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A prospective study of serum metabolites and glioma risk
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ABSTRACT

Malignant glioma is one of the most lethal adult cancers, yet its etiology remains 
largely unknown. We conducted a prospective serum metabolomic analysis of glioma 
based on 64 cases and 64 matched controls selected from Alpha-Tocopherol, Beta-
Carotene Cancer Prevention (ATBC) Study. Median time from collection of baseline 
fasting serum to diagnosis was nine years (inter-decile range 3-20 years). LC/MS-
MS identified 730 known metabolites, and conditional logistic regression models 
estimated odds ratios for one-standard deviation differences in log-metabolite signals. 
Forty-three metabolites were associated with glioma at P<0.05. 2-Oxoarginine, 
cysteine, alpha-ketoglutarate, chenodeoxycholate and argininate yielded the 
strongest metabolite signals and were inversely related to overall glioma risk 
(0.0065≤P<0.0083). Also, seven xanthine metabolites related to caffeine metabolism 
were higher in cases than in controls (0.017≤P<0.042). Findings were mostly similar 
in high-grade glioma cases, although prominent inversely associated metabolites 
included the secondary bile acids glycocholenate sulfate and 3β-hydroxy-5-cholenoic 
acid, xenobiotic methyl 4-hydroxybenzoate sulfate, sex steroid 5alpha-pregnan-
3beta, 20beta-diol-monosulfate, and cofactor/vitamin oxalate (0.0091≤P<0.021). A 
serum metabolomic profile of glioma identified years in advance of clinical diagnoses 
is characterized by altered signals in arginine/proline, antioxidant, and coffee-
related metabolites. The observed pattern provides new potential leads regarding 
the molecular basis relevant to etiologic or sub-clinical biomarkers for glioma.

INTRODUCTION

Brain cancer is one of the most fatal and devastating 
malignancies, given its poor prognosis and adverse impact 
on quality of life, including, particularly, cognitive function. 
Malignant glioma accounts for 80% of adult brain cancers 
[1], and its etiology remains largely unknown, with the 
exception of ionizing radiation and family history, and 

evidence pointing to inverse associations with asthma 
and allergies [1–7]. A spectrum of genetic alterations has 
been characterized for glioma, including germline and 
somatic mutations, recurrent translocations, and copy 
number variations, [8, 9] yet these do not account for all 
the underlying biology. Rapid development of technologies 
in liquid and gas chromatography, mass spectrometry 
and nuclear magnetic resonance have facilitated the 
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measurement of a broad array of low molecular weight 
metabolites in biospecimens such as plasma and serum, 
urine and tissue. Quantification of the metabolome 
provides an integrated snapshot reflection of exogenous 
and endogenous exposures, and may thus help to identify 
novel disease associations and point to biochemical 
pathways involved in disease pathogenesis. Chinnaiyan 
and colleagues demonstrated unique tumor metabolomic 
signatures, involving cellular energy, anabolism and 
phospholipid pathways, that distinguished low-grade from 
high-grade gliomas and had prognostic relevance [10]. The 
significance of these metabolic differences to the etiology, 
early detection, and prevention of the disease remains to 
be established, however, including through prospective 
investigations [11, 12].

To address the potential role of altered metabolites 
and their related biological pathways in glioma 
tumorigenesis, we conducted a prospective case-control 
serologic analysis including 64 glioma cases nested within 
the Alpha-Tocopherol, Beta-Carotene Cancer Prevention 
(ATBC) Study cohort. According to the World Health 
Organization (WHO) grade for glioma (I-IV) [13], the 
present study includes 41 high-grade gliomas (grade IV), 
19 lower-to-intermediate-grade gliomas (grades II and III; 
subsequently referred to “lower-grade”), and 4 cases of 
unknown grade [14].

RESULTS

Cases were similar to controls with respect to 
baseline characteristics, with the exception that they 
had lower average body mass index (BMI) (P=0.025) 
and appeared to consume more coffee (although not 
statistically significantly different (P=0.21) (Table 1). The 
median time from serum collection to glioma diagnosis 
was nine years (inter-decile range=3.0-20.0 years). Based 
on the quality control samples, the median coefficient 
of variation (CV) across all the metabolites was 7% 
(interquartile range=4%-14%) and the median intra-
class correlation coefficient (ICC) was 0.97 (interquartile 
range=0.89-0.99).

Serum metabolites related to risk of overall and 
high-grade glioma with a nominal P-value of <0.05 are 
listed in Tables 2 and 3, respectively, sorted by chemical 
class (also known as “super-pathway”), sub-class (also 
known as “sub-pathway”) and P-values. No association 
reached significance after Bonferroni correction for 
multiple comparisons (threshold of P=0.000068). In the 
primary analysis of all cases and controls, we found that 
the amino acids 2-oxoarginine, cysteine and argininate, 
energy metabolite alpha-ketoglutarate, and lipid 
chenodeoxycholate yielded the strongest signals, being 
lower in cases than in controls (0.0065≤P<0.0083, Table 
2). Amino acid metabolites in the phenylalanine/tyrosine 
sub-pathway (N-acetyltyrosine, N-acetylphenylalanine, 
phenyllactate and tyrosine; 0.011≤P<0.048), and 

the tryptophan sub-pathway (N-acetylkynurenine, 
N-acetyltryptophan and xanthurenate; 0.042≤P<0.045) 
were also lower in cases. By contrast, the serum 
acylcarnitines stearoylcarnitine, margaroylcarnitine, and 
eicosenoylcarnitine (0.016≤P<0.046), and xanthine (i.e., 
caffeine) metabolites 1-methylurate, 1-methylxanthine, 
paraxanthine, theobromine, 5-acetylamino-6-amino-
3-methyluracil, theophylline, and 7-methylxanthine 
(0.017≤P<0.042) were higher in cases than in controls 
(Table 2), as were serum levels of 2-hydroxyglutarate (2-
HG) (odds ratio (OR)=1.53, 95% confidence interval (CI): 
0.98, 2.39, P=0.06; data not shown). Adjustment for age 
at baseline or diagnosis, BMI, history of diabetes, height, 
physical activity, cigarettes per day, or red meat or alcohol 
consumption did not alter the findings (data not shown).

High-grade glioma showed fewer but similar 
risk associations overall, although proportionally more 
metabolites were elevated in cases relative to controls 
(e.g., N-acetylglutamate, ribonate, and 5-methyluridine; 
0.04≤P<0.02; Table 3). Notably, xanthine compounds 
appeared unrelated to high-grade glioma. Prominent 
metabolite signals with inverse risk associations were 
the secondary bile acids glycocholenate sulfate and 
3β-hydroxy-5-cholenoic acid, xenobiotic methyl 
4-hydroxybenzoate sulfate, sex steroid 5alpha-pregnan-
3beta, 20beta-diol monosulfate, and cofactor/vitamin 
oxalate (ethanedioate) (0.0091≤P<0.021; Table 3).

Stratifying cases and their controls by median 
time from blood draw to diagnosis showed that several 
lysoplasmalogen, sphingolipid, and three of four benzoate 
metabolites were positively related to glioma within nine 
years of blood collection (Supplementary Table 1). By 
contrast, abundant diacylglycerol, monoacylglycerol, 
phospholipid, and sphingolipid metabolites were 
prominently and inversely related to cases that were 
diagnosed at least nine years after blood collection 
(Supplementary Table 2). We found that caffeine intake 
did not modify the association between identified caffeine 
related metabolites and glioma risk (Supplementary 
Table 3).

None of the top 10 principal components were 
significantly associated with glioma risk, with all tests 
showing P≥0.034 (P<0.005 being the threshold). The 
Gene-Set Analysis (GSA) pathway analysis revealed 
primary bile acid, urea cycle/arginine and proline, 
tocopherol, and glycolysis/gluconeogenesis/pyruvate 
associations with overall glioma risk (0.005≤P<0.048; 
Table 4). Ascorbate and aldarate metabolites appeared to 
be related to high-grade glioma (P=0.02), while glutamate, 
glycolysis/gluconeogenesis/pyruvate (i.e., cellular 
energy), eicosanoid and alanine/aspartate metabolites 
were related to lower-grade glioma (P=0.006, 0.017, 0.03, 
0.04, respectively; Table 4). The sub-pathway analysis 
stratified by time from blood collection to diagnosis 
revealed that primary bile acid metabolites were related 
to cases diagnosed within nine years of blood collection 
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(P=0.034), whereas urea cycle/arginine and proline, 
glycolysis/gluconeogenesis/pyruvate, monoacylglycerol, 
histidine, food component/plant, and diacylglycerol 
metabolites were related to risk of glioma after nine 
years (0.003≤P<0.045, Supplementary Table 4). These 
pathway associations did not, however, reach the stringent 
Bonferroni significance threshold for correction of 
multiple comparisons [i.e., eight tests for super-pathways 
(P=0.0063) and 70 tests for sub-pathways (P=0.00071)].

DISCUSSION

Our study identified the amino acids 2-oxoarginine, 
cysteine and argininate, energy metabolite alpha-
ketoglutarate, and secondary bile acid chenodeoxycholate, 
as well as some other compounds, as being lower in 
circulation of glioma cases years in advance of diagnosis 
compared to study-based controls. By contrast, we show 
several xanthine metabolites of caffeine to be related 

Table 1: Baseline characteristics of glioma cases and controls1

 Controls Cases P-value2

N 64 64  

Age at blood draw, years 58 57 Matched

Median time from serum 
collection to diagnosis 
(years, interdecile range)

— 9.0 (3.0-20.0) —

Height (cm) 173.9 174.4 0.93

Weight (kg) 80.2 77.0 0.069

BMI (kg/ m2) 26.5 25.3 0.025

History of diabetes (%) 7.8 3.1 0.24

Cigarettes per day 21.1 20.2 0.45

Years of cigarette smoking 36.5 35.4 0.57

Physically active (%) 18.8 23.4 0.67

Serum retinol (μg/ L) 592.3 586.4 0.76

Serum total cholesterol 
(mmol/ L) 6.2 6.2 0.70

Serum α-tocopherol (mg/ L) 12.0 11.4 0.057

Serum β-carotene (μg/ L) 178.7 214.3 0.55

Dietary intake per day    

Total energy (kcal) 2776.9 2634.0 0.33

Fruit (g) 114.0 135.0 0.25

Vegetables (g) 121.2 106.2 0.21

Red meat (g) 78.0 67.8 0.059

Coffee (g) 558.6 631.6 0.21

Alcohol (ethanol, g) 18.0 14.8 0.64

Supplement use    

Vitamin A (%) 9.4 7.8 1.00

Vitamin D (%) 6.3 7.8 1.00

Calcium (%) 10.9 12.5 1.00

1Values are means unless otherwise indicated. All data were obtained at baseline.
2Wilcoxon rank test for continuous variables, or Fisher’s exact test for categorical variables.
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Table 2: Serum metabolites related to risk of overall glioma (P < 0.05)1

Metabolite Sub-pathway Odds 
Ratio 95% CI P 

value
P for chemical 

class

Amino acids and amino acid 
derivatives     0.14

Glutamate Glutamate metabolism 0.65 0.43, 0.96 0.0321  

N-Acetylleucine Leucine, isoleucine and valine 
metabolism 0.67 0.44, 1.00 0.0499  

Cysteine Methionine, cysteine, SAM and taurine 
metabolism 0.39 0.19, 0.77 0.0069  

Cysteine-S-sulfate Methionine, cysteine, SAM and taurine 
metabolism 0.62 0.40, 0.96 0.0323  

N-Acetyltyrosine Phenylalanine and tyrosine metabolism 0.57 0.36, 0.88 0.0109  

N-Acetylphenylalanine Phenylalanine and tyrosine metabolism 0.63 0.41, 0.96 0.0326  

Phenyllactate (PLA) Phenylalanine and tyrosine metabolism 0.67 0.46, 0.97 0.0350  

Tyrosine Phenylalanine and tyrosine metabolism 0.71 0.50, 1.00 0.0477  

N-Acetylkynurenine Tryptophan metabolism 0.65 0.43, 0.98 0.0420  

N-Acetyltryptophan Tryptophan metabolism 0.64 0.41, 0.98 0.0421  

Xanthurenate Tryptophan metabolism 0.67 0.45, 0.99 0.0453  

2-Oxoarginine Urea cycle; arginine and proline 
metabolism 0.56 0.37, 0.85 0.0065  

Argininate Urea cycle; arginine and proline 
metabolism 0.60 0.42, 0.88 0.0083  

N-Acetylarginine Urea cycle; arginine and proline 
metabolism 0.69 0.48, 0.98 0.0407  

Carbohydrates     0.36

Mannitol/sorbitol Fructose, mannose and galactose 
metabolism 0.63 0.41, 0.97 0.0374  

Pyruvate Glycolysis, gluconeogenesis, and 
pyruvate metabolism 0.65 0.43, 0.97 0.0343  

Cofactors and Vitamins     0.23

Trigonelline (N'-
methylnicotinate)

Nicotinate and nicotinamide 
metabolism 1.72 1.10, 2.69 0.0182  

Alpha-tocopherol Tocopherol metabolism 0.65 0.44, 0.96 0.0305  

Energy     0.25

Alpha-ketoglutarate TCA cycle 0.52 0.32, 0.84 0.0075  

Lipids     0.36

Stearoylcarnitine (C18) Fatty acid metabolism (Acyl carnitine) 1.58 1.09, 2.29 0.0159  

Margaroylcarnitine Fatty acid metabolism (Acyl carnitine) 1.50 1.05, 2.15 0.0251  

Eicosenoylcarnitine (C20:1) Fatty acid metabolism (Acyl carnitine) 1.59 1.01, 2.51 0.0457  

1-Palmitoyl-2-linoleoyl-GPI 
(16:0/18:2) Phospholipid metabolism 0.61 0.41, 0.91 0.0147  

Glycerophosphorylcholine (GPC) Phospholipid metabolism 1.76 1.00, 3.10 0.0484  

(Continued )
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Metabolite Sub-pathway Odds 
Ratio 95% CI P 

value
P for chemical 

class

1-(1-Enyl-palmitoyl)-2-oleoyl-
GPC (P-16:0/18:1) Plasmalogen 1.47 1.01, 2.15 0.0449  

Chenodeoxycholate Primary bile acid metabolism 0.56 0.37, 0.86 0.0082  

Cholate Primary bile acid metabolism 0.6 0.39, 0.91 0.0162  

3β-Hydroxy-5-cholenoic acid Secondary bile acid metabolism 0.67 0.45, 0.98 0.0393  

Glycocholenate sulfate Secondary bile acid metabolism 0.64 0.41, 0.98 0.0420  

Sphingomyelin (d18:1/17:0, 
d17:1/18:0, d19:1/16:0) Sphingolipid metabolism 1.67 1.07, 2.61 0.0228  

Nucleotides     0.59

Cytidine Pyrimidine metabolism, cytidine 
containing 1.49 1.01, 2.19 0.0471  

Peptides     0.64

Gamma-glutamyltyrosine Gamma-glutamyl amino acid 0.61 0.40, 0.92 0.0175  

Xenobiotics     0.58

Propyl 4-hydroxybenzoate sulfate Benzoate metabolism 0.54 0.32, 0.92 0.0230  

Methyl 4-hydroxybenzoate 
sulfate Benzoate metabolism 0.67 0.46, 0.97 0.0320  

3-Methyl catechol sulfate Benzoate metabolism 1.53 1.02, 2.28 0.0380  

Quinate Food component/plant 1.52 1.03, 2.25 0.0334  

1-Methylurate Xanthine metabolism 1.58 1.08, 2.30 0.0171  

1-Methylxanthine Xanthine metabolism 1.63 1.09, 2.46 0.0184  

Paraxanthine Xanthine metabolism 1.52 1.05, 2.22 0.0284  

Theobromine Xanthine metabolism 1.53 1.02, 2.28 0.0375  

5-Acetylamino-6-amino-3-
methyluracil Xanthine metabolism 1.55 1.02, 2.35 0.0379  

Theophylline Xanthine metabolism 1.50 1.02, 2.22 0.0412  

7-Methylxanthine Xanthine metabolism 1.47 1.01, 2.14 0.0415  

1Conditional logistic regression models were used to estimate odds ratio and their 95% confidence intervals (CIs), with only 
matching factors adjusted in the model. The odds ratio is for one-standard deviation increase in metabolite level. The table 
is sorted by chemical class, sub-pathway, and P value. The analysis is based on 64 cases and 64 controls.

to higher risk. Ascorbate and aldarate metabolites are 
associated with high-grade glioma, while glycolysis/
gluconeogenesis/pyruvate, eicosanoid and glutamate 
metabolites appeared related to lower-grade disease.

A possible role for coffee consumption in the 
etiology of glioma has long been hypothesized, and a 
meta-analysis of four prospective and two retrospective 
studies showed no association [15]. Previous research has 
identified several coffee-related metabolites in circulation, 
including quinate, 1-methylurate, 1-methylxanthine, 
paraxanthine, theobromine, 5-acetylamino-6-amino-
3-methyluracil, theophylline, 7-methylxanthine, and 

trigonelline [16], with many of these compounds 
showing substantial positive associations with overall 
glioma risk in the present investigation. Whether these 
xanthine metabolites have a direct causal role in glioma, 
or are elevated years in advance of diagnosis because of 
increased coffee consumption in response to tumor-related 
neurologic changes or cancer-related fatigue, for example, 
will require additional clinical and prospective studies.

The arginine/proline metabolic pathway 
compounds 2-oxoarginine, a guanidino metabolite of 
arginine, and argininate, the conjugate base of arginine, 
were substantially lower in men years in advance - and 
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Table 3: Serum metabolites related to risk of high-grade glioma (P < 0.05)1

Metabolite Sub-pathway Odds Ratio 95% CI P value P for chemical 
class

Amino acids and amino 
acid derivatives     0.85

N-Acetylglutamate Glutamate metabolism 1.99 1.10, 3.61  0.0228  

2,3-Dihydroxy-2-
methylbutyrate

Leucine, isoleucine and valine 
metabolism 2.05 1.09, 3.85  0.0258  

Cysteine Methionine, cysteine, SAM and 
taurine metabolism 0.44 0.20, 0.98  0.0437  

Carbohydrates     0.48

Ribonate Pentose metabolism 2.53 1.02, 6.25  0.0445  

Cofactors and Vitamins     0.07

Oxalate (ethanedioate) Ascorbate and aldarate 
metabolism 0.55 0.33, 0.91  0.0211  

Threonate Ascorbate and aldarate 
metabolism 0.57 0.34, 0.95  0.0300  

Gulonate Ascorbate and aldarate 
metabolism 1.99 1.04, 3.81  0.0387  

Energy     0.49

Aconitate [cis or trans] TCA cycle 1.70 1.00, 2.89  0.0502  

Lipids     0.97

Oleoyl-oleoyl-glycerol 
(18:1/18:1) Diacylglycerol 1.85 1.03, 3.31  0.0402  

Cholate Primary bile acid metabolism 0.54 0.31, 0.93  0.0273  

Glycocholenate sulfate Secondary bile acid metabolism 0.39 0.19, 0.79  0.0091  

3β-Hydroxy-5-cholenoic 
acid Secondary bile acid metabolism 0.49 0.28, 0.85  0.0106  

5Alpha-pregnan-3beta, 
20beta-diol monosulfate Steroid 0.56 0.34, 0.92  0.0209  

Pregnenolone sulfate Steroid 0.53 0.30, 0.94  0.0293  

Nucleotides     0.15

5-Methyluridine 
(ribothymidine)

Pyrimidine metabolism, uracil 
containing 2.25 1.12, 4.52  0.0226  

Xenobiotics     0.63

Tartronate 
(hydroxymalonate) Bacterial/fungal 0.57 0.34, 0.97  0.0383  

Methyl 4-hydroxybenzoate 
sulfate Benzoate metabolism 0.47 0.26, 0.83  0.0097  

Propyl 4-hydroxybenzoate 
sulfate Benzoate metabolism 0.52 0.28, 0.97  0.0391  

1Conditional logistic regression models were used to estimate odds ratio and their 95% confidence intervals (CIs), with only 
matching factors adjusted in the model. The odds ratio is for one-standard deviation increase in metabolite level. The table 
is sorted by chemical class, sub-pathway, and p value. The grade is based on World Health Organization Grade of glioma, 
and Grade IV is defined as high-grade. The analysis is based on 41 cases and 41 controls.
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especially nine or more years - of being diagnosed 
with glioma compared with non-cases. A recent plasma 
metabolomic analysis of 87 glioma patients found lower 
arginine concentrations in high-grade glioma compared 
to low-grade, suggesting greater arginine dependence 
of the former [17]. Earlier studies have indicated that 
arginine/proline metabolites are involved in tumorigenesis 
(including glioblastoma), exogenous arginine is required 
for tumor growth, and arginine deprivation leads to 
impairment of glioma cell motility, invasiveness, and 
adhesion [18–21].

A large proportion (i.e., 60-90%) of low-grade 
gliomas harbor a heterozygous mutation (R132H) in 
the gene encoding the cytosolic isoform of isocitrate 
dehydrogenase (IDH1) [22]. Data from genome-wide 
association studies of glioma have identified single 
nucleotide polymorphisms (SNP) associated with altered 
risk of IDH-mutated glioma, including rs55705857 
in 8q24.21, rs4295627 in CCDC26, and rs498872 in 
PHLDB1 [23, 24], and in a recent case-control study of 
285 gliomas, 316 healthy controls, and 531 other types 
of cancers, the authors showed that SNP rs55705857 
was strongly associated with altered risk of IDH-mutant 
glioma, but not with other cancers [23]. The wild-type 
IDH1 catalyzes the oxidative decarboxylation of isocitrate 
to generate alpha-ketoglutarate (α-KG), whereas the 
mutant enzyme is able to convert α-KG into molecules 

of 2-HG, which is an “oncometabolite” that may mediate 
several tumorigenic events [25–27]. In the present study, 
we observed increased pre-diagnostic serum 2-HG and 
decreased α-KG in glioma cases. We could not, however, 
evaluate IDH1 mutation status and its correlation with 
serum 2-HG, although previous studies indicated no 
correlation between serum 2-HG and IDH1/2 status or 
tumor size [17, 28]. On the other hand, it is unlikely that 
the serum 2-HG and α-KG reflect early cellular changes 
in transformed astrocytes or emerging gliomas, but rather 
etiologic biomarkers that must be considered and further 
evaluated in other studies. It is of note that we observed 
that another TCA cycle metabolite, aconitate (related to 
cis-aconitate), was elevated in high-grade cases (OR=1.7, 
P=0.05).

Being a highly metabolically active organ, the brain 
generates substantial reactive oxygen species (ROS) and is 
slower to neutralize these free radicals compared to other 
tissues [29], possibly leading to DNA damage, genomic 
instability and tumor development. We found several 
antioxidant pathway metabolites inversely associated with 
risk that may be indicative of serum antioxidant depletion 
resulting from increased tumor ROS. For example, both 
cysteine and cysteine-S-sulfate were lower in cases, 
and this might be associated with increased cysteine 
uptake, and modulating of redox status, in the central 
nervous system. The conditionally essential amino acid 

Table 4: Gene set analysis (GSA) for sub-pathways of serum metabolites and risk of glioma (P < 0.05)1

Sub-pathway No. of contributing metabolites P value from GSA

Overall glioma   

Primary bile acid metabolism 8 0.005

Urea cycle; arginine and proline metabolism 16 0.032

Tocopherol metabolism 3 0.034

Fatty acid, amino 2 0.045

Glycolysis, gluconeogenesis, and pyruvate metabolism 5 0.048

High-grade glioma   

Ascorbate and aldarate metabolism 3 0.02

Lower-grade glioma   

Glutamate metabolism 9 0.006

Glycolysis, gluconeogenesis, and pyruvate metabolism 5 0.017

Eicosanoid 2 0.03

Alanine and aspartate metabolism 6 0.04

1GSA, a standard pathway method, was used to examine whether the pre-defined sub-pathways were associated with glioma 
status. The grade is based on the World Health Organization Grade of glioma, and Grade IV is defined as high-grade, 
and Grade II-III is defined as lower-grade. The GSA sub-pathway analysis for overall glioma is based on 64 cases and 64 
controls, for high-grade glioma is based on 41 cases and 41 controls, for lower-grade glioma is based on 19 cases and 19 
controls.
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cysteine is a rate-limiting precursor for the antioxidant 
glutathione, one of the most abundant antioxidants in the 
central nervous system [30, 31]. Whereas cysteine is an 
extracellular antioxidant, glutathione acts intracellularly 
and may play a role in glioma cell survival under redox 
stress and hypoxic conditions [30–32]. Consistent with 
this is a metabolomic study of patient-derived glioma 
tissue that found cysteine catabolism and cysteine sulfinic 
acid accumulation in the high-grade glioblastoma cases 
[33]. Higher circulating cysteine has also been related to 
lower risks of several other cancers including colon [34], 
esophagus, and stomach [35].

Also relevant to ROS and glioma risk is the inverse 
association we observed for alpha-tocopherol, the most 
biologically active form of vitamin E and a potent 
inhibitor of lipid peroxidation [36]. Two previous studies 
had similar findings for glioma and glioblastoma [37, 38], 
while a recent report showed positive associations for 
several antioxidants including alpha-tocopherol [39]. The 
latter finding was, however, restricted to risk 10-22 years 
after blood collection [39]. By contrast, and also relevant 
to the metabolite-ROS-glioma associations, we showed 
two of three compounds in the ascorbate/aldarate pathway 
were inversely associated with high-grade disease.

5Alpha-pregnan-3beta, 20beta-diol monosulfate and 
pregnenolone sulfate were reduced in high-grade glioma 
cases. The latter is considered a neurosteroid that can be 
synthesized in the central nervous system, is present in 
higher concentrations in brain tissue than in plasma [40, 
41], and is a precursor of some neurosteroids characterized 
as having neuroprotective effects [42, 43]. Experimental 
data also indicate that pregnenolone can regulate glioma 
cell death through extrinsic and intrinsic apoptotic 
pathways in a caspase-dependent manner [44].

Altered energy metabolism has been considered 
one of the hallmarks of cancer [45]. Glycolysis, as a 
highly conserved metabolic process, is essential for 
energy production in normal mammalian cells, and 
impairment of glycolysis has been depicted as a feature 
of cancer metabolism; i.e., the Warburg effect [46–48]. 
Impairment of glycolysis in glioma has been found in the 
present study (especially in low-grade tumors), as well as 
in previous studies (distinguishing low- and high-grade 
tumors) [10, 17]. One of the previous studies [10] that 
identified a total of 308 known biochemicals and used 
fresh-frozen tumor tissue found alterations in glucose 
metabolism as a function of tumor grade, especially 
distinguishing grade IV tumors from grade II (33 grade IV 
tumors and 18 grade II tumors). Another study [17] using 
serum that detected a total of 224 known metabolites from 
25 key metabolic pathways reported that the carbohydrate 
pathway (e.g. glycolysis or gluconeogenesis) was ranked 
6th of 18 metabolic pathways that significantly differed 
between high- and low-grade glioma. They have defined 
low-grade glioma (N=42) as grade I and II, and high-grade  
(N=45) glioma as grade III and IV. Based on differences 

in study designs, including biospecimen type (serum vs. 
tissue), reference groups (healthly controls in the present 
study vs. low-grade glioma cases in previous clinical 
studies), number of identified metabolites (730 known 
metabolites in the present study vs. 200-300 metabolites 
in the previous studies), and definition of low- and 
high-grade glioma (grade II and III as low-grade and 
grade IV as high-grade in the present study vs. grade I/
II as low-grade and grade III/IV as high grade), a direct 
comparison across the studies is not facile and involves 
imprecision. Our findings suggest that impairment of the 
glycolysis pathway may be an early event during glioma 
development, likely to support cell proliferation and 
tumor anabolic activity. Of note, impairment of glycolysis 
has been shown in earlier studies to be associated with 
activated oncogenes (such as RAS, or MYC) and mutant 
tumor suppressors (such as TP53) [45, 49, 50] and such 
mutations have been reported to occur more frequently in 
low-grade rather than high-grade gliomas [51–53].

Notable strengths of our investigation include 
assaying of overnight fasting serum samples that were 
obtained up to two decades prior to the diagnosis of 
glioma. Cases were ascertained from census-based 
population registers with high accuracy. Untargeted 
metabolomic profiling was able to identify several hundred 
metabolites using a high-quality platform with careful 
quality control and laboratory blinding to case-control 
status. Study limitations include the homogenous nature 
of the Finnish male smoker population which impacts 
the generalizability of our findings to other populations. 
Also, serum metabolites were only measured at one 
blood sampling time-point, whereas additional time-
points would have provided a more robust reflection of 
one’s usual or average profile. We are unable to access 
tumor tissue for glioma genotyping, such as for IDH 
mutation, thus we could not classify gliomas based on 
this factor. Our study sample size was relatively small 
for an agnostic investigation, albeit glioma is a relatively 
rare malignancy and all available cases were studied. 
Although none of our findings exceeded statistically 
significant thresholds for multiple comparisons, a large 
number of the metabolites were highly correlated with 
one another (e.g., fatty acids), which makes the Bonferroni 
threshold particularly stringent in that the tests were not 
completely independent. Nonetheless, our findings should 
be considered preliminary and hypothesis-generating, 
even with respect to top signals that were consistent with 
data from previous studies.

In conclusion, the present study finds a serum 
metabolomic profile of glioma up to 20 years prior to 
clinical diagnosis that is characterized by altered molecular 
signals in arginine/proline, antioxidant, and coffee-related 
metabolites. Ascorbate/aldarate and steroid hormone 
metabolites were found to be associated with high-grade 
glioma. The observed profiles provide evidence regarding 
the molecular basis relevant to etiologic or sub-clinical 
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biomarkers for glioma. Further prospective metabolomic 
studies are needed to re-examine the findings in larger and 
more diverse populations.

MATERIALS AND METHODS

Study population

The ATBC Study was a 2×2 factorial, randomized, 
double-blind, placebo-controlled primary prevention trial 
originally conducted to examine whether α-tocopherol 
and β-carotene supplementation could reduce incidence 
of cancer [54]. Details of the study have been described 
[54]. Briefly, the trial enrolled Caucasian male smokers 
(n=29,133), aged 50-69 years from 1985 to 1988 in 
southwest Finland. The participants were randomly 
assigned to receive one of four supplements: α-tocopherol 
(50 mg/day), β-carotene (20 mg/day), both or placebo for 
5-8 years (median=6.1) through the end of the trial (April 
30, 1993). Pre-supplementation fasting blood samples 
from all participants (years prior to cancer diagnoses) 
were collected during the baseline visit, and stored at 
-70 °C until assessment. At enrollment, self-reported 
questionnaires were completed with information regarding 
general health, behavioral and lifestyle factors, and height 
and weight were measured. Participants were followed 
from date of enrollment, to date of glioma diagnosis 
(Finnish Cancer Registry), date of death (Finnish Register 
of Causes of Death), or censor date (December 31, 2012), 
whichever occurred first.

All participants provided written informed consent 
at enrollment. The ATBC Study was approved by 
institutional review boards at the U.S. National Cancer 
Institute and the Finnish National Institute for Health and 
Welfare.

Case ascertainment and control selection

A total of 64 glioma cases (ICD-9 191, ICD-O 
morphology code 9380-9481), including 41 high-grade, 
19 lower-grade and 4 unknown grade, ascertained during 
the follow-up period are included in the present analysis. 
Using incidence-density sampling without replacement, 
we randomly selected 64 matched controls based on age 
(± 1 year) and date of blood collection (± 30 days).

Metabolite assessment

Ultrahigh performance liquid chromatograph/
tandem mass spectrometry (LC-MS/MS), a high resolution 
accurate mass (HRAM) platform at Metabolon Inc., 
was used to determine serum metabolomic profiles as 
previously described [55, 56]. To summarize, extraction of 
samples was processed using an automated liquid handling 
robot (Hamilton LabStar, Hamilton Robotics, Inc., Reno, 
NV), and 450μl of methanol was added to 100 μl of sample 

to precipitate proteins. To confirm extraction efficiency, 
four recovery standards were added to the methanol, 
including DL-2-fluorophenylglycine, tridecanoic acid, d6-
cholesterol and 4-chlorophenylalanine. Four aliquots from 
each sample were obtained and dried. For the negative 
ion analysis, two aliquots of each serum sample were 
reconstituted in 50μl of 6.5 mM ammonium bicarbonate in 
water with a pH of 8. For the positive ion analysis, another 
two aliquots of each serum sample were reconstituted 
using 50μl 0.1% formic acid in water with a pH of 3.5. 
The procedures further included raw data extraction, peak-
identification and quality control (QC) inclusion in each 
assay. The assays were run in four batches, each batch 
contained 16 case-control pairs and two QC samples. 
We identified a total of 1,064 metabolites, of which 
311 metabolites were unknown, and 753 were known 
molecules. We excluded 23 metabolites that were missing 
(i.e. below the limit of detection) in >110 study individuals 
(86%), leaving a total of 730 identified compounds in the 
final analysis. Metabolites were categorized into one of 
eight mutually exclusive chemical classes: amino acids 
and amino acid derivatives (subsequently refer to as 
“amino acids”), carbohydrates, cofactors and vitamins, 
energy metabolites, lipids, nucleotides, peptides or 
xenobiotics. CVs and ICCs were used to assess the data 
reliability. The CV is defined as the square root of the 
within-subject variance divided by the mean value. The 
lower the CV, the better the assay repeatability. The ICC is 
defined as the between-individual variance divided by the 
total variance. The range of ICC values are 0-1, and close 
to 0 suggests little to null reproducibility, whereas close 
to 1 indicates good reproducibility. Rosner has proposed 
the classification of ICCs as poor (<0.4), fair-to-good (0.4-
0.75), and excellent (≥0.75) [57].

Statistical analyses

We used either Wilcoxon rank sum (for continuous 
variables) or Fisher’s exact test (for categorical variables) 
to compare the demographic characteristics of cases 
and controls. To standardize the batch variability, we 
normalized each metabolite within a given batch by 
dividing by the batch mean of all non-missing values. 
Metabolites with missing values were imputed to the 
minimum of the observed values. Metabolite levels 
were then log-transformed and normalized to have 
mean = 0 and variance = 1. We modeled the association 
between glioma and each normalized log-transformed 
metabolite level by conditional logistic regression 
and report the ORs for a 1-standard deviation (SD) 
increase and their 95% CIs, with only matching factors 
adjusted in the final model. The threshold for statistical 
significance was defined by Bonferroni correction in 
the primary analysis with 730 tests (P=0.000068). We 
next performed principle component analysis [58] and 
repeated the conditional logistic regression for each of 
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the top 10 principal components. We then used GSA, a 
standard pathway method, to examine whether any of the 
pre-defined sub or super-pathways were associated with 
glioma status [59].

Sensitivity analyses were performed, including 
restriction to high-grade case-control pairs, and 
stratification by age at enrollment (<56 vs. ≥56 years, 
median age as cutoff point), time to diagnosis (<9 vs. ≥9 
years, median time as cutoff point), and caffeine intake 
(<560 vs. ≥560 gram, median as cutoff point). Additional 
analyses adjusted (separately) for BMI (continuous), 
height (continuous), history of diabetes (yes or no), 
physical activity (no activity vs. at least light activity), 
and number of daily cigarettes, red meat consumption, and 
alcohol consumption (all continuous).

The R statistical language version 3.2.3 (Vienna, 
Austria) was used for GSA analysis, and SAS software 
version 9.3 (SAS Institute, Cary, NC) was used for other 
analyses. All presented P-values are two-sided.
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