics generated by Tadori et al. (20), Seeman (35), and Shahid et al. (39) also differed from the above data-based sources.

D₃R, A POTENTIAL NOVEL TARGET IN THE THERAPY OF CENTRAL NERVOUS SYSTEM DISORDERS: COMPARISON WITH D₂R

Similarities and Differences of D_2Rs and D_3Rs

Structural

The D₃R is a member of the largest phylogenetic class of GPCRs, known as class A, which contains the transmembrane domain without a large extracellular domain. Native ligands of aminergic GPCRs bind directly to the transmembrane domain, which is composed of seven transmembrane (TM) helices embedded in the cell membrane connected by three extracellular (EL) and three intracellular (IL) loops (56). The C-terminus of the protein is the eighth small α -helix (H8).

Analysis of amino acid sequence of human and rat dopamine D_2R and D_3R exhibits a high level of general sequence identity which is increased in the transmembrane helices forming a highly

conserved orthosteric binding site (OBS) (see Figures 1A-C). The most obvious differences in the sequences can be found in the intracellular loop region (ICL3) between transmembrane helices of the TM5 and TM6. However, this region is quite distant from the orthosteric binding site, and thus the differences in the ECL2 (between the TM4 and TM5) and in the secondary binding site (SBS) are more relevant for the discovery of selective D_3R vs. D₂R ligands (57, 58). Moreover, targeting SBS may be a tool for fine tuning functional activity and biased agonism (59, 60). The shape and the sequence of the ECL2 is highly different in D_2R and D₃R (see Figure 1D). The SBS is the most probable binding site for the tail group of several elongated D₃R ligands, where for instance the amino acid at the position 1.39 [Ballesteros-Weinstein numbering; (61)] is leucine in the D_2R and tyrosine in the D₃R. The amino acids forming the OBS are identical, but comparison of D₂R and D₃R structures suggest a slightly different shape of OBS because of the slightly different TM6 orientation (62).

Recently published experimental structures of D_2R and D_3R (62–68) provide extensive information sources on ligand binding

and receptor function. Like other GPCRs, the most conspicuous change during activation is the movement of the TM6, which enables the G-protein to connect to the receptor (see **Figure 1E**). The Trp in the position 6.48 may have a key role in the activation since it is close to the OBS and its position is related to the TM6 orientation (62).

Intracellular Signaling Pathways

All dopamine receptors belong to GPCR family: D_1R and D_5R receptors (D_1 -receptors family) stimulate cAMP signaling pathway through $G_{\alpha s}$ G-proteins whereas D_2R , D_3R , and D_4R (D_2R family) inhibit this pathway through $G_{\alpha i/o}$ G-proteins. There exists cAMP- independent pathways such as the recently recognized β -arrestin pathway which is thought to be involved in several physiological functions and drugs' effects (25–29).

Upon activation, both isoforms of D_2R (i.e., D_2Short and D_2Long) and D_3R inhibit the enzyme adenylyl cyclase (AC) through $G_{\alpha i/o}$ subtype of G-protein leading to inhibition of cAMP-PKA-pDARPP32-PPI pathway. However, differences may

exist in the coupling efficiency of the two receptors and AC (or its subtypes).

In different cell lines, both D_2R and D_3R can activate ERK/MAPK signaling albeit with different mechanisms: D_2Rs are coupled to and activate through α -subunit of $G_{i/o}$ protein following agonist stimulation whereas, D_3R functions through G_o or G_β subunit depending on the signaling machinery of the given cell line. Both D_2Rs and D_3Rs are positively coupled to β -arrestin-Akt-GSK3 pathway. GSK3 β is expressed in several brain regions and plays important role in neuronal development, neurovegetative and psychiatric diseases such as schizophrenia or bipolar disorder (26, 29, 70–79).

In vitro Pharmacological Profile of Dopaminergic Agents at D₃Rs vs. D₂Rs

It has been demonstrated that significant correlation exists between the *in vitro* affinities of various dopaminergic agents (agonists, antagonists, partial agonists) for D_2Rs and D_3Rs (80) (Figure 2).

Further results, using additional compounds, have confirmed earlier evidence showing close correlation between affinities of antipsychotics for human recombinant D_2Rs and D_3Rs (**Figure 3A**). However, no such correlation was found between D_1R vs. D_3R or D_3R vs. D_4R (data not shown). Similarly, high level of correlation was found between the affinity of antipsychotics for the rat D_2R and D_3Rs using $[^3H](+)$ -PHNO radioligand (81, 82) (**Figure 3B**).

Based on recognition that D_3Rs are mainly expressed in the limbic system (*vide supra*), the region is involved in schizophrenia pathology, and that significant correlation existed between the affinity of antipsychotics for D_2Rs and D_3Rs , it was thought that D_3R affinity may play a role in the therapeutic efficacy of antipsychotics and led to propose development of selective D_3R antagonists as novel antipsychotics (30, 80, 83–85). **Predicted Binding Mode of Antipsychotics in the** D_3R One of the available experimental structure studies of D_3R has been carried out with the antagonist eticlopride (63), and the other two with the agonists, pramipexole and PD128907 (62). All these agents bind to the orthosteric binding site (see **Figure 1B**). The most important interactions are the salt bridge with the Asp-110^{3.32} as well as the π - π interactions with the aromatic residues (e.g., Trp-342^{6.48}, Phe-345^{6.51}, Phe-346^{6.52}), which form a lipophilic cavity. Hydrogen bond interaction with the serines in the 5.42 and 5.46 positions is typical for agonist binding state in D_3R (62), and also in D_2R structures (64, 65).

Non-selective ligands most probably bind to both the D_2R and D_3R in the same binding mode, forming a very similar interaction pattern. Thus, the D_2R structural binding results obtained for non-selective D_2R/D_3R antagonists, such as risperidone, haloperidol or spiperone can be predictive of their binding mode at the D_3R . It should be noted that distinct inactive conformations of D_3R exists, and ligands may have different preferences which lead to different functional behaviors of antagonists (antagonism vs. inverse agonism, sensitivity for sodium ions) (86). These results are in line with the well-known highly dynamic nature of the GPCRs (87).

Based on the available experimental structural information supplemented by computational investigations (60, 88–90) the binding mode of antipsychotics at the D_3R can be predicted at a reliable manner. In order to illustrate this, we docked several selected ligands into the D_3R structures available in the Protein Data Bank (PDB ID: 7CMV (62) for dopamine and 3PBL (63) for the others) using the Glide, induced-fit-docking and the protein-ligand complex refinement protocols implemented in the Schrödinger software package (Schrödinger Release 2020-2) (**Figure 4**).

In vivo Roles and Behavioral Pharmacology of D_3R and D_2Rs Is Different

Despite the similarities in the in vitro properties of D₃Rs and D₂Rs described above, the in vivo roles and behavioral pharmacology of D₃Rs compared to D₂Rs are remarkably different. Animal data suggest opposite role of D₂R vs. D₃R in the control of locomotor activity, and cortical functions such as learning and memory (91, 92). On the other hand, both D_2R and D₃R receptor agonists were shown to impair certain social functions and cognitions (93-95). Enhanced expression of striatal dopamine D₃R receptors impairs motivation (96). Antagonists of dopamine D_2R receptors stimulate prolactin secretion (18), whereas D₃R antagonism does not produce such effect either in rats or in human (97, 98). Majority of D₂R antagonist antipsychotics (e.g., haloperidol, risperidone, and olanzapine) elicit catalepsy at higher doses (99). In contrast, D₃R antagonists do not cause catalepsy (97), they rather inhibit haloperidolinduced catalepsy (100, 101).

Microdialysis studies demonstrated that D_2R antagonist antipsychotics enhance, whereas selective D_3R antagonists (such as SB-277011) (97, 102) or D_3R -preferring D_3R/D_2R (such as S33138) antagonists (84, 103) exert no or minimal effects on cortical or striatal dopamine release (104).

FIGURE 3 [Correlation between *in vitro* attinity of antipsychotics for human D_2 Rs and D_3 Rs (**A**, data taken from **Table 1**; various radioligands) and for rat striatal D_2 Rs (striatal membrane) and cerebellar D_3 Rs (CB L9,10 membrane) (**B**); rat D_2 R and D_3 R affinity data derive from the extension of the study of Kiss et al. (81) and Kiss et al. (82). Determination of D_2 R and D_3 R affinity in membranes from CHO cells expressing human D_3 R or cerebellar L9,10 membranes (ligand: [³H]-(+)-PHNO) is described in Kiss et al. (81).

Little is known on the functions of dopamine D_3R receptors in humans although their involvement is assumed in central nervous system (CNS) diseases such as schizophrenia, Parkinson's disease, addiction, anxiety, and depression or in the clinical effects of antipsychotics (26, 38, 70, 75).

SELECTIVE AGONISTS OR ANTAGONISTS FOR D₃R: THE CHALLENGE OF DRUG RESEARCH

The availability of drugs displaying high selectivity and affinity for D_2R or D_3R receptors are of great importance. Such compounds are useful tools in the exploration of neural mechanisms related to dopamine D_3R receptors and may lead to novel agents for the treatment of various CNS disorders. Because of the close similarity in structure and signaling pathways of D_2R and D_3R , development of highly selective compounds for either subtype has been very challenging (34, 105).

Amongst agonists, the *in vitro* D_3R affinity and selectivity of 7-OH-DPAT, PD128907 and pramipexole demonstrated great variability depending on the assay conditions used (105). Nevertheless, their degree of D_3R vs. D_2R selectivity seems adequate for use as tools for *in vitro* studies and their *in vivo* D_3R selectivity may not be optimal, as they may also stimulate D_2Rs within a narrow dose range (38, 106–109). For example, all three compounds produce biphasic behavioral effects in rats, some of which can be inhibited by either D_3R and/or D_2R selective antagonists, depending on the exposure levels of these agonists (95, 110–114).

The quest for high affinity, selective antagonists for D_3R receptors (i.e., low-nanomolar K_i with D_2R/D_3R selectivity ≥ 100) began soon after the discovery of D_3R . Several antagonists fulfilling the selectivity requirements such as SB-277011A (97),

ABT-925 (115), GSK598809 (116), compound 74 in Micheli et al. (117) are currently available for experimental purposes. The pharmacological properties of the selective D_3R antagonists have been reviewed by Gross et al. (84). L-741626 seems to be relatively selective for D_2R reaching 100-fold higher D_2R affinity vs. D_3R , depending on the assay system used (118).

SELECTIVE D₃R ANTAGONISTS AS ANTIPSYCHOTICS?

Compounds with relatively high selectivity for dopamine D₃Rs such as SB-277011A (97), S33084 (119), ABT-925 (115, 120), GSK598809 (116, 117), or the D₃R-preferring D₃R/D₂R antagonist S33138 (103), or the D₃R-preferring partial agonist BP-897 (121) demonstrated antipsychotic-like properties in animal models, however none of them reached therapeutic application. The high affinity D₃R -preferring antagonist F17464 with partial agonism at serotonin 5-HT_{1A}R and antagonism at dopamine D₂R (42) showed promising preclinical profile as well as clinical efficacy in schizophrenia patients in a Phase II study. This compound is still under development and (122, 123). Propose the development of selective D₃R antagonist for the treatment of negative symptoms of schizophrenia based on the available scientific evidence (84).

IMAGING THE D₃Rs IN VIVO

PHNO for Labeling D₃Rs

Number of tracers have been tried to develop for selective imaging of D_3Rs in the brain (124–126), however, the only radioligand currently available for labeling of D_3R in occupancy studies suitable for separation of D_3R and D_2R signal is the $[^{3}H]$ - or $[^{11}C]$ -labeled (+)-4-propyl-9-hydroxynaphthoxazine

[(+)-PHNO, naxagolide]. (+)-PHNO was originally described as an orally acting, potent dopamine receptor full agonist (127). (+)-PHNO was shown to possess 50-fold selectivity for human recombinant D_3R (K_i: 0.16 nM) vs. D_2R (Ki: 8.5 nM) (128).

 $[^{11}C]$ -(+)-PHNO was synthesized by Wilson et al. (129) and it was shown that, in contrast with the antagonists such as

 $[^{11}C]$ raclopride, $[^{18}F]$ Fallypride, $[^{11}C]$ FLB-457 or the agonist $[^{11}C]$ N-methyl-norapomorphine, (+)-PHNO highly binds to regions rich in D₃Rs. Using selective compounds such as the D₃R antagonists SB-277011A, GSK598809 or the D₂R antagonist SV-156, $[^{11}C]$ -PHNO proved to be useful for the separation of D₃R and D₂R binding signal and quantification of D₃Rs in the brain, thus becoming an important tool for the

investigation of the *in vivo* D_3R occupancy by antipsychotics (116, 129–136).

D₃R Occupancy of Antipsychotics—Animal Studies With [³H](+)PHNO

It was reported that after *intravenous* administration of $[{}^{3}H](+)$ -PHNO, D₃Rs are labeled in the rat cerebellum L9,10 and D₂R in the striatum. This is based on the finding that the selective D₃R antagonist, SB-277011 inhibited $[{}^{3}H](+)$ -PHNO binding in CB L9,10 membranes but not in the striatum whereas, the opposite profile was obtained with the D₂R selective antagonist, SV-156 (118) (compound 9); (81).

Using the above approach, olanzapine, risperidone, haloperidol, and clozapine given acutely or chronically, at doses corresponding to human doses, showed nearly full occupancy in the striatum and NAC (D₂R rich regions) with significantly lower level or no occupancy in VP, ICj and substantia nigra (SN) (D₃R rich regions). In contrast, in the *in vitro* autoradiography experiments all these antipsychotics inhibited [³H]-(+)-PHNO binding in the above regions except CB L9,10. It was concluded that under *in vivo* conditions the above-mentioned antipsychotics occupy dopamine D₂R but not D₃Rs despite their significant affinity for D₃Rs *in vitro* (137, 138).

We extended this approach and compared the *in vitro* affinity of several dopamine D2R/D3R agonists, partial agonists, and antipsychotics using membranes prepared from rat striatum (D₂R-rich) and cerebellar L9,10 region (D₃R rich) to determine their in vivo D₃R and D₂R occupancy. The affinity data are given in Kiss et al. (82). We also compared the effects of systemic administration of selected full agonists, partial agonists and antipsychotics on the in vivo binding/uptake of intravenously given $[^{3}H](+)$ -PHNO binding/uptake in the rat striatum and cerebellar L,910 regions. The results are summarized in Table 2. Among the drugs with subnanomolar or low nanomolar Ki values for D₃R, full agonists pramipexole and PHNO potently inhibited $[^{3}H](+)$ -PHNO binding of CB L,910 membranes with marked preference toward CB L9,10 D3Rs. Cariprazine, didesmethyl-cariprazine (DDCAR), asenapine, raclopride and amisulpride, produced dose-dependent inhibition of $[{}^{3}H](+)$ -PHNO binding/uptake both in the striatal and CB L9,10 regions. Raclopride and asenapine, however demonstrated high striatal vs. cerebellar selectivity (82). The antipsychotics, aripiprazole, olanzapine, risperidone, quetiapine, ziprasidone (all with high nanomolar K_i values) produced inhibition of [³H](+)-PHNO binding/uptake in the striatum and little or modest level of inhibition in the CB L9,10.

Blonanserin, an antipsychotic marketed in Japan, was originally described as D_2R and serotonin 5-HT₂R antagonist (139). It has recently been found that blonanserin displayed high affinity *in vitro* for human D_2R and D_3Rs (Ki: 0.28 nM). Using the *in vivo* [³H](+)-PHNO method it caused dose-dependent, high occupancy of striatal D_2R and D_3R in the rat CB L9,10. In agreement with our data (see above) risperidone, olanzapine and aripiprazole demonstrated high occupancy only in the striatum

TABLE 2 | Effects of selected antipsychotics, D_3R agonists, antagonists, on the $[^3H](+)$ -PHNO uptake in rat striatum and cerebellum L9,10 region*.[&].

	Route	Administered highest dose (mg/kg)	Striatal ED ₅₀ (mg/kg)	CB L9/10 ED ₅₀ (mg/kg)	Striatum/ CB L9,10 ratio
Agonists					
(+)-PHNO	p.o.	1	>1 (33)	0.05 (95)	>>20
(-)-Pramipexole (PRP)	S.C.	1	>1 (39)	0.018 (96)	>>55
Partial agonists					
Aripiprazole (ARP)	p.o.	30	7.65 (92)	>30 (14)	<<0.26
Cariprazine (CAR)	p.o.	3	0.23 (99)	0.43 (99)	0.53
Cariprazine	i.v.		0.023 (94)	0.035 (98)	0.66
DD-CAR+	p.o.	10	0.58 (99)	0.41 (100)	0.66
Antagonists					
Amisulpride (AMS)	i.p.	30	>30 (35)	3.0 (82)	>10
Asenapine (ASN)	S.C.	1	0.037 (95)	0.177 (74)	0.21
Clozapine# (CLZ)	p.o.	60	60 (34)	60 (29)	n.c.
Haloperidol (HP)	p.o.	3	0.23 (100)	1.05 (100)	0.22
Olanzapine (OLZ)	p.o.	30	1.46 (91)	~30 (48)	~0.05
Quetiapine [#] QUET)	p.o.	250	250 (36)	250 (36)	n.c.
Raclopride (RCP)	S.C.	1	0.013 (98)	0.072 (97)	0.18
Risperidone (RSP)	p.o.	3	0.29 (89)	~2.3 (53)	~0.13
SB-277011A (SB)	p.o.	30	>30 (28)	1.31 (100)	>>23
SV-156	S.C.	10	0.89 (84)	>12 (20)	<<0.07
Ziprasidone (ZPR)	p.o.	30	1.63 (92)	~30 (52)	~ 0.05

*The ED₅₀ doses were calculated from individual dose response curves consisting of at least 4–5 doses with 3–8 animals in each dose-group. Group means were analyzed by one-way analysis of variance (ANOVA) followed by Tukey-Kramer posthoc multiple comparison test. The highest inhibition percentage achieved at the highest applied are given in the brackets. Where the highest achieved inhibition at highest applied dose was around 50% percent, approximate ED₅₀ values are given and are marked with ~ sign.

⁺DD-CAR, didesmethyl-cariprazine; one of the major human metabolites of cariprazine.

[#]In case of clozapine and quetiapine the highest achievable inhibition was less than 50%, thus ED₅₀ could not be calculated.

[&]Kiss et al. (82).

and moderate or no occupancy was noted in the CB L9,10 region (41).

D₃R Occupancy of Antipsychotics – Human PET Studies

In patients suffering from schizophrenia, occupancy of D₂Rs and D₃Rs following long-term treatment with risperidone, clozapine or olanzapine was examined using [¹¹C]raclopride or [¹¹C](+)-PHNO PET. This study demonstrated that these antipsychotics caused high D₂R occupancy in the D₂R-rich dorsal striatum, using either [¹¹C]raclopride or [¹¹C](+)-PHNO. However, they failed to show binding signal in the D₃R-rich globus pallidus using [¹¹C](+)-PHNO (140). Similar results with [¹¹C](+)-PHNO PET were reported by Mizrahi et al. demonstrating that in drug-naive, first episode schizophrenia patients, olanzapine and risperidone resulted in high occupancy in the D₂R-rich regions but not in the globus pallidus where even "negative occupancy" was noted (141). On the other hand, blonanserin, (hD₂R Ki: 0.284 nM; hD₃R Ki: 0.277 nM), in agreement with data obtained in rats, achieved significant D₃R occupancy in healthy volunteers (142).

PET studies in healthy volunteers using $[^{11}C]$ raclopride (51) as well as in patients with schizophrenia using $[^{18}F]$ Fallypride (52) aripiprazole with D_2R preference showed dosedependent occupancy in the D_2R -rich striatum without causing extrapyramidal side effects. A subsequent study with D_3R preferring PET ligand, $[^{11}C](+)$ -PHNO confirmed the D_2R occupancy of aripiprazole however, minor levels of D_3R occupancy was detected (143).

Cariprazine, a D_3R preferring D_3R/D_2R partial agonist antipsychotic (h D_2R Ki: 0.49 nM; h D_3R Ki: 0.09 nM) (22) dosedependently inhibited [¹¹C](+)-PHNO binding in brain regions with varying D_2R and D_3R expression. It showed significant occupancy of both D_2R and D_3R , albeit with approximately 3–6-fold selectivity for D_3R (53, 143).

Brexpiprazole is also a partial agonist antipsychotic with D_2R preference (h D_2R Ki: 0.3 nM; D_3R Ki: 1.1 nM) (21). Occupancy study in healthy volunteers showed that in the therapeutic dose range (1 and 4 mg/d) it produced only very low levels (i.e., 2–13%) of D_3R occupancy whereas it achieved 36 and 59% D_2R occupancy, respectively, in the applied dose range (54).

F17464 with remarkable affinity for D_3Rs (D_3R Ki: 0.16 nM; D_2R Ki: 12 nM) demonstrated antipsychotic-like activity in animal experiments (42, 144). It was reported that in a double blind, multicenter Phase II study, F17464 (20 mg/bd) improved schizophrenia symptoms (122). In a phase I study, F17464 resulted in 69–95% occupancy of D_3Rs whereas only a 20% occupancy of D_2Rs were noted (145).

POTENTIAL EXPLANATION FOR WHY SIGNIFICANT IN VITRO AFFINITY MAY NOT GUARANTEE SUBSTANTIAL D₃ OCCUPANCY IN VIVO

Role of Endogenous Dopamine

Affinity of Dopamine for D₃R

The dopamine displays considerably higher *in vitro* affinities for D_3Rs (K_i values vary from 30 nM to 100 nM) compared with D_2R (K_i values vary from 200 nM to 1000 nM)¹; (70). The *in vitro* K_i values greatly depend on several *in vitro* binding conditions such as the receptor source, radioligands used for binding assays, and assay methodology.

As to the dopamine K_i values for D_3Rs the picture is further complicated since like D_2R , D_3R may also exist in low and high affinity state. Sokoloff et al. did not find differences between affinity of dopamine for D_3R in the absence or presence of Gpp(NH)p (24 vs. 27 nM) (30, 80). However, Gross and Drescher (38) and Seeman et al. (146) reported remarkable difference between the low and high affinity states of D_3R . D_3Rs are prone to dimerization and to form heteromers with D_1Rs or D_2Rs , or with non-dopaminergic receptors (147). Affinity of dopamine (and the signalization pathway) as well as that of other dopaminergics (including antipsychotics) toward D_3R dior heteromers may also change.

Endogenous Dopamine Concentrations

As determined by *in vivo* microdialysis in rodents, under physiological conditions the extracellular, (i.e., resting or steady state) dopamine concentrations are in the low nanomolar range in various brain regions, including n. accumbens (\sim 1.5–4.5 nM), striatum (\sim 2–5 nM), hippocampus (\sim 1 nM) and in subnanomolar range in the prefrontal cortex (\sim 0.3–0.6 nM) (104, 148–154).

Little is known about the endogenous dopamine concentration in the human brain. Using $[^{11}C]$ -(+)-PHNO PET Caravaggio et al. estimated that the K_d (dissociation constant) of dopamine is 22–24 nM and they reported that concentration of dopamine is between 8 and 9 nM in the ventral striatum, caudate and putamen and 2.8 nM in the globus pallidus (155).

Endogenous Dopamine May Compete With Antipsychotics for Occupying D₃Rs

Using *ex vivo* autoradiography Schotte et al. (156) demonstrated that endogenous dopamine had greater ability to occupy D_3Rs as compared to D_2Rs and concluded that D_3Rs are preferably occupied by endogenous dopamine which "*limits the binding of antipsychotic drugs to D*₃ *receptors in the rat brain*."

The alkylating agent, EEDQ (1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) concentration dependently reduced the *in vitro* [³H]7-OH-DPAT and [³H]spiperone binding in membranes from rat ventral striatum. *In vivo* treatment of rats with EEDQ resulted in reduction of the *ex vivo* [³H]spiperone binding in striatal membranes but did not alter [³H]7-OH-DPAT binding in membranes from ventral striatum. The author concluded [³H]7-OH-DPAT binding sites (i.e., mostly D₃R) seem to be resistant to EEDQ-induced inactivation *in vivo* sites (157).

In agreement with these results, Zang et al. using autoradiography, demonstrated that treatment of rats with EEDQ or NIPS (N- p-iso-thiocyanatophenethyl-spiperone) did not alkylate D₃Rs receptors in n. accumbens and in the island of Calleja at doses that resulted in blockade of D₂Rs receptors in caudate and n. accumbens. On the other hand, under *in vitro* conditions when slices from the above regions were incubated with EEDQ or NIPS, both inhibited dopamine D₂Rs as well as D₃Rs and inhibition at D₃R sites were prevented by dopamine in nanomolar concentration range whereas only millimolar concentration of dopamine was able to protect D₂Rs. The authors concluded that their results "are consistent with the view that alkylation of D₃ receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine" (158).

Modulation of Extracellular Dopamine by D₂R Antipsychotic Treatment Microdialysis Studies

The partial agonists antipsychotics such as aripiprazole (159, 160), brexpiprazole (21) and cariprazine (153, 154) caused only moderate or no change of the extracellular dopamine concentration in the rat prefrontal cortex, hippocampus, n.

¹https://pdsp.unc.edu/databases/pdsp.php

turnover index (DATI) was estimated from turnover dose-response curves (consisting of at least 4–5 doses, with five rats in each dose-group) for individual compounds listed in this figure. In cases where the occupancy ED₅₀ values could not be exactly calculated (see **Table 2**) the turnover indices were determined at doses denoted with asterisks. Dopamine turnover index was defined as DA/(DOPAC+HVA). Determination of tissue dopamine, DOPAC and HVA was carried out exactly as described in Kiss et al. (22) (for abbreviations of drugs' names, see **Table 2**). #Dopamine turnover data for cariprazine and DD-CAR were published in Kiss et al. (173). Turnover results of other compounds are unpublished and are on file at G. Richter. Plc.

Compounds	hD ₂ R K _i (nM)	hD ₃ R K _i (nM)	hD ₃ R selectivity	Species	D ₃ R occupancy	References
D ₃ R preferring ago	onists					
(+)-PHNO	0.35	0.17	2.2	Rat	YES	(82, 129)
(-)-Pramipexole	42	1.85	23	Rat	YES	(82, 140)
Selective D ₃ R anta	igonists					
ABT-925	600	2.9	207	Human	YES	(98, 174)
GSK598809	740	6.2	119	Human	YES	(116)
SB-277011A	1047	11	95	Rat	YES	(82, 175, 176)
F17464	12	0.16	72	Human	YES	(145)
Partial agonists						
Aripiprazole	0.9	1.6	0.56	Rat, human	Low	(82, 143),
Brexpiprazole	0.3	1.1	0.27	Human	Low	(54)
BP897	61	0.92	66	Human	Moderate	(85)
Cariprazine	0.49	0.09	5.8	Rat, human	YES	(53, 82)
DD-CAR	1.41	0.056	25	Rat	YES	(173)
Antipsychotics						
Asenapine	1.4	1.8	0.78	Rat	YES	Table 2
Blonanserin	0.28	0.28	1	Rat, human	YES	(41, 142)
Clozapine	431	283	1.5	Rat, human	Low	(82, 140)
Haloperidol	2.0	5.8	0.34	Rat	YES	(82, 175)
Olanzapine	21	34.7	0.6	Rat, human	Low	(82, 141, 175)
Risperidone	6.2	6.9	0.9	Rat, human	Low	(82, 141, 175)
Quetiapine	417	389	1.1	Rat	Low	(82)
Ziprasidone	4.0	7.4	0.54	Rat	Low	(82)
D ₂ R antagonist						
SV-156**	4.04	250	0.02	Rat	NO	(82)

TABLE 3 | Summary of *in vitro* human D₃R affinity, D₃R selectivity and occupancy* of some antipsychotics, partial agonists, highly preferring/selective D₃R agonists, antagonists.

*Rat or human brain occupancy determinations were carried out by $[^{\beta}H](+)$ -PHNO (rat) or $[^{11}C](+)$ -PHNO (human).

**Compound 9 in Vangveravong et al. (118).

accumbens and in the striatum. It is interesting to note that the high affinity D_3R -preferring antagonist antipsychotic, F17464 (K_i for D_3R : 0.16 nM; Ki for D_2R : 12.1 nM) also did not significantly change extracellular dopamine concentration in the medial prefrontal cortex (42).

Both the typical antipsychotic haloperidol and the atypicals such as such as asenapine, blonanserin, clozapine, risperidone, olanzapine, lurasidone, and ziprasidone dose-dependently and remarkably (by 2- to 4-fold) elevated the extracellular dopamine concentrations in the rat prefrontal cortex, hippocampus, n. accumbens and in the striatum (104, 148-152, 161, 162). It should be mentioned that the above antipsychotics, beside their D₂R affinity, display high affinity for adrenergic alpha, dopamine D₃, D₄, serotonin 5-HT_{2A}, 5-HT_{1A}, 5-HT_{2B}, 5-HT₆, and 5-HT₇, muscarinic, and histaminergic receptors (37) which may influence the extracellular dopamine levels evoked via D2R antagonism. In fact, among atypical antipsychotics risperidone, asenapine, increased extracellular concentration of serotonin in the prefrontal cortex (151, 161), while olanzapine (162), lurasidone (152) blonanserin (137), and clozapine (138) resulted in modest or no effect. Olanzapine, blonanserin, asenapine and haloperidol significantly increased extracellular norepinephrine levels, as well (137, 148, 163).

D₂R Antagonists Directly Inhibit Dopamine Transporter

Former studies showed that D_2R antagonists can inhibit dopamine uptake *via* D_2Rs (164). Amato et al. have recently proposed that beside D_2R antagonism/occupancy, the direct blockade of DAT by antipsychotics, i.e., the modulation of extracellular dopamine, is a likely important factor in the antipsychotic efficacy (165–167).

The involvement of D_3Rs in the regulation of DAT or the effects of antipsychotics *via* D_3Rs on the DAT is much less known. Zapata et al. found that D_3R upregulate DAT (168), whereas Luis-Ravelo et al. demonstrated that the regulation appears to be biphasic, i.e., acute D_3R activation increased DAT expression whereas prolonged activations reduced dopamine uptake (169).

Turnover Studies

Early studies found greatly increased dopamine turnover rate in the rat or cat brain after antipsychotic treatment (170–172).

We compared the effects of selected antipsychotics, D_3R or D_2R antagonists and D_3R preferring dopamine agonists on the dopamine turnover index in the rat striatum (and in olfactory tubercle and n. accumbens, data not shown) with D_3R occupancy ED_{50} doses (i.e., doses causing 50% inhibition of $[^{3}H](+)PHNO$ uptake/occupancy, **Table 2**) in the striatum and in CB L9,10.

At cerebellar (i.e., CB L9,10 D_3R) occupancy ED_{50} doses, the agonists (+)-PHNO and (-)-pramipexole reduced the striatal dopamine turnover index by about 50%, whereas antipsychotics such as asenapine, haloperidol, olanzapine, risperidone, and ziprasidone and the D_2R preferring antagonist SV-156 greatly enhanced (by about 3–4-fold) striatal dopamine turnover index (**Figure 5A**). Blonanserin was not involved in this study, but it is reported that it caused 3–4-fold increase of striatal, frontal and limbic (i.e., olfactory tubercle and n. accumbens) DOPAC and HVA, which are all clearly indicate turnover increasing effect of blonanserin (139). The partial agonist cariprazine, the cariprazine metabolite, DD-CAR did not significantly change the striatal dopamine turnover index as was noted with amisulpride and the D_3R antagonist SB-277011A. Interestingly enough, the D_2R partial agonist aripiprazole produced effects more like to those seen with D_2R antagonist antipsychotics.

On the other hand, at the D_2R occupancy ED_{50} doses (i.e., doses causing 50% inhibition of striatal [³H](+)-PHNO uptake) which were much lower than that of necessary for 50% occupancy of CB L9, 10 D₃Rs, all antipsychotics (i.e., asenapine, haloperidol, olanzapine, risperidone, and ziprasidone and the D₂R preferring antagonist SV-156) caused much less increase in dopamine turnover index (**Figure 5B**). The effects of the partial agonist cariprazine, DD-CAR and the SB-277011A, at their D₂R occupancy doses, produced modest turnover changes in the striatum as was seen at their D₃R ED₅₀ occupancy doses.

The results of dopamine turnover studies, in agreement with microdialysis results, indicate that D_2R antagonist antipsychotics greatly increase the dynamics of dopamine metabolism including the increase of extracellular dopamine at doses sufficient to achieve occupancy of D_3Rs . Opposite effects were seen with dopamine D_3R -preferring agonists (-)-pramipexole and (+)-PHNO (which is probably due to the D_2R agonist effects manifested under *in vivo* conditions). At pharmacological doses, neither cariprazine nor its one of the major metabolite, DD-CAR did not seem to alter significant alteration in dopamine metabolism in rat striatum.

Affinity and/or Selectivity of Compounds for D₃Rs *in vitro* vs. D₃R Occupancy *in vivo*

In **Table 3**, a summary is given on the D_2R and D_3R affinity and selectivity of some D_3R selective antagonist, agonists, and antipsychotics along with their D_3R occupancy determined in rats or in human.

Based solely on the *in vitro* affinity data one may expect compounds with low-or sub-nanomolar affinities for both receptor subtypes, would show D_2R as well as D_3R occupancy *in vivo*. However, the preclinical and human occupancy studies summarized above do not necessarily support such a correlation.

Both D_3R -preferring agonist, (+)-PHNO and pramipexole as well as the antagonists (ABT-925, GSK598890, SB-277011A and the antipsychotic candidate F17464) all display low- or subnanomolar D_3R affinity and high selectivity for D_3Rs *in vitro*. These compounds produced D_3R occupancy in rat or human studies. The same (i.e., high D_3R affinity, selectivity *in vitro* and high D_3R occupancy) is applicable for the partial agonists, cariprazine and its metabolite, DD-CAR. Although aripiprazole and brexpiprazole displayed low nanomolar *in vitro* D_3R affinity, their D_3R selectivity was below 1, which could explain their lack of D_3R occupancy *in vivo*. Among the currently used antipsychotics, only the D_2R/D_3R antagonist blonanserin, which has low- or sub-nanomolar *in vivo* occupancy for both receptors in rats. Second generation antipsychotics (i.e., risperidone, quetiapine, clozapine) with low D_3R affinity (K_i: >3–10 nM) and selectivity resulted in negligible D_3R occupancy.

LIMITATIONS

Our knowledge about the occupancy of D_3Rs in the rat or human brain comes from the use of $[^3H](+)$ -PHNO or the $[^{11}C](+)$ -PHNO radiotracers. Their use represented a great advance in the *in vivo* imaging of D_3Rs and determination of occupancy of brain D_3Rs by antipsychotics.

 $[^{3}H](+)$ -PHNO or the $[^{11}C](+)$ -PHNO however, are not ideal ligands/tracers for several reasons. They may not be sensitive enough for more detailed mapping of D₃Rs in regions having low D₃R expression e.g., cerebral cortex. Although both display higher affinity than dopamine for D₃R, they are still sensitive to endogenous dopamine (155, 177).

Furthermore, both D_2Rs and D_3Rs may exist in high- or lowaffinity states and they are prone to di- or heteromerization (147, 178, 179). It was reported that recombinant human or rat D_3R , like D_2R , may exist in low- and high-affinity state and the affinity of PHNO shows significant difference for these states (30, 81, 128, 146, 180) which may have implication in drugs' imaging studies (140, 155).

These conditions (i.e., the high/low affinity state and di- or heteromerization, if they exist) may greatly change the affinity of the two receptors toward the agonist tracer and the affinity of drugs to be examined and their occupancy. Thus, the quest for better ligands (agonist or antagonist?) for the demonstration of brain D_3 Rs occupancy *in vivo* by therapeutically useful compounds (e.g., antipsychotics among others) continues (109, 125, 126, 177, 181).

Moreover, in contrast with the known therapeutically optimal occupancy of antipsychotics at D_2Rs (i.e., 65–75%) there is no reliable information on the optimal level of D_3R occupancy for manifestation of therapeutic effect.

SUMMARY AND CONCLUSION

All currently used antipsychotics display high-to-medium affinity for both D_2R and D_3Rs *in vitro*. In agreement with the *in vitro* D_2R affinity they show significant D_2R occupancy in the rat and human brain at their antipsychotic-effective doses. However, as revealed by animal and human occupancy studies, despite the considerable *in vitro* D_3R affinity, not all antipsychotics demonstrated brain D_3R occupancy *in vivo*.

There may exist several possibilities for this dichotomy, as outlined in the following:

First, dopamine displays much higher affinity for D_3Rs than for D_2Rs and thus endogenous dopamine might, at least partly, keeps D_3Rs occupied even under basal conditions.

Second, animal microdialysis and turnover studies revealed that acute treatment with dopamine agonists such as (-)-pramipexole and (+)-PHNO reduced dopamine turnover, i.e., they decrease extracellular dopamine and increase D3R availability. Administration of antipsychotics (e.g., risperidone, olanzapine, haloperidol, ziprasidone, clozapine, quetiapine), due to antagonism of presynaptic and biosynthesis and release regulating D_2Rs , leads to several-fold increase of extracellular dopamine. Further, Amato et al. demonstrated that antipsychotics initially suppress dopamine transporter (DAT) activity leading to increase of dopamine in synaptic cleft, a mechanism which represents a further possible alternative way to modulate extracellular dopamine (166). Thus, the increase of extracellular dopamine following antipsychotics with D_2R antagonism seems to be a likely important factor in the lack or low levels of *in vivo* D_3R occupancy; given the higher affinity of dopamine for D_3R vs. D_2R . Thus, D_2R antagonist antipsychotics inhibit their own binding at D_3Rs by increasing extracellular dopamine.

Third, beside the effects on the endogenous dopamine levels, the D3R affinity and selectivity appear to be further factors of importance. All three selective D₃R antagonists (D₃R vs. D₂R selectivity \geq 100) such as ABT-925, GSK595809 and SB-277011 (with the *in vitro* low nanomolar D₃R) affinity produced high D₃R occupancy in animal or human studies, indicating primary importance of selectivity to achieve D₃R occupancy *in vivo*.

Example of antipsychotics such as the D_3R/D_2R partial agonist cariprazine and the D_2R/D_3R antagonist blonanserin shows that, in the presence of relatively high affinity for D_2Rs , subnanomolar affinity for D_3Rs appears to be necessary for D_3R occupancy *in vivo*. Further, cariprazine and the F17464 (subnanomolar affinity for D_3R with 75-fold D_3R vs. D_2R), do not increase extracellular dopamine and hence are able to compete for D_3Rs vs. extracellular dopamine.

The case of D_2R/D_3R partial agonist antipsychotics, aripiprazole and brexpiprazole is somewhat controversial. Both demonstrated low nanomolar affinity for D_2Rs and D_3Rs (with D_2R preference) *in vitro*, with negligible effects on extracellular dopamine *in vivo*. However, both produced no or very low occupancy of D_3Rs for which the likely explanation is the D_2R preference.

In conclusion, data reviewed and discussed here regarding the current antipsychotics' *in vitro* D_2R/D_3R affinity vs. their brain D_3R occupancy *in vivo*, indicate that levels of extracellular dopamine (or its change) in different brain regions is a key factor regarding D_3R occupancy. On the other hand, the compounds' high (i.e., subnanomolar) D_3R affinity and/or high D_3R vs. D_2R selectivity are also important determining factors to achieve significant D_3R occupancy in the brain.

AUTHOR CONTRIBUTIONS

BKi and BKr drafted the manuscript with several inputs from IL. All authors were participating in the final editing and critical revision of the article and approved the final version to be published.

ACKNOWLEDGMENTS

We are grateful to Dr. Nika Adham of AbbVie Inc. for her critical reading, suggestions, and valuable comments on the manuscript.

REFERENCES

- Perälä J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsä E, Pirkola S, et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry. (2007) 64:19–28. doi: 10.1001/archpsyc.64. 1.19
- Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. *Nat Rev Drug Discov.* (2012) 11:141–68. doi: 10.1038/nrd3628
- Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmentalcognitive model. *Lancet.* (2014) 383:1677–87. doi: 10.1016/s0140-6736(13) 62036-x
- Millan MJ, Fone K, Steckler T, Horan WP. Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. *Eur J Neuropsychopharmacol.* (2014) 24:645–92. doi: 10.1016/j.euroneuro. 2014.03.008
- Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. *Am J Psychiatry*. (1991) 148:1474–86. doi: 10.1176/ajp.148.11.1474
- Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases. *Biol Psychiatry*. (1999) 6:56–72. doi: 10.1016/s0006-3223(99)00067-0
- Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce J, Gil R, Kegeles LS, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. *Proc Natl Acad Sci USA*. (2000) 97:8104–9. doi: 10.1073/pnas.97.14.8104
- Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [(18)F/(11)C]-DOPA PET studies. *Schizophr Bull.* (2013) 39:33–42. doi: 10.1093/schbul/sbr180
- McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. *World Psychiatry*. (2020) 19:15–33. doi: 10.1002/wps.20693
- Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. (2015) 29:97–115. doi: 10.1177/0269881114563634
- Coyle JT, Ruzicka WB, Balu DT. Fifty years of research on schizophrenia: the ascendance of the glutamatergic synapse. *Am J Psychiatry*. (2020) 177:1119– 28. doi: 10.1176/appi.ajp.2020.20101481
- Delay J, Deniker P, Harl J. Traitment des etats d'excitation et d'agitation par une methode medicamentense derivee de l'hibernotherapie. Ann Med Psychol. (1952) 110:267–73.
- Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. *Acta Pharmacol Toxicol.* (1963) 20:140–4. doi: 10.1111/j.1600-0773.1963.tb0 1730.x
- van Rossum J. The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Brill H, Cole J, Deniker P, Hippies H, Bradley P editors. Neuropsychopharmacology, Proceedings of the 5th Collegium Internationale Neuropsychopharmacologicum. Amsterdam: Excerpt Medica (1967). p. 321–9.
- Seeman MV. History of the dopamine hypothesis of antipsychotic action. World J Psychiatry. (2021) 11:355–64. doi: 10.5498/wjp.v11.i7.355
- Meltzer HY, Matsubara S, Lee J-C. Classification of typical and atypical antipsychotic drugs based on dopamine D-1, D-2 and serotonin2 pKi values. *J Pharmacol Exp Ther.* (1989) 251:238–46.
- Gründer G, Hippius H, Carlsson A. The "atypicality" of antipsychotics: a concept re-examined and re-defined. *Nat Rev Drug Discov.* (2009) 8:197–202. doi: 10.1038/nrd2806
- Stahl SM. Antipsychotic Agents in: Stahl's Essential Psychopharmacology, Neuroscientific Basis and Practical Applications. 4th ed. New York: Cambridge University Press (2013). p. 129–237.
- Lieberman JA, Stroup TS. The NIMH-CATIE schizophrenia study: what did we learn? *Am J Psychiatry*. (2011) 168:770–5. doi: 10.1176/appi.ajp.2011. 11010039
- 20. Tadori Y, Forbes RA, McQuade RD, Kikuchi T. In vitro pharmacology of aripiprazole, its metabolite and experimental dopamine partial agonists at

human dopamine D2 and D3 receptors. *Eur J Pharmacol.* (2011) 668:355–65. doi: 10.1016/j.ejphar.2011.07.020

- Maeda K, Sugino H, Akazawa H, Amada N, Shimada J, Futamura T, et al. Brexpiprazole I: in vitro and in vivo characterization of a novel serotonindopamine activity modulator. *J Pharmacol Exp Ther.* (2014) 350:589–604. doi: 10.1124/jpet.114.213793
- 22. Kiss B, Horváth A, Némethy Z, Schmidt É, Laszlovszky I, Bugovics G, et al. Cariprazine (RGH-188), a dopamine D3 receptor-preferring, D3/D2 dopamine receptor antagonist–partial agonist antipsychotic candidate: in vitro and neurochemical profile. *J Pharmacol Exp Ther.* (2010) 333:328–40. doi: 10.1124/jpet.109.160432
- 23. Citrome L. Aripiprazole, brexpiprazole, and cariprazine: not all the same. Understanding the key differences among these agents can help inform treatment decisions. *Curr Psychiatry*. (2018) 17:35–44.
- Cookson J, Pimm J. Partial agonists of dopamine receptors: mechanisms and clinical effects of aripiprazole, brexpiprazole and cariprazine. *BJPsych Adv.* (2021):1–6. doi: 10.1192/bja.2021.49
- Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. *Physiol Rev.* (1998) 78:189–225. doi: 10.1152/ physrev.1998.78.1.189
- Beaulieu J-M, Espinoza S, Gainetdinov RR. Dopamine receptors IUPHAR Review 13. Brit J Pharmacol. (2015) 172:1–23. doi: 10.1111/bph.12906
- Prieto GA. Abnormalities of dopamine D3 receptor signaling in the diseased brain. J Central Nervous Syst Dis. (2017) 9:117957351772633. doi: 10.1177/ 1179573517726335
- Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. *Cell Mol Neurobiol.* (2019) 39:31–59. doi: 10.1007/s10571-018-0632-3
- 29. Rangel-Barajas C, Coronel I, Florán B. Dopamine receptors and neurodegeneration. *Aging Dis.* (2015) 6:349. doi: 10.14336/ad.2015.0330
- Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. *Nature*. (1990) 347:146–51. doi: 10.1038/347146a0
- Bouthenet M-L, Souil E, Martres M-P, Sokoloff P, Giros B, Schwartz J-C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. *Brain Res.* (1991) 564:203–19. doi: 10.1016/0006-8993(91)91456-b
- Meador-Woodruff J. Dopamine receptor mRNA expression in human striatum and neocortex. *Neuropsychopharmacology*. (1996) 15:17–29. doi: 10.1016/0893-133x(95)00150-c
- Gurevich E. Distribution of dopamine D3 receptor expressing neurons in the human forebrain comparison with D2 receptor expressing neurons. *Neuropsychopharmacology*. (1999) 20:60–80. doi: 10.1016/s0893-133x(98) 00066-9
- Moritz AE, Free RB, Sibley DR. Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. *Cell Signal.* (2018) 41:75–81. doi: 10.1016/j.cellsig.2017.07.003
- Seeman P. Antipsychotic drugs, dopamine receptors, and schizophrenia. Clin Neurosci Res. (2001) 1:53–60. doi: 10.1016/s1566-2772(00)00007-4
- Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. *Progr Neuro Psychopharmacol Biol Psychiatry*. (2003) 27:1081–90. doi: 10.1016/j.pnpbp.2003.09.004
- Ellenbroek BA, Cesura AM. Antipsychotics and the dopamine-serotonin connection. In: Celanire S, Poli S editors. *Small Molecule Therapeutics for Schizophrenia. Topics in Medicinal Chemistry*. (Vol. 13), Cham: Springer (2014). doi: 10.1007/7355_2014_51
- Gross G, Drescher K. The role of dopamine D3 receptors in antipsychotic activity and cognitive functions. *Handb Exp Pharmacol.* (2012) 213:167–210. doi: 10.1007/978-3-642-25758-2_7
- Shahid M, Walker G, Zorn S, Wong E. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. (2008) 23:65–73. doi: 10.1177/0269881107082944
- Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. *Neuropharmacology*. (2020) 172:107704. doi: 10. 1016/j.neuropharm.2019.107704

- Baba S, Enomoto T, Horisawa T, Hashimoto T, Ono M. Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range. *J Pharmacol Sci.* (2015) 127:326–31. doi: 10.1016/j.jphs.2015.01.007
- Cosi C, Martel J-C, Auclair AL, Collo G, Cavalleri L, Heusler P, et al. Pharmacology profile of F17464, a dopamine D3 receptor preferential antagonist. *Eur J Pharmacol.* (2021) 890:173635. doi: 10.1016/j.ejphar.2020. 173635
- 43. Ishiyama T, Loebel, A, Cucciaro J, Horisawa T, Tokuda K, Ogasa M, et al. Comparative rereceptor binding profile of lurasidone and other first and second generation antipsychotics. *Poster NR6-40* (2010) APA, May 22–26, New Orleans, LA.
- Snyder GL, Vanover KE, Davis RE, Li P, Fienberg A, Mates S. A review of the pharmacology and clinical profile of lumateperone for the treatment of schizophrenia. *Adv Pharmacol.* (2021) 90:253–76. doi: 10.1016/bs.apha.2020. 09.001
- Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. *Science* (1975) 188:1217–9. doi: 10.1126/science.1145194
- 46. Seeman P. Brain dopamine receptors. Pharmacol Rev. (1980) 32:229-313.
- Seeman P. Targeting the dopamine D₂ receptor in schizophrenia. *Exp Opin Ther Targets*. (2006) 10:515–31. doi: 10.1517/14728222.10.4.515
- Ginovart N, Kapur S. Role of dopamine D(2) receptors for antipsychotic activity. *Handb Exp Pharmacol.* (2012) 212:27–52. doi: 10.1007/978-3-642-25761-2_2
- Seeman P. Schizophrenia and dopamine receptors. *Eur Neuropsychopharmacol.* (2013) 23:999–1009. doi: 10.1016/j.euroneuro. 2013.06.005
- Nord M, Farde L. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther. (2010) 17:97–103. doi: 10.1111/j.1755-5949.2010.00222.x
- 51. Yokoi F, Gründer G, Biziere K, Stephane M, Dogan AS, Dannals RF, et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [¹¹C]raclopride. *Neuropsychopharmacology.* (2002) 27:248–59. doi: 10.1016/s0893-133x(02)00304-4
- Kegeles LS, Slifstein M, Frankle WG, Xu X, Hackett E, Bae S-A, et al. Dose–occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]Fallypride. *Neuropsychopharmacology*. (2008) 33:3111–25. doi: 10.1038/npp.2008.33
- 53. Girgis RR, Slifstein M, D'Souza D, Lee Y, Periclou A, Ghahramani P, et al. Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [¹¹C](+)-PHNO. *Psychopharmacology.* (2016) 233:3503–12. doi: 10.1007/ s00213-016-4382-y
- 54. Girgis RR, Forbes A, Abi-Dargham A, Slifstein M. A positron emission tomography occupancy study of brexpiprazole at dopamine D2 and D3 and serotonin 5-HT1A and 5-HT2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. *Neuropsychopharmacology*. (2019) 45:786–92. doi: 10.1038/s41386-019-0590-6
- Girgis RR, Zoghbi AW, Javitt DC, Lieberman JA. The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: a critical and comprehensive review. *J Psychiatric Res.* (2019) 108:57–83. doi: 10.1016/ j.jpsychires.2018.07.006
- Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. *Nature* (2009) 459:356–63. doi: 10.1038/ nature08144
- Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA, Shi L. What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? *Pharmacol Rev.* (2014) 67:198–213. doi: 10.1124/ pr.114.009944
- Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H, et al. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. *Front Neurosci.* (2016) 10:451. doi: 10. 3389/fnins.2016.00451
- Egyed A, Domány-Kovács K, Koványi B, Horti F, Kurkó D, Kiss DJ, et al. Controlling receptor function from the extracellular vestibule of G-protein coupled receptors. *Chem Commun.* (2020) 56:14167–70. doi: 10. 1039/d0cc05532h

- Klein Herenbrink C, Verma R, Lim HD, Kopinathan A, Keen A, Shonberg J, et al. Molecular determinants of the intrinsic efficacy of the antipsychotic aripiprazole. ACS Chem Biol. (2019) 14:1780–92. doi: 10.1021/acschembio. 9b00342
- Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. *Methods Neurosci.* (1995) 25:366– 428. doi: 10.1016/s1043-9471(05)80049-7
- Xu P, Huang S, Mao C, Krumm BE, Zhou XE, Tan Y, et al. Structures of the human dopamine D3 receptor-Gi complexes. *Mol Cell*. (2021) 81:1147–59.e4. doi: 10.1016/j.molcel.2021.01.003
- Chien EYT, Liu W, Zhao Q, Katritch V, Won Han G, Hanson MA, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. *Science*. (2010) 330:1091–5. doi: 10.1126/science. 1197410
- Yin J, Chen KM, Clark MJ, Hijazi M, Kumari P, Bai XC, et al. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. *Nature*. (2020) 584:125–9. doi: 10.1038/s41586-020-2379-5
- Zhuang Y, Xu P, Mao C, Wang L, Krumm B, Zhou XE, et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. *Cell.* (2021) 184:931–42.e18. doi: 10.1016/j.cell.2021.01.027
- 66. Im D, Inoue A, Fujiwara T, Nakane T, Yamanaka Y, Uemura T, et al. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone. *Nat Commun.* (2020) 11:6442. doi: 10.1038/s41467-020-20221-0
- Fan L, Tan L, Chen Z, Qi J, Nie F, Luo Z, et al. Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands. *Nat Commun.* (2020) 11:1074. doi: 10.1038/s41467-020-14884-y
- Wang S, Che T, Levit A, Shoicet BK, Wacker D, Roth BL. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. *Nature*. (2018) 555:269–73. doi: 10.1038/nature25758
- Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res.* (2019) 47:W636–41. doi: 10.1093/nar/gkz268
- Levant B. The D3 dopamine receptor: neurobiology and potential clinical relevance. *Pharmacol Rev.* (1997) 49:231–52.
- 71. Kim K-M, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG. Differential regulation of the dopamine D2and D3 receptors by g protein-coupled receptor kinases and β -arrestins. *J Biol Chem.* (2001) 276:37409–14. doi: 10.1074/jbc.m106728200
- Ahlgren-Beckendorf JA, Levant B. Signaling mechanisms of the D₃ dopamine receptor. J Recept Signal Transduct Res. (2004) 24:117–30. doi: 10.1081/rrs-200029953
- Beaulieu J-M, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov RR, et al. Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci. (2007) 27:881–5. doi: 10.1523/jneurosci.5074-06.2007
- Beom S, Cheong D, Torres G, Caron MG, Kim K-M. comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. *J Biol Chem.* (2004) 279:28304–14. doi: 10.1074/jbc.m403899200
- Leggio GM, Bucolo C, Platania CBM, Salomone S, Drago F. Current drug treatments targeting dopamine D3 receptor. *Pharmacol Ther.* (2016) 165:164–77. doi: 10.1016/j.pharmthera.2016.06.007
- 76. Jin M, Min C, Zheng M, Cho D-I, Cheong S-J, Kurose H, et al. Multiple signaling routes involved in the regulation of adenylyl cyclase and extracellular regulated kinase by dopamine D2 and D3 receptors. *Pharmacol Res.* (2013) 67:31–41. doi: 10.1016/j.phrs.2012.09.012
- Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, et al. The role of GSK-3 in synaptic plasticity. *Br J Pharmacol.* (2008) 153:S428–37. doi: 10.1038/bjp.2008.2
- 78. Mannoury la Cour C, Salles M-J, Pasteau V, Millan MJ. Signaling pathways leading to phosphorylation of akt and GSK- 3β by activation of cloned human and rat cerebral D2 and D3 receptors. *Mol Pharmacol.* (2011) 79:91–105. doi: 10.1124/mol.110.065409
- Collo G, Zanetti S, Missale C, Spano P. Dopamine D3 receptor-preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signal-regulated kinase phosphorylation. Eur J Neurosci. (2008) 28:1231–40. doi: 10.1111/j.1460-9568.2008.06423.x

- Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres M-P, Giros B, et al. Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. *Eur J Pharmacol Mol Pharmacol.* (1992) 225:331–7. doi: 10.1016/0922-4106(92)90107-7
- Kiss B, Horti F, Bobok A. In vitro and in vivo comparison of [³H](+)-PHNO and [3H]raclopride binding to rat striatum and lobes 9 and 10 of the cerebellum: a method to distinguish dopamine D3 from D2 receptor sites: a method to distinguish dopamine D3 from D2 receptor sites. *Synapse*. (2011) 65:467–78. doi: 10.1002/syn.20867
- Kiss B, Horti F, Bobok A. Poster #16 cariprazine, a D3/D2 dopamine receptor partial agonist antipsychotic, displays greater D3 receptor occupancy in vivo compared with other antipsychotics. *Schizophr Res.* (2012) 136:S190. doi: 10.1016/s0920-9964(12)70588-1
- Leriche L, Bezard E, Gross C, Guillin O, Foll B, Diaz J, et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets. (2006) 5:25–43. doi: 10.2174/ 187152706784111551
- Gross G, Wicke K, Drescher KU. Dopamine D3 receptor antagonism still a therapeutic option for the treatment of schizophrenia. *Naunyn Schmiedeberg's Arch Pharmacol.* (2012) 386:155–66. doi: 10.1007/s00210-012-0806-3
- Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. *Eur J Neurosci.* (2016) 45:2–19. doi: 10.1111/ejn.13390
- Lane JR, Abramyan AM, Adhikari P, Keen AC, Lee K-H, Sanchez J, et al. Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism. *eLife*. (2020) 9:e52189. doi: 10.7554/eLife.52189
- Latorraca NR, Venkatakrishnan AJ, Dror RO. GPCR dynamics: structures in motion. *Chem Rev.* (2017) 117:139–55. doi: 10.1021/acs.chemrev.6b00177
- Frank A, Kiss DJ, Keserű GM, Stark H. Binding kinetics of cariprazine and aripiprazole at the dopamine D3 receptor. *Sci Rep.* (2018) 8:12509. doi: 10. 1038/s41598-018-30794-y
- Ferruz N, Doerr S, Vanase-Frawley MA, Zou Y, Chen X, Marr ES, et al. Dopamine D3 receptor antagonist reveals a cryptic pocket in aminergic GPCRs. *Sci Rep.* (2018) 8:897. doi: 10.1038/s41598-018-19345-7
- Michino M, Boateng CA, Donthamsetti P, Yano H, Bakare OM, Bonifazi A, et al. Toward understanding the structural basis of partial agonism at the dopamine D3 receptor. *J Med Chem.* (2017) 60:580–93. doi: 10.1021/acs. jmedchem.6b01148
- Svensson K, Carlsson A, Huff RM, Kling-Petersen T, Waters N. Behavioral and neurochemical data suggest functional differences between dopamine D2 and D3 receptors. *Eur J Pharmacol.* (1994) 263:235–43. doi: 10.1016/0014-2999(94)90718-8
- Sigala S, Missale C, Spano P. Opposite effects of dopamine D2 and D3 receptors on learning and memory in the rat. *Eur J Pharmacol.* (1997) 336:107–12. doi: 10.1016/s0014-2999(97)01235-1
- Santesso DL, Evins AE, Frank MJ, Schetter EC, Bogdan R, Pizzagalli DA. Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function. *Hum Brain Mapp.* (2009) 30:1963–76. doi: 10.1002/ hbm.20642
- 94. Watson DJ, Loiseau F, Ingallinesi M, Millan MJ, Marsden CA, Fone KC. Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. *Neuropsychopharmacology*. (2011) 37:770–86. doi: 10.1038/npp.2011.254
- Kagaya T, Yonaga M, Furuya Y, Hashimoto T, Kuroki J, Nishizawa Y. Dopamine D3 agonists disrupt social behavior in rats. *Brain Res.* (1996) 721:229–32. doi: 10.1016/0006-8993(96)00288-0
- Simpson EH, Winiger V, Biezonski DK, Haq I, Kandel ER, Kellendonk C. Selective overexpression of dopamine D3 receptors in the striatum disrupts motivation but not cognition. *Biol Psychiatry*. (2014) 76:823–31. doi: 10.1016/ j.biopsych.2013.11.023
- Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE, Avenell KY, et al. Pharmacological actions of a novel, high-affinity, and selective human dopamine D(3) receptor antagonist, SB-277011-A. J Pharmacol Exp Ther. (2000) 294:1154–65.

- Redden L, Rendenbach-Mueller B, Abi-Saab WM, Katz DA, Goenjian A, Robieson WZ, et al. A double-blind, randomized, placebo-controlled study of the dopamine D3 receptor antagonist ABT-925 in patients with acute schizophrenia. J Clin Psychopharmacol. (2011) 31:221–5. doi: 10.1097/jcp. 0b013e31820e4818
- Bardin L, Kleven MS, Barret-Grévoz C, Depoortère R, Newman-Tancredi A. Antipsychotic-like vs cataleptogenic actions in mice of novel antipsychotics having D2 Antagonist and 5-HT1A agonist properties. *Neuropsychopharmacology*. (2005) 31:1869–79. doi: 10.1038/sj.npp.1300940
- Millan MJ, Gressier H, Brocco M. The dopamine D3 receptor antagonist, (+)-S14297, blocks the cataleptic properties of haloperidol in rats. *Eur J Pharmacol.* (1997) 321:R7–9. doi: 10.1016/s0014-2999(97)00049-6
- 101. Gyertyán I, Sághy K. The selective dopamine D3 receptor antagonists, SB 277011-A and S 33084 block haloperidol-induced catalepsy in rats. *Eur J Pharmacol.* (2007) 572:171–4. doi: 10.1016/j.ejphar.2007.06.035
- 102. Lacroix LP, Hows MEP, Shah AJ, Hagan JJ, Heidbreder CA. Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. *Neuropsychopharmacology.* (2002) 28:839–49. doi: 10.1038/sj.npp.13 00114
- 103. Millan MJ, Svenningsson P, Ashby CR Jr., Hill M, Egeland M, Dekeyne A, et al. S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]-benzopyrano[3,4-c]pyrrol-2(3 H)-yl)-ethyl]phenylacetamide], a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent. II. A neurochemical, electrophysiological and behavioral characterization in vivo. J Pharmacol Exp Ther. (2008) 324:600–11.
- 104. Koch S, Perry KW, Bymaster FP. Brain region and dose effects of an olanzapine/fluoxetine combination on extracellular monoamine concentrations in rat. *Neuropharmacology*. (2004) 46:232–42. doi: 10.1016/ j.neuropharm.2003.09.001
- 105. Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G, et al. Neuronal dopamine D3 receptors: translational implications for preclinical research and CNS disorders. *Biomolecules*. (2021) 11:104. doi: 10.3390/ biom11010104
- 106. Levesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. *Proc Nat Acad Sci* USA. (1992) 89:8155–9. doi: 10.1073/pnas.89.17.8155
- 107. Pugsley TA, Davis MD, Akunne HC, MacKenzie RG, Shih YH, Damsma G, et al. Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. *J Pharmacol Exp Ther.* (1995) 275:1355–66.
- 108. Mierau J, Schneider FJ, Ensinger HA, Chio CL, Lajiness ME, Huff RM. Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. *Eur J Pharmacol Mol Pharmacol.* (1995) 290:29–36. doi: 10.1016/0922-4106(95)90013-6
- Kassel S, Schwed JS, Stark H. Dopamine D3 receptor agonists as pharmacological tools. *Eur Neuropsychopharmacol.* (2015) 25:1480–99. doi: 10.1016/j.euroneuro.2014.11.005
- Mogilnicka E, Klimek V. Drugs affecting dopamine neurons and yawning behavior. *Pharmacol Biochem Behav.* (1977) 7:303–5. doi: 10.1016/0091-3057(77)90224-6
- 111. Kurashima M, Yamada K, Nagashima M, Shirakawa K, Furukawa T. Effects of putative dopamine D3 receptor agonists, 7-OH-DPAT, and quinpirole, on yawning, stereotypy, and body temperature in rats. *Pharmacol Biochem Behav.* (1995) 52:503–8. doi: 10.1016/0091-3057(95)00103-4
- 112. Bristow LJ, Kramer MS, Kulagowski J, Patel S, Ragan CI, Seabrook GR. Schizophrenia and L-745,870, a novel dopamine D4 receptor antagonist. *Trends Pharmacol Sci.* (1997) 18:186–8. doi: 10.1016/s0165-6147(97)01066-3
- 113. Collins GT, Witkin JM, Newman AH, Svensson KA, Grundt P, Cao J, et al. Dopamine agonist-induced yawning in rats: a dopamine D3 receptormediated behavior. J Pharmacol Exp Ther. (2005) 314:310–9. doi: 10.1124/ jpet.105.085472
- 114. Collins GT, Newman AH, Grundt P, Rice KC, Husbands SM, Chauvignac C, et al. Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. *Psychopharmacology.* (2007) 193:159–70. doi: 10.1007/s00213-007-0766-3

- 115. Geneste H, Amberg W, Backfisch G, Beyerbach A, Braje WM, Delzer J, et al. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme. *Bioorg Med Chem Lett.* (2006) 16:1934–7. doi: 10.1016/j.bmcl.2005.12.079
- 116. Searle G, Beaver JD, Comley RA, Bani M, Tziortzi A, Slifstein M, et al. Imaging dopamine D3 receptors in the human brain with positron emission tomography, [¹¹C]PHNO, and a selective D3 receptor antagonist. *Biol Psychiatry*. (2010) 68:392–9. doi: 10.1016/j.biopsych.2010.04.038
- 117. Micheli F, Arista L, Bonanomi G, Blaney FE, Braggio S, Capelli AM, et al. 1,2,4-Triazolyl azabicyclo[3.1.0]hexanes: a new series of potent and selective dopamine D3 receptor antagonists. *J Med Chem.* (2009) 53:374–91. doi: 10.1021/jm901319p
- Vangveravong S, McElveen E, Taylor M, Xu J, Tu Z, Luedtke RR, et al. Synthesis and characterization of selective dopamine D2 receptor antagonists. *Bioorg Med Chem.* (2006) 14:815–25. doi: 10.1016/j.bmc.2005. 09.008
- 119. Millan MJ, Dekeyne A, Rivet J-M, Dubuffet T, Lavielle G, Brocco M. S33084, a novel, potent, selective and competitive antagonist at dopamine D3 receptors: II. Functional and behavioral profile compared with GR218,231 and L741,626. *J Pharmacol Exp Ther*. (2000) 293:1063–73.
- 120. Gross G, Bialojan S, Drescher K, Freeman AS, Garcia-Ladona FJ, Höger T, et al. Evaluation of D3 receptor antagonists. *Eur Neuropsychopharmacol.* (1997) 1002:S120.
- 121. Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, et al. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. *Nature* (1999) 400:371–5. doi: 10.1038/22560
- 122. Bitter I, Groc M, Delsol C, Fabre C, Fagard M, Barthe L, et al. Efficacy of F17464, a new preferential D3 antagonist in a placebo-controlled phase 2 study of patients with an acute exacerbation of schizophrenia. *Eur Psychiatry* (2017) 41:S387. doi: 10.1016/j.eurpsy.2017.02.428
- 123. Bitter I, Lieberman JA, Gaudoux F, Sokoloff P, Groc M, Chavda R, et al. Randomized, double-blind, placebo-controlled study of F17464, a preferential D3 antagonist, in the treatment of acute exacerbation of schizophrenia. *Neuropsychopharmacology*. (2019) 44:1917–24. doi: 10.1038/ s41386-019-0355-2
- 124. Finnema SJ, Bang-Andersen B, Wikström HV, Halldin C. Current state of agonist radioligands for imaging of brain dopamine D2/D3 receptors in vivo with positron emission tomography. *Curr Top Med Chem.* (2010) 10:1477–98. doi: 10.2174/156802610793176837
- 125. Mach RH, Luedtke RR. Challenges in the development of dopamine D2and D3-selective radiotracers for PET imaging studies. J Labelled Comp Radiopharm. (2017) 61:291–8. doi: 10.1002/jlcr.3558
- Doot RK, Dubroff JG, Labban KJ, Mach RH. Selectivity of probes for PET imaging of dopamine D3 receptors. *Neurosci Lett.* (2019) 691:18–25. doi: 10.1016/j.neulet.2018.03.006
- 127. Martin GE, Williams M, Pettibone DJ, Zrada MM, Lotti VJ, Taylor DA, et al. Selectivity of (1)-4-propyl-9-ydroxynaphthoxazine (+)-PHNO for dopamine receptors in vitro and in vivo. *J Pharmacol Exp Ther.* (1985) 233:395–401.
- 128. Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR, et al. Expression and pharmacological chacterization of the human D3 dopamine receptor. J Pharmacol Exp Ther. (1994) 268:417–26.
- 129. Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, et al. Radiosynthesis and Evaluation of [¹¹C]-(+)-4-Propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. (2005) 48:4153–60. doi: 10.1021/jm050155n
- 130. Narendran R, Slifstein M, Guillin O, Hwang Y, Hwang D-R, Scher E, et al. Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [¹¹C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse. (2006) 60:485–95. doi: 10.1002/syn.20325
- 131. Ginovart N, Galineau L, Willeit M, Mizrahi R, Bloomfield PM, Seeman P, et al. Binding characteristics and sensitivity to endogenous dopamine of [¹¹C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. *J Neurochem*. (2006) 97:1089–103. doi: 10.1111/j.1471-4159.2006.03840.x
- 132. Ginovart N, Willeit M, Rusjan P, Graff A, Bloomfield PM, Houle S, et al. positron emission tomography quantification of $[^{11}C]$ -(+)-PHNO binding in

the human brain. J Cereb Blood Flow Metab. (2006) 27:857–71. doi: 10.1038/ sj.jcbfm.9600411

- 133. Rabiner EA, Slifstein M, Nobrega J, Plisson C, Huiban M, Raymond R, et al. In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: studies in non-human primates and transgenic mice. *Synapse.* (2009) 63:782–93. doi: 10.1002/syn.20658
- 134. Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, et al. Imaging dopamine receptors in humans with [¹¹C]-(+)-PHNO: dissection of D3 signal and anatomy. *Neuroimage.* (2011) 54:264–77. doi: 10.1016/j.neuroimage.2010.06.044
- 135. Gallezot J-D, Beaver JD, Gunn RN, Nabulsi N, Weinzimmer D, Singhal T, et al. Affinity and selectivity of [¹¹C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse. (2012) 66:489–500. doi: 10.1002/syn.21535
- 136. Le Foll B, Collo G, Rabiner EA, Boileau I, Merlo Pich E, Sokoloff P. Dopamine D3 receptor ligands for drug addiction treatment. *Prog Brain Res.* (2014) 211:255–75. doi: 10.1016/B978-0-444-63425-2.00011-8
- 137. Huang M, Kwon S, Oyamada Y, Rajagopal L, Miyauchi M, Meltzer HY. Dopamine D3 antagonism contributes to blonanserin-indiced cortical and acetylcholine efflux and cognitive improvement. *Pharmacol Biochem Behav.* (2015) 138:49–57. doi: 10.1016/j.pbb.2015.09.011
- Ichikawa J, Kuroki T, Dai J, Meltzer HY. Effect of antipsychotic drugs on extracellular serotonin levels in rat medial prefrontal cortex and nucleus accumbens. *Eur J Pharmacol.* (1998) 351:163–71. doi: 10.1016/s0014-2999(98)00308-2
- 139. Oka M, Noda Y, Ochi Y, Furukawa K, Une T, Kurumiya S, et al. Pharmacological profile of AD-5423, a novel antipsychotic with both potent dopamine-D2 and serotonin-S2 antagonist properties. *J Pharmacol Exp Ther.* (1993) 264:158–65.
- 140. Graff-Guerrero A, Mamo D, Shammi CM, Mizrahi R, Marcon H, Barsoum P, et al. The effect of antipsychotics on the high-affinity state of D2 and D3 receptors. *Arch Gen Psychiatry*. (2009) 66:606–15. doi: 10.1001/archgenpsychiatry.2009.43
- 141. Mizrahi R, Agid O, Borlido C, Suridjan I, Rusjan P, Houle S, et al. Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [¹¹C]-(+)-PHNO. *Schizophr Res.* (2011) 131:63–8. doi: 10.1016/j.schres.2011.05.005
- 142. Tateno A, Sakayori T, Kim W, Honjo K, Nakayama H, Arakawa R, et al. Comparison of dopamine D3 and D2 receptor occupancies by a single dose of blonanserin in healthy subjects: a positron emission tomography study with [¹¹C]-(+)-PHNO. *Int J Neuropsychopharmacol.* (2018) 21:522–7. doi: 10.1093/ijnp/pyy004
- 143. Girgis R, Abi-Dargham A, Slifstein M, Chen L, Periclou A, Adham N, et al. In vivo dopamine D3 and D2 receptor occupancy profile of cariprazine versus aripiprazole: a PET study. *Neuropsychopharmacology*. (2017) 43:S595–6.
- 144. Heusler P, Martel JC, Gatti-McArthur S. In vitro profile of the new antipsychotic, F17464, at recombinant human neurotransmitter receptors. *Eur Neuropsychopharmacol.* (2016) 26:S490–1. doi: 10.1016/s0924-977x(16) 31502-4
- 145. Slifstein M, Abi-Dargham A, Girgis RR, Suckow RF, Cooper TB, Divgi CR, et al. Binding of the D3-preferring antipsychotic candidate F17464 to dopamine D3 and D2 receptors: a PET study in healthy subjects with [¹¹C]-(+)-PHNO. *Psychopharmacology.* (2019) 237:519–27. doi: 10.1007/s00213-019-05387-w
- 146. Seeman P, Ko F, Willeit M, McCormick P, Ginovart N. Antiparkinson concentrations of pramipexole and PHNO occupy dopamine D2high and D3high receptors. Synapse. (2005) 58:122–8. doi: 10.1002/syn.20193
- 147. Bono F, Mutti V, Fiorentini C, Missale C. Dopamine D3 receptor heteromerization: implications for neuroplasticity and neuroprotection. *Biomolecules.* (2020) 10:1016. doi: 10.3390/biom10071016
- 148. Li X-M, Perry KW, Wong DT, Bymaster FP. Olanzapine increases in vivo dopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens and striatum. *Psychopharmacology*. (1998) 136:153–61. doi: 10. 1007/s002130050551
- 149. Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther. (1999) 288:774–81.

- 150. Westerink BHC, Kawahara Y, De Boer P, Geels C, De Vries JB, Wikström HV, et al. Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. *Eur J Pharmacol.* (2001) 412:127–38. doi: 10.1016/s0014-2999(00)00935-3
- 151. Frånberg O, Marcus MM, Ivanov V, Schilström B, Shahid M, Svensson TH. Asenapine elevates cortical dopamine, noradrenaline and serotonin release. Evidence for activation of cortical and subcortical dopamine systems by different mechanisms. *Psychopharmacology*. (2009) 204:251–64. doi: 10.1007/ s00213-008-1456-5
- 152. Huang M, Panos JJ, Kwon S, Oyamada Y, Rajagopal L, Meltzer HY. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. *J Neurochem*. (2013) 128:938–49. doi: 10.1111/jnc.12512
- 153. Huang M, He W, Kiss B, Farkas B, Adham N, Meltzer HY. The role of dopamine D3 receptor partial agonism in cariprazine-induced neurotransmitter efflux in rat hippocampus and nucleus accumbens. J Pharmacol Exp Ther. (2019) 371:517–25. doi: 10.1124/jpet.119.259879
- 154. Kehr J, Yoshitake T, Ichinose F, Yoshitake S, Kiss B, Gyertyán I, et al. Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. *Psychopharmacology.* (2018) 235:1593–607. doi: 10.1007/s00213-018-4874-z
- 155. Caravaggio F, Kegeles LS, Wilson AA, Remington G, Borlido C, Mamo DC, et al. Estimating the effect of endogenous dopamine on baseline [¹¹C]-(+)-PHNO binding in the human brain. *Synapse*. (2016) 70:453–60. doi: 10.1002/ syn.21920
- 156. Schotte A, Janssen PFM, Gommeren W, Luyten WHLM, Leysen JE. Autoradiographic evidence for the occlusion of rat brain dopamine D3 receptors in vivo. *Eur J Pharmacol.* (1992) 218:373–5. doi: 10.1016/0014-2999(92)90196-b
- Levant B. Differential sensitivity of [³H]7-OH-DPAT-labeled binding sites in rat brain to inactivation by N-ethoxycarbonyl-2-ethoxy-1,2dihydroquinoline. *Brain Res.* (1995) 698:146–54. doi: 10.1016/0006-8993(95) 00879-u
- Zhang K, Weiss NT, Tarazi FI, Kula NS, Balessarini RJ. Effects of alkylating agent on dopamine D3 receptors in rat brain: selective protection by dopamine. *Brain Res.* (1999) 847:32–7. doi: 10.1016/s0006-8993(99)02024-7
- 159. Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA. In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. *Eur J Pharmacol.* (2004) 483:45–53. doi: 10.1016/j.ejphar.2003.10. 025
- Bortolozzi A, Díaz-Mataix L, Toth M, Celada P, Artigas F. In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. *Psychopharmacology*. (2007) 191:745–58. doi: 10.1007/s00213-007-0698-y
- 161. Hertel P, Nomikos GG, Iurlo M, Svensson TH. Risperidone: regional effects in vivo on release and metabolism of dopamine and serotonin in the rat brain. *Psychopharmacology*. (1996) 124:74–86. doi: 10.1007/bf02245607
- 162. Koch S, Perry KW, Bymaster FP. Brain region and dose effects of an olanzapine/fluoxetine combination on extracellular monoamine concentrations in rat. *Neuropharmacology*. (2004) 46:232–42. doi: 10.1016/ j.neuropharm.2003.09.001
- 163. Huang M, Li Z, Dai J, Shahid M, Wong EHF, Meltzer HY. Asenapine increases dopamine, norepinephrine, and acetylcholine efflux in the rat medial cortex and hippocampus. *Neupropsychopharmacology*. (2008) 33:2934–45. doi: 10.1038/npp.2008.20
- 164. Benoit-Marand M, Ballion B, Borrelli E, Boraud T, Gonon F. Inhibition of dopamine uptake by D2 antagonists: an in vivo study. J Neurochem. (2011) 116:449–58. doi: 10.1016/0304-3940(94)90096-5
- 165. Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: a perspective on mechanimss underlying antipsychotc response. *Neurosci Biobehav Rev.* (2018) 85:146–59. doi: 10.1016/j.neubiorev.2017.09.027
- 166. Amato D, Kruyer A, Samaha A-N, Heinz A. Hypofunctional dopamine uptake and antipsychotic treatment-resistant schizophrenia. *Front Psychiatry*. (2019) 10:314. doi: 10.3389/fpsyt.2019.00314
- 167. Amato D, Canneva F, Cumming P, Maschaure S, Groos D, Dahlmanns JK, et al. A dopaminergic mechanism of antipsychotic drugs efficacy, failure, and failure reversal: the role of the dopamine transporter. *Mol Pschiatry*. (2020) 25:2101–18. doi: 10.1038/s41380-018-0114-5

- 168. Zapata A, Kivell B, Han Y, Javitch JA, Bolan A, Kuraguntla D, et al. Regulation of dopamine transporter function and cell surface expression by D3 dopamine receptor. J Biol Chem. (2007) 282:35842–54. doi: 10.1074/jbc. M611758200
- 169. Luis-Ravelo D, Fumagallo-Reading F, Castro-Hernandez J, Barroso-Chimea P, Alfonso-Oramas D, Febles-Casquero A, et al. Prolonged dopamine D3 receptor stimulation promotes dopamine transporter ubiquitination and degradation through a PKC-dependent mechanism. *Pharmacol Res.* (2021) 165:105464. doi: 10.1016/j.phrs.2021.105434
- 170. Andén N-E, Stock G. Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. *J Pharm Pharmacol.* (1973) 25:346–8. doi: 10.1111/j.2042-7158.1973.tb10025.x
- 171. Bartholini G. Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. *J Pharm Pharmacol.* (1976) 28:429–33. doi: 10.1111/j.2042-7158.1976.tb04648.x
- 172. Leysen JE, Janssen PM, Gommeren W, Wynants J, Pauwels PJ, Janssen PA. In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotics risperidone and ocaperidone. *Mol Pharmacol.* (1992) 41:494–508.
- 173. Kiss B, Némethy Z, Fazekas K, Kurkó D, Gyertyán I, Sághy K, et al. Preclinical pharmacodynamic and pharmacokinetic characterization of the major metabolites of cariprazine. *Drug Des Dev Ther.* (2019) 13:3229–48. doi: 10.2147/dddt.s188760
- 174. Mugnaini M, Iavarone L, Cavallini P, Griffante C, Oliosi B, Savoia C, et al. Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. *Neuropsychopharmacology*. (2012) 38:302–12. doi: 10.1038/npp. 2012.171
- 175. McCormick PN, Kapur S, Graff-Guerrero A, Raymond R, Nobrega JN, Wilson AA. the antipsychotics olanzapine, risperidone, clozapine, and haloperidol are D2-selective ex vivo but not in vitro. *Neuropsychopharmacology*. (2010) 35:1826–35. doi: 10.1038/npp.2010.50
- 176. McCormick PN, Wilson VS, Wilson AA, Remington GJ. Acutely administered antipsychotic drugs are highly selective for dopamine D2 over D3 receptors. *Pharmacol Res.* (2013) 70:66–71. doi: 10.1016/j.phrs.2013. 01.002
- 177. Mach RH, Tu Z, Xu J, Li S, Jones LA, Taylor M, et al. Endogenous dopamine (DA) competes with the binding of a radiolabeled D₃ receptor partial agonist in vivo: a positron emission tomography study. *Synapse.* (2011) 65:724–32. doi: 10.1002/syn.20891
- 178. Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C. Reciprocal regulation of dopamine d1 and D3 receptor function and trafficking by heterodimerization. *Mol Pharmacol.* (2008) 74:59–69. doi: 10.1124/mol.107. 043885
- 179. Maggio R, Scarselli M, Capannolo M, Millan MJ. Novel dimensions of D3 receptor function: focus on heterodimerisation, transactivation and allosteric modulation. *Eur Neuropsychopharmacol.* (2015) 25:1470–9. doi: 10.1016/j. euroneuro.2014.09.016
- 180. van Wieringen J-P, Booij J, Shalgunov V, Elsinga P, Michel MC. Agonist high- and low-affinity states of dopamine D2 receptors: methods of detection and clinical implications. *Naunyn Schmiedebergs Arch Pharmacol.* (2012) 386:135–54. doi: 10.1007/s00210-012-0817-0
- 181. Hsieh C-J, Riad A, Lee JY, Sahlholm K, Xu K, Luedtke RR, et al. Interaction of ligands for pet with the dopamine D3 receptor: in silico and in vitro methods. *Biomolecules.* (2021) 11:529. doi: 10.3390/biom11040529

Conflict of Interest: BKi, BKr, and IL were employees of Gedeon Richter Plc.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Kiss, Krámos and Laszlovszky. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.