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Introduction: For tests reporting continuous results, primary studies usually

provide test performance at multiple but often different thresholds. This creates

missing data when performing a meta‐analysis at each threshold. A standard

meta‐analysis (no imputation [NI]) ignores such missing data. A single imputa-

tion (SI) approach was recently proposed to recover missing threshold results.

Here, we propose a new method that performs multiple imputation of the miss-

ing threshold results using discrete combinations (MIDC).

Methods: The new MIDC method imputes missing threshold results by ran-

domly selecting from the set of all possible discrete combinations which lie

between the results for 2 known bounding thresholds. Imputed and observed

results are then synthesised at each threshold. This is repeated multiple times,

and the multiple pooled results at each threshold are combined using Rubin's

rules to give final estimates. We compared the NI, SI, and MIDC approaches

via simulation.

Results: Both imputation methods outperform the NI method in simulations.

There was generally little difference in the SI and MIDC methods, but the latter

was noticeably better in terms of estimating the between‐study variances and

generally gave better coverage, due to slightly larger standard errors of pooled

estimates. Given selective reporting of thresholds, the imputation methods also

reduced bias in the summary receiver operating characteristic curve. Simula-

tions demonstrate the imputation methods rely on an equal threshold spacing

assumption. A real example is presented.

Conclusions: The SI and, in particular, MIDC methods can be used to exam-

ine the impact of missing threshold results in meta‐analysis of test accuracy

studies.
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1 | INTRODUCTION

Primary studies that evaluate the diagnostic accuracy of a
test that reports continuous results commonly report sensi-
tivity and specificity values at multiple thresholds which
define test positive and test negative patients. However,
systematic reviews commonly observe heterogeneity in
the thresholds chosen across studies, with not all thresholds
reported in all studies. This inconsistent presentation of
results for multiple thresholds creates a problem for
researchers aiming to meta‐analyse test accuracy results
across multiple studies, for example, to establish the best
threshold for using the test in practise. Each threshold
may have a different number of studies available, and there
can be an abundance of information for some thresholds
but a scarcity for others. For example, a recent study com-
paring aggregate and individual participant data (IPD)
meta‐analyses of the Patient Health Questionnaire‐9
depression screening tool (PHQ‐9) identified 13 studies
reporting on 13 different thresholds; 2 thresholds were only
considered in 1 study, while the other 11 thresholds were
considered inmultiple studies, up to amaximumof 11 studies
for any threshold.1 Therefore, none of the thresholds were
reported in all studies. The issue of missing threshold infor-
mation in diagnostic test accuracy meta‐analysis is highly
prevalent, with many other examples in the literature.2-8

In such cases, it is common to meta‐analyse the results
for each threshold separately, using the subset of 2‐by‐2
tables of test accuracy results available for each. Due to
the lack of an established and validated alternative method,
The Cochrane Handbook for Diagnostic Test Accuracy
Reviews (chapter 10) suggests “Estimating summary sensi-
tivity and specificity of the test for a common threshold, or
at each of several different common thresholds” and notes
that “Each study can contribute to one or more analyses
depending on what thresholds it reports. Studies which do
not report at any of the selected thresholds are excluded.”9

However, this approach excludes studies from a meta‐anal-
ysis if they do not report the threshold of interest, even if
they did report results for other (often similar) threshold
values. A further concern is selective reporting of threshold
results in primary studies, where thresholds are more likely
to be reported when they give large sensitivity and specific-
ity results.10 This was highlighted in the aforementioned
meta‐analysis of PHQ‐9 for depression screening,1 which
showed that pooled sensitivity estimates were biased by
between 5% and 15% in ameta‐analysis of published thresh-
old results compared to using IPD. This potentially leads to
over‐optimistic meta‐analysis results, biased toward larger
pooled sensitivity and specificity results than the truth.

Many of these issues could be avoided if IPD were
available, as tests reporting continuous results could then
be analysed at a consistent threshold in all studies and
therefore selective reporting could be avoided. However,
here, our focus is on meta‐analysis of reported results. To
address the issue of multiple thresholds per study, several
methods have been proposed to synthesise results from
multiple thresholds simultaneously, but most require a
complete set of threshold results11-13 or require an
approximate within‐study normality assumption on logit
sensitivity and logit specificity estimates (with known
within‐study variances), rather than modelling the 2‐by‐2
data directly.14,15 Hamza et al12 proposed a multivariate
random‐effect meta‐analysis approach which models the
within‐study relationship between threshold value and
test accuracy. An alternative survival model framework
for meta‐analysing multiple thresholds was later proposed
by Putter et al13 to counter convergence problems with the
Hamza method. However, both these methods require all
studies to report all thresholds of interest and therefore
have limited applicability. Dukic and Gatsonis11 much
earlier proposed a method for multiple thresholds, but it
only allows a summary receiver operating characteristic
(SROC) curve to be derived and does not give pooled esti-
mates at each individual threshold of interest. Steinhauser
et al recently proposed a novel method assuming either a
normal or logistic distribution for the underlying test or
biomarker and used a linear mixed model to allow estima-
tion of an SROC curve and any desired threshold value (eg,
Youden's index).16 The method requires the assumption
of the distribution of the test results, which might not
be known and may only be estimable if IPD are available.

Riley et al recently proposed a single imputation (SI)
method to impute a 2‐by‐2 table for any missing threshold
in a study that is bounded between 2 other available thresh-
olds.17 A meta‐analysis can then be done at each threshold,
with studies with imputed 2‐by‐2 tables synthesised with
studies with known 2‐by‐2 tables. This was proposed as an
exploratory method (sensitivity analysis) to examine the
potential impact of the missing threshold results on meta‐
analysis conclusions. The use of imputed results provides
more information at each threshold allowing meta‐analysis
results to be produced with more precision and, in the
situation of selectively reported thresholds, potentially less
bias. An empirical evaluation was previously undertaken
to assess the performance of the SI approach, which showed
promising results but no simulations were conducted to
compare results to a known truth.17 Further, a concern is
that the SI approach provides conservative standard errors
for estimates of sensitivity and specificity, as it only includes
a single imputed value, which ignores the uncertainty
associated with it. In particular, the distance between a
missing threshold and its nearest neighbour is ignored; in
other words, the smaller the distance between 2 known
thresholds, the more certain we should be about the
imputed results for intermediate thresholds, but this is
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ignored in the SI approach. A final concern is conservative
bias in the SI method, which is introduced through
rounding down the number of patients in each cell of the
imputed 2‐by‐2 tables (see Section 2.1).

Given these shortcomings, in this article, we propose a
multiple imputation method based on discrete combina-
tions of missing values (MIDC approach), to address the
potential disadvantages for the SI approach. The proposed
method imputes missing 2‐by‐2 tables between 2 known
threshold results similar to the SI approach, but repeats
this process on multiple occasions, each time using a ran-
domly selected 2‐by‐2 table from the set of all possible dis-
crete combinations of possible missing values. On each
occasion, the imputed results are added to the meta‐anal-
ysis, and pooled results are estimated using standard
methods for each threshold. These multiple sets of pooled
estimates are then combined using Rubin's rules,18 as in
standard multiple imputation applications,18,19 to give
overall pooled estimates of sensitivity and specificity for
each threshold. In this way, the MIDC approach allows
for the uncertainty in imputed threshold results and the
distance between missing and known results.

A simulation study is used to evaluate the perfor-
mance of the MIDC and SI approaches, in comparison
with each other and the standard approach of only
analysing observed data with no imputation (NI). Several
scenarios are considered including varying the proportion
of missing information, the missingness mechanism, the
relationship between threshold value and test accuracy,
and levels of heterogeneity between studies.

The remainder of the paper is structured as follows.
Section 2 describes the methods of the SI and MIDC
approaches in detail. Section 3 introduces the simulation
study and describes the results. Section 4 illustrates the
approaches using a real example, and Section 5 concludes
with some discussion.
2 | METHODS FOR SINGLE AND
MULTIPLE IMPUTATION OF
MISSING THRESHOLDS

We now briefly describe the SI method and then outline
our new proposed MIDC method.
2.1 | Single imputation of missing
threshold results

The SI method follows a simple piecewise linear approach
within each study separately, imputing a single value for
any missing threshold results that are bounded between
2 known thresholds in logit ROC space.17 It assumes a
unit increase in threshold value corresponds to a constant
increase (or decrease) in logit specificity and logit sensitiv-
ity; such a linear relationship is often assumed in meta‐
analyses that model the relationship across multiple
thresholds,12,15,16 especially when the number of available
thresholds is too small to examine non‐linearity.

Considering missing sensitivity results as an example,
the following formula is used to impute the missing logit
sensitivity threshold result (yti) for threshold t in study i;

yti ¼ yi t−1ð Þ þ yi tþ1ð Þ−yi t−1ð Þ
� �

×
wit−wi t−1ð Þ
� �
wi tþ1ð Þ−wi t−1ð Þ
� � ! !

; (1)

where yi(t− 1) is the observed logit sensitivity estimate for
the nearest reported threshold below t and yi(t+ 1) is the
observed logit sensitivity estimate for the nearest reported
threshold above t. Weightings are given to each of the
observed estimates, depending on how close their respec-
tive threshold values are to that of the missing threshold.
If the missing threshold value is exactly in the middle of
the 2 bounding thresholds, then the imputed yit is simply
the average of yi(t− 1) and yi(t+ 1). Each pair of imputed
logit sensitivity and logit specificity estimates is then con-
verted back to a 2‐by‐2 table, using the known number of
those diseased and non‐diseased in the study. It should be
noted that the converted 2‐by‐2 table numbers can be
noninteger values and that as such they often need to be
rounded to produce a whole number, as otherwise statis-
tical software (usually) will not recognise the data as bino-
mial; here, we round them down to the nearest integer to
be conservative when using the SI method.

Meta‐analysis is performed for each threshold sepa-
rately, with any studies giving imputed 2‐by‐2 tables, syn-
thesised along with studies providing an observed 2‐by‐2
table. A standard meta‐analysis model is used at each
threshold separately, such as the bivariate random‐effects
approach20,21 that follows:

TPtieBinomial Dti; sensitivitytið Þ
logit sensitivitytið Þ ¼ βt1 þ uti1

TNtieBinomial NDti; specificitytið Þ
logit specificitytið Þ ¼ βt2 þ uti2

uti1

uti2

� �eN 0

0

� �
;∑t

� 	
;∑t ¼

τ2t1 τt1τt2ρt12
τt1τt2ρt12 τ2t2

 !
:

(2)

Here, Dti and NDti give the number of diseased and
non‐diseased in study i, βt1 gives the pooled logit sensitiv-
ity, and βt2 gives the pooled logit specificity at threshold t;
τt1 and τt2 give the between‐study standard deviations at
threshold t, and the off‐diagonals in ∑t represent the
between‐study covariance between logit sensitivity and
logit specificity at threshold t. The analysis can be collapsed



TABLE 1 Example data for a single study reporting a continuous

test measured at a partial set of multiple thresholds of interest for

meta‐analysis

Threshold Missing TP FN TN FP

1 No 35 4 95 51

2 Yes ? ? ? ?

3 Yes ? ? ? ?

4 Yes ? ? ? ?

5 No 30 9 104 42

Abbreviations: FN, false negatives; FP, false positives; TN, true negatives; TP,
true positives.
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to a separate univariate analysis for both sensitivity and
specificity, if the between‐study correlation ρ12 is set to 0.
Indeed, as the correlation is typically due to differences
across studies in the threshold value, when analysing each
threshold separately a correlation of 0 is quite plausible.
In this simplified case, we are essentially fitting separate
univariate models for sensitivity and specificity, thereby
avoiding common convergence issues with the bivariate
model.22 In practise, more complex meta‐analysis methods
may be used post imputation, such as the joint modelling
of all thresholds across all studies in a multivariate model,
allowing for correlation across thresholds.15 In this study,
the simpler approach of separate analyses at each thresh-
old was used to facilitate comparison to a standard analysis
approach in the simulation study, as this method is recom-
mended (without imputation) in the Cochrane guidelines
as standard.9 Given that separate analyses are performed
at each threshold, throughout this article, between‐study
heterogeneity is not due to different thresholds but instead
due to other sources, for example, differences in population
case‐mix or differences in the measurement method.

Riley et al17 suggested the SI approach as a simple
exploratory method, to allow meta‐analysis results after
imputation to be compared with those from a standard
analysis with NI (ie, Equation 2 that simply excludes
studies with missing threshold results).9,17
2.2 | Multiple imputation of missing
threshold results based on discrete
combinations

The schematic of the newly proposed MIDC approach is
provided in Box 1. It follows 4 key steps, as now described.
TABLE 2 First and last 5 of the 56 possible combinations of the

imputed true positive (TP) values for thresholds 2, 3, and 4 in Table 1

First and Last 5 of 56 Combinations With Repetition for
Imputed TP Values (n = 6, r = 3)

Discrete combination
no

Threshold
2

Threshold
3

Threshold
4

1 35 35 35

2 35 35 34

3 35 35 33

4 35 35 32

5 35 35 31

52 32 30 30

53 31 31 31

54 31 31 30

55 31 30 30

56 30 30 30
2.2.1 | Step 1: identification and random
selection of discrete combinations for
imputing values for missing thresholds in
each study separately

For each missing threshold bounded between 2 known
thresholds, the MIDC method recognises that the missing
sensitivity and specificity must lie within a rectangle
formed between the 2 nearest known threshold results.
Further, the missing number of true positives (TPs), false
negatives (FN), true negatives (TN), and false positives
(FP) at the missing threshold must be whole numbers of
patients within this quadrilateral between those known
for the neighbouring thresholds.

Table 1 shows an illustrative example of a study
reporting the accuracy of a test with continuous results
where there are 39 true diseased and 146 true non‐dis-
eased patients. Assume that the thresholds of interest for
meta‐analysis are 1, 2, 3, 4, and 5, but that this particular
study only reports 2‐by‐2 tables for thresholds 1 and 5.
Therefore, there are 3 missing thresholds (r = 3) to be
imputed by the MIDC method, and it is clear that the
missing TP must be ≤35 and ≥30; the missing FN must
be ≤9 and ≥4; the missing TN must be ≤104 and ≥95;
and finally, the missing FP must be ≤51 and ≥42. There-
fore, there are 6 potential values (n = 6) for the TP in the
missing thresholds (ie, 35, 34, 33, 32, 31, and 30) and 10
potential values for the TN in the missing thresholds (ie,
104, 103, … 96, and 95). It follows naturally that imputing
TP also defines FN (or vice versa) given the total diseased,
and imputing TN also defines FP (or vice versa), and
therefore, we only need to consider imputing 2 cells in
the missing 2‐by‐2 table, for example, TP and TN.

First, focus on imputing TP (and thus FN) for the 3
missing thresholds. There are 56 possible discrete combina-
tions (of 3 values) for the TP to be imputed for the 3 miss-
ing thresholds, taking into account that the missing TP is
bounded between 35 and 30 and that as threshold value
increases the number of TPs must be equal to or less than
the number of TPs at the previous threshold (see Table 2
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for illustration). The MIDC method randomly selects one
of these possible combinations, from the list of all combina-
tions, assuming that all possible combinations are equally
likely. In the same manner, a value for the missing TN
(and FP) can be imputed for the same missing thresholds.

The above describes a single imputation using the
MIDC method in a single study for a particular set of
missing thresholds. In each study separately, this
approach can be used to impute TP, FN, TN, and FP for
all missing but bounded thresholds. Note that, as in the
SI method, in a particular study, there is no imputation
for those thresholds that are not bounded (ie, those miss-
ing thresholds that fall above the largest reported thresh-
old or below the smallest reported threshold).
2.2.2 | Step 2: meta‐analysis of imputed
and observed 2‐by‐2 tables

In step 2, we now apply a meta‐analysis to each threshold
separately, including the imputed and observed 2‐by‐2 tables
available from the studies. For example, model 2 can be
applied to produce summary logit sensitivity and logit spec-
ificity estimates and between‐study heterogeneity estimates.
2.2.3 | Step 3: generate multiply imputed
datasets and multiple meta‐analysis results

Steps 1 and 2 are then repeated M times, leading to M
meta‐analysis results (one for each cycle). As the imputa-
tion procedure generates new imputations in each cycle,
the subsequent meta‐analysis results may also be different
for each cycle.
2.2.4 | Step 4: combine across the multiple
meta‐analysis results using Rubin's rule

The meta‐analysis estimates obtained from each of the M
cycles are then combined using Rubin's rules, as com-
monly applied in traditional multiple imputation methods
and detailed in full elsewhere.18 This provides final meta‐
analysis estimates for each parameter of interest and its
associated standard error (and thus 95% CI).
2.3 | Potential advantages of the MIDC
method over the SI method

By repeated random sampling from the set of all possible
combinations of the missing 2‐by‐2 tables, the MIDC
approach has 3 potential advantages over the SI method.
Firstly, by considering multiply imputed datasets, it
accounts for the uncertainty of the imputed 2‐by‐2 tables.
Secondly, as it imputes the 2‐by‐2 tables directly, this
ensures that all imputed values are whole numbers,
which is not the case with the SI method. Thirdly, the
method allows for the distance between known and miss-
ing threshold results, such that it is more likely that a
missing threshold close to the known threshold will take
a TP (or TN) value similar to the observed TP (or TN)
value for the closest known threshold. This is illustrated
for the current example in Table 3, where the probability
of threshold 2 taking each of the 6 possible numbers of
TPs is given; it is clear that it is most likely that a TP of
35 will be imputed for threshold 2, which is the observed
TP value in the closest neighbouring threshold 1.
BOX 1. Discrete combinations (MIDC) approach
schematic

Step 1: In each study separately,

• identify all missing thresholds of

interest that are bounded by 2
thresholds for which 2‐by‐2 tables
are available.

• for each set of missing thresholds
contained within a bound, derive
the set of all discrete combinations
for the missing 2‐by‐2 tables.

• randomly select a discrete com‐

bination from the set of all
combinations, thereby imputing a
single 2‐by‐2 table for all missing
but bounded thresholds.
Step 2: For each threshold separately, apply a
meta‐analysis (eg, model 2) to combine the
imputed and observed 2‐by‐2 tables from all
available studies, to produce 1 set of meta‐
analysis results for each threshold.

Step 3: Repeat steps 1 and 2 a total of M times,
to obtain M sets of meta‐analysis estimates
for each threshold.

Step 4: Use Rubin's rules to combine theMmeta‐
analysis results for each threshold separately, to
produce a final estimate and standard error for
each parameter in the meta‐analysis model.
2.4 | Software to implement the methods

Software was developed to implement the MIDC method
within Stata and is available upon on request and will
be submitted in due course for publication in the Stata
journal. The software to implement the SI approach was
previously developed and published elsewhere.17 The



TABLE 3 Probability of each true positive (TP) value being

imputed for missing threshold 2, which is bounded between 35 from

threshold 1, and 30 from threshold 5

Possible
TP
Value

Probability of TP Value Being Imputed for
Threshold 2

Fractional Decimal

35 21/56 0.375

34 15/56 0.268

33 10/56 0.179

32 6/56 0.107

31 3/56 0.054

30 1/56 0.018
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program follows the schematic laid out in Box 1 to imple-
ment the MIDC approach. In particular, each possible dis-
crete combination has a unique combination number,
which follows the pattern shown in Table 2. For each
imputation, the discrete combination number is chosen
randomly from a uniform distribution ranging from 1 to
the total number of possible combinations. The corre-
sponding combination is then identified, by exploiting
the relationship between the unique combination number
TABLE 4 Simulation scenarios including base case and sensitivity sce

Scenarios Studies Prevalence Tau Mis

Base case

1 10 10% 0 50

2 10 10% 0.25 50

3 10 10% 0.5 50

Greater chance of missingness

4 10 10% 0 70

5 10 10% 0.25 70

6 10 10% 0.5 70

Missing not at random

7 10 10% 0 50

8 10 10% 0.25 50

9 10 10% 0.5 50

Unequal threshold spacing

10 10 10% 0 50

11 10 10% 0.25 50

12 10 10% 0.5 50

Extreme unequal threshold spacing

13 10 10% 0 50

14 10 10% 0.25 50

15 10 10% 0.5 50

Abbreviations: MCAR, missing completely at random MNAR, missing not at rand

*Assumed threshold spacing.
and cumulative sums of squares, which can be used to
calculate the value at each missing threshold separately.
3 | SIMULATION STUDY

A simulation study is now used to compare performance
of the MIDC and SI methods with each other and also
with the standard approach of ignoring missing thresh-
olds which we refer to here onwards as NI.

3.1 | Methods

Our simulation procedure was undertaken for each of a range
of different scenarios. This followed a step‐by‐step process.

3.1.1 | Step 1: define the scenario

Table 4 shows the 15 different scenarios considered, cover-
ing different values for the amount of heterogeneity, the
amount of missing data, the missingness mechanism, and
the assumed threshold spacing. A simulation was con-
ducted for each of the 15 scenarios. All simulations assumed
that there were 10 studies available for the meta‐analysis,
which is typical of the number available in practise.
narios

sing % Missing mechanism Threshold spacing*

MCAR Equal

MCAR Equal

MCAR Equal

MCAR Equal

MCAR Equal

MCAR Equal

MNAR Equal

MNAR Equal

MNAR Equal

MCAR Unequal

MCAR Unequal

MCAR Unequal

MCAR Extreme unequal

MCAR Extreme unequal

MCAR Extreme unequal

om.
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3.1.2 | Step 2: generate the number of par-
ticipants per study

For each meta‐analysis dataset of 10 studies, we randomly
selected between 30 and 200 patients per study using a
uniform (30,200) distribution.
3.1.3 | Step 3: generate the true disease
status for each patient in each study

Prevalence of disease for all scenarios was set to 10% (see
Table 4), with disease status in each meta‐analytic dataset
being sampled from a Bernoulli (0.1) distribution, to
reflect a typical disease prevalence. As an extension to
the work, a prevalence of 50% was also investigated
though not reported here (results discussed in Section
3.2.6 and available on request).
3.1.4 | Step 4: generate the true sensitivity
and specificity values for each threshold in
each study

The true sensitivity and specificity across thresholds of the
test were simulated based on a real example diagnostic test
accuracy meta‐analysis,23,24 where the linear relationship
between summary logit test accuracy and threshold value
was available. In addition, varying levels of heterogeneity
around the magnitude of the linear relationship were
incorporated as defined by the scenarios given in Table 4.
Alternatively simulated data could have been derived by
assuming a distribution for the diseased and non‐diseased
populations as has been done elsewhere16; further work
could use this approach to assess multiple additional sim-
ulation scenarios assessing various distributions.

The true sensitivity and specificity results at each
threshold for each study were calculated using 2 linear
models with either logit sensitivity or logit specificity as
responses, and threshold value as an independent predic-
tor (Equation 3), this naturally induces a linear relation-
ship between threshold value and logit sensitivity/
specificity. The coefficients for the constant and threshold
predictor for this assumed linear relationship were calcu-
lated based on those from the previous test accuracy
meta‐analysis, as follows.23
True logit sensitivity in study i at a thre

True logit specificity in study i at a thresh

α1i ¼ N 3:30
�

where τ2 defines the amount of between‐study heteroge-
neity, which was set to either be 0, 0.25 (moderate), or
0.5 (high) depending on the scenarios chosen (see
Table 4). The mean SROC curve that this represents is
shown in Figure 1 (top panel), and the assumed linear
relationship is illustrated in Figure 1 (bottom panel) for
logit specificity over threshold value.

For each study, the true intercepts were drawn ran-
domly from the 2 normal distributions in Equation 3. This
then produced 2 final equations to derive the true logit
values, from which the true sensitivity (sensti) and true
specificity (specti) could be obtained for each threshold
of interest (t = 1 to T) by back‐transforming from the logit
scale.

Importantly, Equation 3 assumes a fixed slope for the
threshold effect on logit sensitivity and logit specificity;
we consider this a sensible starting point for examining
the performance of the imputation methods. The fixed
slope in Equation 3 is a common assumption made in
diagnostic test accuracy meta‐analysis, though is often
used because each study contributes only 1 threshold
(2‐by‐2 table). In future research, this could be extended
to allow the slope to vary between studies which may be
a more realistic assumption.

Scenarios 1 to 9 assumed equal threshold spacing, but
in scenarios 10 to 15 unequal threshold spacing was
assumed (see Figure 1), with scenarios 13 to 15 investigat-
ing a more extreme unequal threshold spacing.

We chose 11 thresholds for all scenarios to be consis-
tent, and this was based on the real example23 used to
inform the parameters in Equation 3. The numerical
values of the continuous test corresponding to the 11
thresholds were held constant across all studies within
each scenario. The chosen threshold values were integer
values from 1 to 11 for simulation scenarios 1 to 9; for
scenarios 10 to 12, a transformation of these threshold
values was used to induce unequal spacing, using
Equation 4 as follows:

Threshold value for scenarios 10 − 12

¼ Threshold value scenarios 1− 9ð Þ1:5
5

: (4)
shold value ¼ α1i þ −0:2719091� threshold valueð Þ
old value ¼ α2i þ 0:2851818� threshold valueð Þ
4182; τ2

�
; α2i ¼ N −0:0129091; τ2

� �
(3)



FIGURE 1 Mean summary receiver

operating characteristic curves for the true

test performance across thresholds (top

panel), linearity of logit sensitivity across

thresholds, and spacing of thresholds

across scenarios (bottom panel)
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Scenarios 13 to 15 were introduced as an extreme
scenario to examine the effect of missing thresholds in
the centre of the ROC curve. Here, we consider the
extremely unequal spacing of thresholds as a
combination of “bunching” of similar thresholds (at
either end of the continuous measurement scale) and of
“large gaps” between thresholds in the centre of the
continuous scale (see Figure 1). In real applications,
bunching of thresholds may be observed, for example,
in meta‐analyses when a set of studies have used a very
similar threshold but with differences in the last digit or
decimal place. Large gaps may occur, for example,
between thresholds chosen to optimise a test for rule
out purposes (where a low threshold would be evaluated)
or rule in purposes (where a high threshold would be
evaluated). Threshold values were hand selected to
create this effect for scenarios 13 to 15, with thresholds
at 0.15, 0.6, 1.15, 2.37, 2.95, 8.37, 8.76, 9.15, 9.6, 10.15,
and 10.76 (see Figure 1). It should be noted that
scenarios 13 to 15 examine the effect of missing
thresholds in the centre of the ROC curve, though a
similar issue could occur elsewhere on the ROC curve.
3.1.5 | Step 5: generate the observed num-
ber of TP, TN, FP, and FN at each threshold

For each study separately, we next generated an observed
2‐by‐2 table for each threshold. To do this, we used the
multinomial distribution expressed as a series of condi-
tional binomial distributions.12 Firstly, to calculate the
number of TPs above threshold 1 (the lowest threshold,
t= 1), we randomly sampled TP1i from a binomial distribu-
tion with Di = the total number of diseased in study i, and
sens1i = estimated sensitivity for threshold 1 in study i.

TP1i e Binomial Di; sens1ið Þ (5)

And thus, FN1i = Di – TP1i.
For subsequent thresholds, the TPti were derived using

a conditional binomial distribution. For example, we gen-
erated the number of TPs above threshold 2 out of the
subset of patients who were positive above threshold 1,
by calculating TP1i minus a random sample from a

Binomial TP1i;
sens2i
sens1i

� �
distribution. In this way, each

successive TPti accounted for the previous TP(t − 1)i value.
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TNti and FPti for the non‐diseased population were
generated in a similar manner for each threshold.
3.1.6 | Step 6: Create missing results for
some thresholds

Step 5 produced complete data (ie, a 2‐by‐2 table) for
each threshold in each study. To create missing data, the
2‐by‐2 tables in each study were removed using either a
missing completely at random or, for scenarios 7 to 9, a
missing not at random mechanism. For the missing
completely at random scenarios, each 2‐by‐2 table was
given a percentage probability of being missing according
to the percentage missing data dictated by the scenarios
setting (see Table 4). For the missing not at random sce-
narios, 2‐by‐2 tables could only be missing where the
observed Youden's index was <0.7 (where Youden's
index = sensitivity + specificity – 1 and therefore provides
an overall measure of test performance). This reflects a
situation where test performance is worse than expected
at this threshold, and so it is vulnerable to publication
bias and non‐reporting in the study publication. Such
thresholds were given a 50% chance of being missing in
scenarios 7 to 9. Other thresholds where Youden's index
was at least 0.7 were always assumed to be available.
3.1.7 | Step 7: apply meta‐analysis to each
simulated dataset using NI, SI, or MIDC
methods

Steps 1 to 6 were applied to obtain 1000 meta‐analysis
datasets in each scenario. For each dataset, the NI, SI,
and MIDC methods were applied separately to produce
1000 meta‐analysis results for each type of approach. For
the MIDC method, 5 imputation datasets were performed
before Rubin's rules was applied (giving 1 meta‐analysis
results dataset), 5 was selected to reduce the computation
time of the overall simulation study. Meta‐analysis model
2 was used to synthesise the available results for each
threshold separately but with the between‐study correla-
tion set to 0 to avoid the common computation issues
associated with this parameter.22,25 The model was fitted
via maximum likelihood estimation using Gauss‐Hermite
quadrature with quadrature points equal to the number of
studies in the meta‐analysis (up to a maximum of 5 quad-
rature points).

The performance of the 3 methods in each scenario
was summarised and compared in terms of the bias in
the mean of the pooled (logit) sensitivity and (logit) spec-
ificity estimates; the mean of the standard errors of the
pooled results; the mean bias in the estimate of tau, and
the percentage coverage of the 95% confidence intervals
(CIs) for the pooled sensitivity and specificity. The 95%
CIs were derived on the logit scale using the pooled esti-
mates combined from all imputation datasets using
Rubin's rules, and then back‐transformed.
3.2 | Results

3.2.1 | Base case settings (scenarios 1 to 3)

The 3 base‐case scenarios each involved a 10% prevalence,
50% of thresholds missing completely at random, and
equal threshold spacing, but varied according to the mag-
nitude of between‐study heterogeneity. For each scenario,
mean pooled estimates from the 1000 simulations from
each of the NI, SI, and MIDC approaches were plotted
at each threshold in ROC space and compared with the
true ROC curve (Figure S1). When the heterogeneity
was zero or moderate, there was very little bias at all
thresholds, for either the NI method or the imputation
methods. However, there was slight bias when the hetero-
geneity was large for all methods (Scenario 3), with
pooled sensitivity and specificity underestimated across
the thresholds. The bias was worst for the SI method,
and the MIDC and NI methods performed similarly
(Figure S1).

Coverage of 95% CIs was similar across the methods
when there was no between‐study heterogeneity in sce-
nario 1 (coverage ranged from 92% to 96%), with the NI
method performing at least as well as the SI and MIDC
methods (Figure S2). At moderate heterogeneity (scenario
2), the 2 imputation approaches had improved coverage
over the NI approach (ie, closer to 95%) at most thresholds
for specificity, while SI and MIDC performed similarly
(Figure S2). For example, at a threshold of 5, the coverage
for specificity was 89.3%, 92.1%, and 92.8% for the NI, SI,
and MIDC approaches, respectively. The improvement
in coverage by using the MIDC or SI approaches rather
than NI was even more pronounced at a high level of
between study heterogeneity (Figure S2), with MIDC
performing best. For example, in scenario 3 with a thresh-
old of 5, the coverage for specificity was 86.5%, 89%, and
90.6% for NI, SI, and MIDC approaches, respectively.

The improvement in coverage by using the imputation
methods is most likely due to the estimate of between‐
study heterogeneity being substantially improved by
including more studies at each threshold after imputation
(Figure S3). Maximum likelihood estimates of variances
are known to be downwardly biased in small samples,
and thus increasing the sample size via imputation
ensures an improvement. Though downward bias in tau
(bτ) remains for both MIDC and SI, it is far smaller than
the bias for NI, and the MIDC method consistently pro-
vides the least biased estimates of tau ( bτ) across the
thresholds (Figure S3).
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Despite the larger estimates of between‐study variance
( bτ) after imputation, the incorporation of additional
results via imputation substantially improves the preci-
sion of pooled estimates in the MIDC and SI approaches
compared to NI (Figure S4). The gain in precision is larg-
est in the central thresholds, where there is greater oppor-
tunity for imputation (ie, higher chance of a missing
threshold falling between 2 known bounding thresholds);
indeed, for these thresholds, the imputation approaches
were usually able to recover data on all 10 studies in the
meta‐analysis (see Supporting Information). Mean stan-
dard errors were almost identical for the SI and MIDC
approaches, but with the MIDC method providing slightly
inflated standard errors as it accounts for the uncertainty
in imputations.
3.2.2 | Greater chance of missingness
(scenarios 4 to 6)

In scenarios 4 to 6, the percentage of thresholds missing
completely at random was increased to 70%. In terms of
bias, the findings were similar to those in scenarios 1 to
3, with the pooled ROC curves showing very small bias
for all the methods when the between study heterogeneity
was large. Coverage and precision was again substantially
improved by using the MIDC and SI approaches, even
more so than for scenarios 1 to 3 due to the larger
FIGURE 2 Summary receiver operating

characteristic curves—scenarios 7 to 9
percentage of missing data. For example, at a threshold
of 5 in scenario 6, the coverage was 78.9%, 88.6%, and
88.7% for the NI, SI, and MIDC methods, respectively.
The 2 imputation methods were similar in terms of mean
standard errors, which were reduced by up to 43% com-
pared to the NI method.
3.2.3 | Missing not at random (scenarios 7
to 9)

Under the missing not at random assumption in scenarios
7 to 9, a threshold was always present when the observed
Youden's index was >0.7, but otherwise had a 50% chance
of being missing akin to selective reporting bias. Figure 2
shows the SROC curves for each method from
scenario 9 (high heterogeneity), and for the NI method,
it reveals an upward bias (overestimation) of pooled sensi-
tivity and specificity at each threshold when not account-
ing for the missing threshold data. There was also a
similar upward bias for the NI method in scenarios 7
and 8, where there was lower heterogeneity. In contrast,
the SI and MIDC methods reduce this bias through impu-
tation and produce mean ROC curves that are close to the
true SROC curve in each of scenarios 7 to 9.

Coverage of 95% CIs was again consistently better
when using the imputation approaches than the NI
approach. Differences between the SI and MIDC methods
were generally small, though slightly better for the MIDC
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method when heterogeneity was large (Figure S5,
scenario 9). Precision was also greatly increased when
using either the SI or MIDC methods as previously noted.
3.2.4 | Unequal threshold spacing
(scenarios 10 to 12)

All previous scenarios involved equal spacing of logit sen-
sitivity and logit specificity across the range of thresholds.
Scenarios 10 to 12 assess how the imputation methods
perform given unequal threshold spacing along the ROC
curve. Figure 3 presents the mean of the summary ROC
curves for scenario 12 (high heterogeneity). The NI and
MIDC methods showed some bias in pooled sensitivity
and specificity estimates, while the SI method performed
worst in terms of bias. The imputation methods again
showed improved performance over the NI in terms of
the estimated standard errors and between‐study vari-
ance, with the MIDC performing best. Coverage was gen-
erally best when using the MIDC method (Figure S6).
3.2.5 | Extreme threshold spacing
(scenarios 13 to 15)

The impact of unequal threshold spacing was explicitly
examined under more extreme unequal spacing situations
(scenarios 13 to 15). These represented scenarios where
thresholds were reported at either end of the ROC curve,
but not reported in the central part of the ROC. This sce-
nario may occur where studies are considering tests for
rule in or rule out purposes as discussed in Section 3.1.

Figure 4 presents the mean of the SROC curves for
scenario 15 (high heterogeneity). Interestingly, the NI
method showed little bias in sensitivity and specificity at
the available thresholds; however, the 2 imputation
methods performed poorly in terms of the central thresh-
olds where averaging has occurred across the set of possi-
ble discrete combinations.

The coverage of 95% CIs appeared better when using
either the SI or MIDC imputation approaches in the outer
reported thresholds (Figure S7). However, the coverage of
the imputation methods dropped substantially in the cen-
tral thresholds. For example, in scenario 15 at a threshold
of 5, the coverage for sensitivity was 96.4%, 63%, and
73.8% for the NI, SI, and MIDC, respectively, while at a
threshold of 8, the coverage was 90.6%, 92.8%, and
93.8%, respectively. Precision of the pooled results was
again improved using SI or MIDC compared to NI.
3.2.6 | Extension: prevalence of 50%

All simulations were repeated with a prevalence of 50%,
rather than 10%. Simulations were also conducted with
different numbers of studies, with 5 and 20 studies chosen
to represent smaller and larger meta‐analysis datasets.
Conclusions remained the same and results are available
upon request. In particular, the NI approach generally
performed worst, while the MIDC method performed gen-
erally best in terms of lower standard errors, coverage
closest to 95%, and reduction in bias. It was observed that
under the assumption of a 50% prevalence of disease, the
coverage of 95% CIs for pooled sensitivity and specificity
were similar, unlike at 10% prevalence, where the cover-
age of 95% CIs for pooled sensitivity was higher than
those for pooled specificity (Figure S8). At 10% preva-
lence, the estimates of specificity will have far greater pre-
cision than sensitivity.
FIGURE 3 Summary receiver operating

characteristic curves—scenario 12
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3.2.7 | Summary of findings

In general, across scenarios 1 to 9, where the equal spacing
assumption was made, the simulations suggest that both
the SI and MIDC methods perform better than the current
standard NI method in terms of coverage and precision of
summary sensitivity and specificity estimates, either when
thresholds are missing completely at random or selectively
reported according to Youden's index. This held for preva-
lences of either 10% or 50%. Improvements are due to the
extra information arising from the imputed data, which
also leads to improved estimation of the between‐study
variances. Further, when there is selective reporting due
to Youden's index, the findings suggest that the SI orMIDC
methods can even reduce bias in the SROC curve, as well as
improving coverage and precision. There is generally very
little difference in the SI andMIDCmethods, but the latter
was noticeably better in terms of estimating the between‐
study variances and generally gave better coverage, due
to slightly larger standard errors of pooled estimates. How-
ever, when moderate unequal threshold spacing was
assumed, the NI and MIDC methods performed better
than the SI in terms of bias, with MIDC giving better esti-
mation of standard errors and between‐study variances as
before. However, under extreme unequal spacing the NI
method performs best.
4 | APPLIED EXAMPLE

We now illustrate the methods using an applied example
based on a systematic review and meta‐analysis investi-
gating the performance of protein/creatinine ratio (PCR)
as a diagnostic test for the detection of significant protein-
uria in patients with suspected pre‐eclampsia.4 This
review is an ideal situation in which to apply the imputa-
tion methodology presented here. The review found 13
studies which reported various possible thresholds for
PCR, with each study reporting on a different set of
thresholds, making meta‐analysis difficult as discussed,
due to small numbers of studies reporting on any 1
threshold. In total, there were 23 thresholds considered
across all 13 studies, with 5 studies reporting only 1
threshold, and the largest meta‐analysis possible contain-
ing only 7 studies. The studies and 2‐by‐2 tables for each
threshold are presented in online Supporting Information
and are summarised elsewhere.17

The NI method reflects what happens with current
meta‐analyses of test accuracy studies: Each threshold is
analysed separately with NI. However, the use of the
MIDC and SI methods here allows us to summarise not
only the published evidence available for each threshold
but also to use imputed data for the missing, unpublished
evidence for bounded thresholds. As such, we are able to
assess if the conclusions of the original meta‐analysis are
robust (eg, to potential publication bias) for each threshold.

Figure 5 shows a dramatic change in pooled sensitivity
and specificity (in ROC space) when using the MIDC
method compared to the original NI approach. After
imputation, it is clear that there is generally a shift in
pooled estimates, both downward and to the right in
ROC space. This indicates a decrease in sensitivity (down-
ward shift) and specificity (shift right), as may be expected
in the presence of publication bias or selective reporting,
where weaker performing threshold results may not be
reported. Therefore, the application of the MIDC method
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reveals that the original conclusions from the NI method
are not robust, with pooled sensitivity and specificity esti-
mates lower than estimated when ignoring missing data.

There are comparatively small differences between the
MIDC and SI methods, with both indicating that pooled
estimates shift in the same direction. The MIDC method
shifts the pooled estimates by a slightly greater magnitude
compared to the SI method, which is likely due to the
MIDC method additionally accounting for the uncertainty
in imputed threshold results and/or providing 2‐by‐2
tables that do not require rounding.

Figure 6 presents the standard errors of sensitivity and
specificity at each threshold, showing the shift in standard
error from the NI to MIDC method. Using the imputation
approaches, we gained 54 additional threshold results for
meta‐analysis, which reduced the standard errors of the
pooled sensitivity and specificity at many thresholds (by
as much as 70%, see Figure 6), also leading to substan-
tially narrower CIs.
5 | DISCUSSION

Often, test accuracy meta‐analyses suffer from having
small and/or discrepant numbers of studies for each
threshold of interest. In this paper, we proposed a new
method to deal with this problem based on multiple
imputation of all available discrete combinations of miss-
ing 2‐by‐2 tables. The results from our simulation study,
across a wide‐range of scenarios, suggests that the previ-
ously proposed SI method and the new MIDC method
help regain otherwise lost information, and generally
improve performance of meta‐analysis results compared
to the NI method. The SI and MIDC methods
dramatically increase precision of pooled estimates of sen-
sitivity and specificity at each threshold, as more data are
added via imputation, which also often leads to a distinct
improvement in coverage of 95% CIs compared to the
standard NI method. This is especially evident when het-
erogeneity is large, as the SI and MIDC methods improve
estimates of between‐study variance. Further, when
thresholds are selectively missing due to a poor Youden's
index, the findings suggest that the SI or MIDC methods
reduce bias in the SROC curve compared to the NI
method. In the situation of moderate unequal threshold
spacing, the MIDC and NI methods perform better in
terms of bias and coverage; and therefore, the threshold
spacing assumption is important to the correct perfor-
mance of the SI method. There is very little difference in
most scenarios between the SI and MIDC methods;
however, in a few scenarios, there was improved estima-
tion of between‐study variances with the MIDC method
and increased standard errors allowing for uncertainty
in the imputation, sometimes leading to slightly better
coverage. Results were found to be consistent at lower
(10%) and higher (50%) levels of prevalence.

The MIDC method improves on the current SI method
by allowing for uncertainty associated with the imputed
threshold results and also uncertainty associated with
the distance between the missing threshold and the
nearest known threshold results. The MIDC method is
more complex as it imputes missing threshold results
multiple times and combines these results to give 1 pooled
performance at each threshold; this inevitably increases
computation time, but only slightly (typically 10 and
20 seconds for SI and MIDC, respectively). While this
work focuses on the application to tests reporting contin-
uous results, future research could extend these methods
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imputation method based on discrete combinations of missing values; NI, no imputation; SI, single imputation
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for use with tests reporting ordinal results. The software
to implement the MIDC procedure in Stata is available
upon request and will be submitted in due course for pub-
lication in the Stata journal.

There has been debate concerning the order in which
meta‐analysis and Rubin's rules should be performed, as
such the MIDC approach performs meta‐analysis on the
imputed dataset and then applies Rubin's rules after
meta‐analysis, as Rubin's theory and recent evidence
suggests.18,26

As with common multiple imputation methods, the
number of MIDC datasets (or imputations) can be
increased to reduce uncertainty further; due to the large
computation time of the simulations, only 5 MIDC
datasets were used throughout the simulation study.
However, in reality sensitivity, analyses could be con-
ducted in individual cases to decide on an appropriate
number of MIDC datasets to reduce uncertainty as
required. One possible recommendation could be to
ensure M is set to be 100*p, where p is the proportion of
missing studies for the threshold with the most missing
data that can be imputed, to be consistent with guidance
elsewhere.19,27 Another limitation of our simulation study
was the restriction to 10 studies. This was chosen to
reduce the computation time required to conduct the sim-
ulations, and because it is typical of many meta‐analyses
in the test accuracy field.

It is important to note that any meta‐analysis model
may be used for synthesis following the use of either
imputation approach. In this study, we chose to synthe-
sise each threshold separately using separate univariate
models for sensitivity and specificity (by setting the
between‐study correlation to 0 in the bivariate model).
While this is a simplifying assumption, it is one com-
monly used in most diagnostic test accuracy meta‐analy-
ses in the current literature (eg, in Cochrane reviews).
However, other more complex multivariate methods
may be used post imputation to synthesise all thresholds
across all studies simultaneously allowing for all correla-
tions. Further research considering the use of such
methods after our imputation strategy is needed.

There are limitations of the MIDC method, however.
In situations of extreme unequal spacing, the MIDC and
SI methods perform less well, and so, judgement is needed
as to whether this is likely to be the case in particular
examples. Therefore, a key issue is how we detect extreme
unequal spacing and how we draw conclusions from the
imputation methods in these cases; further research is
needed to investigate these questions. One cause of this
problem (illustrated in the extreme unequal spacing sce-
narios) is “bunching,” where we have a set of thresholds
across studies of which some are very close together (for
example, say that we had thresholds of a biomarker at
10, 20, 20.1, 20.15, 20.2, 20.25, 20.3, 30, 40, and 50). Where
bunching occurs, 2 possible solutions could be (1) to
group thresholds that are very close together or (2) to
select a subset of thresholds for analysis, so that the
thresholds are roughly equally spaced. The effects of dif-
ferent subsets of thresholds could then be investigated in
sensitivity analyses.

Also, the SI method uses a linearity assumption in
the change in logit sensitivity and logit specificity as
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the threshold value increases by 1 unit. Steinhauser et al
assume a distributional shape for both the diseased and
non‐diseased population, but assessing the true distribu-
tion of the test would require IPD (eg, for at least 1
study) across the range of the test, which will often not
be available.16 Further work may aim to assess how suit-
able the linearity assumption is and to what extent devi-
ation from this distribution matters for the SI approach.
The multiple imputation approach for the MIDC method
used discrete combinations, but an alternative approach
may be to assume some distribution for the diagnostic
test which would allow potential imputations to be
drawn from some posterior distribution as in standard
multiple imputation approaches; again, this would
require the distribution of the test be known, and we feel
this will often be unlikely and impractical for those
researchers (often non‐statisticians) who are undertaking
such meta‐analyses.

The biggest limitation of the imputation methods is
that neither the MIDC or SI approaches constrain the
ordering of threshold results, meaning that in real‐world
examples, the imputed results may lead to imperfect
SROC curves (as seen in the PCR example).15 The
methods of Hamza et al and Riley et al constrain the
threshold results to be ordered; however, these methods
are limited by requiring either complete data or a normal-
ity assumption on the logit estimates within studies.12,15

Further work may look to address this problem.
It is also important to note that the imputation

methods proposed here can only be used with tests
reporting continuous results, that is, reporting sensitivity
and specificity at some numerical threshold. For example,
the methods would not apply to tests defined solely in
terms of “Normal,” “Possibly Abnormal,” and “Abnor-
mal,” as this would form a categorical test and the thresh-
old for each category may be subjective. The imputation
methods assume an explicit threshold is defined and
would apply if the categories “Normal,” “Possibly Abnor-
mal,” and “Abnormal” were actually defined by some
underlying numerical thresholds of a continuous
measure.

In conclusion, we recommend the use of the MIDC
method in practise as a sensitivity analysis. For example,
researchers who retain the NI approach as their primary
analysis method, could subsequently use the MIDC
method to investigate the impact of missing threshold
information on the summary sensitivity and specificity
of the test. This could be particularly important in flag-
ging that pooled test accuracy may be weaker than origi-
nally thought from the NI results, perhaps due to
publication bias related issues. Similarly, if applicable,
other methods for dealing with multiple thresholds might
be considered.11-13,15
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