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Cancer is a complex disease residing in various tissues of human body, accompanied with many abnormalities and mutations
in genomes, transcriptome, and epigenome. Early detection plays a crucial role in extending survival time of all major cancer
types. Recent advances in microarray and sequencing techniques have given more support to identifying effective biomarkers
for early detection of cancer. MicroRNAs (miRNAs) are more and more frequently used as candidates for biomarkers in cancer
related studies due to their regulation of target gene expression. In this paper, the comparative analysis is used to discover miRNA
expression patterns in cancer versus normal samples on early stage of eight prevalent cancer types. Our work focuses on the specific
miRNAs biomarkers identification and function analysis. Several identifiedmiRNA biomarkers in this paper are matched well with
those reported in existing researches, and most of them could serve as potential candidate indicators for clinical early diagnosis
applications.

1. Introduction

Cancer is a highly complex disease that contains many
abnormalities and mutations in the genomes, transcriptome,
and epigenome. These abnormalities play important roles in
the cancer cell growth [1]. Cancer is one of the leading causes
of death all over the world. According to the world cancer
report of 2014, there are about 14 million new cases and more
than 8 million deaths related to cancer in 2012. The number
will continue to rise if there are no effective prediction and
treatment of cancer. It is expected that the number of new
cases will rise to 22 million over the next two decades [2].

Early detection of cancer is undoubtedly important.
During the development of cancer, some genes or pro-
teins, associated with genetic mutations, transcription, or
epigenetic alterations, could be detected from the tissue of
cancer or inflammation when being compared to the normal
tissue. These genes or proteins could give a quantitative
measurement to the severity of a cancer. There have been
many genes or proteins as biomarkers used in the clinical

detection of cancer including alpha-fetoprotein (AFP) for
liver cancer [3], BRCA1 and BRCA2 for breast and ovarian
cancer [4], prostate specific antigen (PSA) for prostate cancer
[5], and epidermal growth factor receptor (EGFR) for non-
small-cell lung carcinoma [6].

In recent years, more and more researches on microRNA
(miRNA) biomarkers have been published.miRNAs are small
noncoding RNA molecules that contain 21–24 nucleotides.
They play important roles in the posttranscriptional regu-
lation of target gene expression [7]. The miRNA biomarker
identification has been extensively studied in recent years.
High-throughput microarray and sequencing techniques are
widely used for transcriptome analysis. We can acquire lots
of transcriptome information for various kinds of cancers
on gene expression level from public databases, such as
Gene Expression Omnibus (GEO) [8], Stanford Microar-
ray Database (SMD) [9], Oncomine [10], and the Cancer
Genome Atlas (TCGA) [5]. Dysregulation of miRNA expres-
sion is important for cancer development through various
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mechanisms including deletions, amplifications, or epige-
netic silencing [11]. The circulating miRNAs are suggested to
be effective indicators of disease.They are important for clini-
cal applications such as disease diagnostics, monitoring ther-
apeutic effect, and predicting recurrence in cancer patients
[12]. Circulating miRNAs are widely used as biomarkers for
various human cancers, such as prostate cancer and breast
cancer [13–16]. Some gene or miRNA biomarkers are identi-
fied using statistical methods to the high-throughput omics
data. MiRNAs are widely used as biomarkers for human
cancers. Resnick et al. acquired 21 differentially expressed
miRNAs through comparing microarray data between 28
patients with ovarian cancer and 15 normal samples. Five
differentially expressed miRNAs with overexpression and 3
miRNAs with underexpression in patients were evaluated
through real-time PCR [17]. Xie et al. did the research on
aberrant miRNAs used as biomarkers for the diagnosis of
non-small-cell lung cancer (NSCLC). Their result indicated
that mir-21 was detected with high expression in sputum
specimen of patient [18]. Du Rieu et al. did the study
on whether abnormal miRNA production for noninvasive
precursor pancreatic intraepithelial neoplasia (PanIN) can
be used as a potential early biomarker of pancreatic ductal
adenocarcinoma (PDAC). They indicated that mir-21 was
aberrantly expressed in early development of PanIN and
it was worthy for further study as a biomarker for early
detection of PDAC [19]. Habbe et al. did the research on
the aberrant expressed miRNAs in intraductal papillary
mucinous neoplasms (IPMNs). They showed that aberrant
miRNA expression was an early event for pancreatic cancer,
and miR-155 was worthy of further study as a biomarker for
IPMNs in clinical samples [20].

Although several miRNA biomarkers have been reported
in the above researches, only one or very few miRNAs are
identified in each experiment which is involved in a single
cancer type. The accuracy and specificity of some miRNAs
are not so promising. In this paper, we analyze the miRNA
expression patterns comparatively in cancer versus normal
samples on early stage of eight prevalent cancer types. The
datasets used in our paper are all RNA-Seq data from TCGA
database to make a comprehensive identification of miRNA
biomarkers for various cancers. We focus on identifying
the specific miRNAs biomarkers including four aspects: (a)
detecting differentially expressed miRNAs for each cancer
type; (b) detecting specific differentially expressed miRNAs;
(c) detecting specific miRNAs biomarkers; and (d) analyzing
function and pathway of these miRNAs. Several identified
miRNA biomarkers have been reported in existing researches
andmost of them could serve as potential candidate biomark-
ers for clinical early diagnosis.

2. Materials and Methods

2.1.miRNAExpressionDatasets. TheoriginalmiRNAexpres-
sion data based on miRNA-Seq for eight prevalent cancer
types are downloaded from the TCGA database [21]. The
eight cancer types include prostate, thyroid, breast, head and
neck, kidney, stomach, lung, and liver cancer. For each cancer
type, we select the cancer samples which have corresponding

Table 1: The detailed information of cancer miRNA expression
datasets.

Cancer type Abbreviation Number of
normal samples

Number of cancer
samples

Breast BRCA 87 157
Colorectal CRAD1 22 96
Kidney KIDC2 105 350
Liver LIHC 50 192
Lung LUNG3 91 459
Prostate PRAD 52 149
Stomach STAD 45 62
Thyroid THCA 59 325
All 511 1790
1CRAD contains COAD (colon adenocarcinoma) and READ (rectum
adenocarcinoma).
2KIDC contains KIRC (kidney renal clear cell carcinoma) and KIRP (kidney
renal papillary cell carcinoma).
3LUNG contains LUSC (lung squamous cell carcinoma) and LUAD (lung
adenocarcinoma).

samples from their normal tissues as the paired samples to
identify cancer relatedmiRNA biomarkers of different cancer
types. Biomarkers can ensure that the prediction results could
be well generalized to clinical research and utility by using
these paired samples. Detailed information of the datasets
used in this paper is listed in Table 1. In this paper, we only
use the samples of cancer from pathologic stage I to detect
miRNA biomarkers for cancers of early stage. The pathologic
stage is collected from clinical patient information of TCGA
database. The value of “reads per million miRNAmapped” is
used as expression value of each miRNA.

2.2. Identification of Differentially Expressed miRNAs. For
each cancer type, firstly, Wilcoxon signed-rank test is used
to identify differentially expressed miRNAs between cancer
samples and normal samples.Then, FDR controlling method
is used to eliminate false discovery rate of the result by
Wilcoxon signed-rank test. After the above processes, an
improved fold change method is applied to identify the
differential expressed miRNAs between cancer samples and
normal samples.

In this paper, we use quantiles to calculate the fold change
of eachmiRNA.A quantile is a cut point which divides a set of
observational data into equal sized groups. So, the 𝑞-quantiles
indicate the value that partitions a set of finite data into 𝑞
groups of equal sizes. The number of 𝑞-quantiles of value is
𝑞 − 1. For a variable 𝑋, the 𝑘th q-quantile (0 < 𝑘 < 𝑞) 𝑄𝑘 can
be estimated using the following formula:

𝑄𝑘 = 𝑥⌊ℎ⌋ + (ℎ − ⌊ℎ⌋) (𝑥⌊ℎ⌋+1 − 𝑥⌊ℎ⌋) , (1)

where ℎ = (𝑁 − 1)(𝑘/𝑞) + 1 and 𝑁 is the sample size. The set
of 𝑞-quantiles is defined as follows:

𝑆𝑄 ⊆ {𝑄1, . . . , 𝑄𝑘, . . . , 𝑄𝑞−1} . (2)

Let 𝐸 ∈ R𝑚×𝑠 be the transcript measurements in a miRNA
expression matrix with 𝑚 miRNAs and 𝑠 samples. Here,
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variable 𝑋 is 𝐸[𝑖, :] (0 < 𝑖 ≤ 𝑚) and the set of 𝑞-quantiles
of miRNA 𝑖 can be calculated using formulae (1) and (2).
For miRNA 𝑖 on normal samples and cancer samples, we
can obtain two sets of q-quantiles for normal and cancer
samples as 𝑁𝑄𝑖 and 𝐶𝑄𝑖, respectively. The fold change value
of the miRNA 𝑖 of 𝑘th q-quantile can be calculated using the
following formula:

FC𝑖𝑘 =
{{{{
{{{{
{

𝐶𝑄𝑖𝑘
𝑁𝑄𝑖𝑘

− 1 (𝐶𝑄𝑖𝑘 ≥ 𝑁𝑄𝑖𝑘)

1 − 𝑁𝑄𝑖𝑘
𝐶𝑄𝑖𝑘

(𝐶𝑄𝑖𝑘 < 𝑁𝑄𝑖𝑘) ,
(3)

where 𝐶𝑄𝑖𝑘 and 𝑁𝑄𝑖𝑘 are the expression values of miRNA 𝑖
of 𝑘th q-quantile in cancer and normal samples, respectively.
And then, the original fold change OFC𝑖 of miRNA 𝑖, which
is calculated by the average of FC𝑖𝑘 across all the samples, is
defined as follows:

OFC𝑖 = 1
𝑞 − 1
𝑞−1

∑
𝑗=1

FC𝑖𝑘, (4)

where 𝑞 is the selected number of quantiles.
In this paper, the impact of standard deviation is also

introduced to the original fold change. The improved fold
change denoted by IFC𝑖 of miRNA 𝑖 is shown as follows:

IFC𝑖 =
OFC𝑖

2√𝜎 (𝐶𝑄𝑖) 𝜎 (𝑁𝑄𝑖)
, (5)

where 𝜎 is the standard deviation of sets of 𝑞-quantiles. In
formula (5), not only the mean value of fold change but
also the influence of variance across different samples is
considered, which is a more effective and robust statistical
analysis.

In this paper, 𝑞 is set to 100 to calculate the quantiles.
And then, we select differentially expressed miRNAs for each
individual cancer type using the following rules: (1) the
improved fold change (IFC) is less than −0.5 or greater than
0.5; and (2) 𝑞-value by FDR controlling forWilcoxon signed-
rank test is less than 0.05.

2.3. Identification of Specific Differentially Expressed miR-
NAs. The specific miRNA biomarkers for each cancer are
selected, which can be used as discriminators for other
cancers. We select specific differentially expressed miRNAs
based on the differential expressed miRNA results from
last section for each cancer. Let the improved fold change
of miRNA 𝑖 in cancer 𝐶1 be IFC𝐶1𝑖 and in other cancers
𝐶2, 𝐶3, . . . , 𝐶𝑘 (𝑘 = 1, 2, . . . , 8) be IFC𝐶2𝑖 , IFC𝐶3𝑖 , . . . , IFC𝐶𝑘𝑖 .
The miRNA 𝑖 is regarded as a specific miRNA biomarker for
cancer𝐶1, if and only if miRNA 𝑖 complied with the following
formula:

IFC
𝐶1
𝑖

 > 𝑡2,
𝑘

∑
𝑗=2

(IFC
𝐶1
𝑖 − IFC𝐶𝑗𝑖

) × 𝛿𝐶𝑗𝑖 > 𝑡1 × 𝑡2 × (𝑘 − 1) ,
(6)

where 𝑘 is the number of cancer types and 𝑘 = 8 in this paper.
𝑡1 means the threshold of the ratio of different cancer types
(the number of cancer types being considered); here we set 𝑡1
to be 0.75. 𝑡2means the threshold of the improved fold change
(IFC value); here we set 𝑡2 to be 0.5. 𝛿𝐶𝑗𝑖 is a factor to filter the
miRNAs with low expression value and is defined as follows:

𝛿𝐶𝑗𝑖 = 1, (𝑋𝐶1𝑖 ≥ 𝑋𝐶𝑗𝑖 ) ,

𝛿𝐶𝑗𝑖 = 0, (𝑋𝐶1𝑖 < 𝑋𝐶𝑗𝑖 ) ,
(7)

where 𝑋𝐶𝑗𝑖 is a vector which means the expression value of
miRNA 𝑖 on cancer 𝐶𝑗 and 𝑋𝐶𝑗𝑖 is the average of 𝑋𝐶𝑗𝑖 .

For example, if miRNA 𝑖 is upexpressed in cancer 𝐶1
(the first inequality in (6) is satisfied, which is |IFC𝐶1𝑖 | > 𝑡2)
and downexpressed or changed very little in other cancer
types (the second inequality in (6) is satisfied, which is
∑𝑘𝑗=2(|IFC𝐶1𝑖 −IFC𝐶𝑗𝑖 |)×𝛿𝐶𝑗𝑖 > 𝑡1×𝑡2×(𝑘−1)), then thismiRNA
is a specific differentially expressedmiRNA for cancer𝐶1. It is
a good discriminator for distinguishing cancer types between
𝐶1 and other 𝐶𝑗 (𝑗 = 2, 3, . . . , 8).

2.4. Identification of Specific miRNA Biomarkers. After
obtaining the specific differentially expressed miRNAs for
each single cancer type, we further select the circulating
and upregulated miRNAs as biomarkers. The information
of extracellular circulating miRNAs is downloaded from
miRandola database [22]. Based on the source of extracellular
miRNAs, the miRNAs in miRandola database are divided
into four categories: Ago2, exosome, HDL, and circulating.
In this paper, we only select the circulating miRNAs which
are source of plasma and serum in miRandola database as
candidate miRNA biomarkers.

For improving the sensitivity and specificity, we identify
the combined miRNA biomarkers based on the specific
single miRNA biomarkers. The rules of selecting combined
biomarkers are considered here in order to identify 𝑘-miRNA
discriminators. These 𝑘-miRNA discriminators are used as
combined biomarkers for multiple cancer types, specific
biomarkers for cancer types with similar survival rates (high
survival rate, medium survival rate, and low survival rate),
and a specific cancer type.

A computational process of finding the 𝑘-miRNA (𝑘 =
1, 2, 3, 4, 5) combination biomarkers is proposed in this paper
to give a best distinction among the different cancer groups
using a linear classifier [23]. Linear Discriminant Analysis
(LDA) [23] is employed to evaluate the performance of 𝑘-
miRNA combination biomarkers for multiple cancer types,
cancers of similar survival rates, and a single cancer type.The
overall accuracy is defined as the fraction of the total number
of true positives and true negatives and the number of all the
samples in the following:

OA = (TP + TN)
𝑁 , (8)

where TP is the number of true positives, TN is the number
of true negatives, and 𝑁 is the total number of samples.
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Table 2: The differentially expressed miRNA in eight cancer types.

Cancer types Upregulation Downregulation All Ratio of up/down
BRCA 32 47 79 0.681
CRAD 82 154 236 0.533
KIDC 33 59 92 0.559
LIHC 33 67 100 0.493
LUNG 46 18 64 2.556
PRAD 71 3 74 23.667
STAD 77 14 91 5.500
THCA 19 48 67 0.396

The performance of all the 𝑘-miRNA combinations is
evaluated using Leave-One-Out Cross Validation (LOOCV)
method [24]. In each LOOCV step, one single sample is
randomly chosen as the validation data, and the remaining
samples are chosen as the training data to build the classifier
using LDA. The OA value is calculated as the accuracy in
this LOOCV step. This process is iterated until all of samples
are selected as the validation data. Due to the computational
complexity, the number of 𝑘 combinations is set to be 1, 2, 3,
4, and 5 in this paper.

2.5. Function and Pathway Analysis. The functional anno-
tation and pathway analysis are conducted using miEAA,
a miRNA Enrichment Analysis and Annotation tool [25].
miEAA is a web-based system, which offers miRNA set
enrichment analysis similar to Gene Set Enrichment Analysis
(GSEA) [26]. The tool also provides rich functionality in
terms of miRNA categories and contains over 14,000 miRNA
sets, including pathways, diseases, organs, and target genes.
In this paper, we perform the functional annotation and
pathway analysis on specific upexpressed miRNAs for each
cancer type among multiple cancer types, respectively.

3. Results and Discussion

The differentially expressed miRNAs in each cancer type are
identified in order to study the specific roles of miRNAs
involved in different cancer types. Due to the various alter-
ations accumulated in the development of the oncogenesis,
different cancers may have their specific miRNAs having dif-
ferential expression.These miRNAs may be involved in some
biological processes in the formation and progression of can-
cers. Similar to genes, several specific miRNAs are identified
and used as targets of the prevention and diagnosis of cancers.

3.1. Differentially Expressed miRNAs. In this part, we use the
strategy in the mentioned methods to identify the differen-
tially expressed miRNAs in eight cancer types. We detect
the upregulated and downregulated miRNAs, respectively,
most of which may be involved in some important biology
processes or pathways. The differentially expressed miRNAs
of eight cancer types are summarized in Table 2. There are
79 differentially expressed miRNAs in breast cancer, among
which 32miRNAs are upregulated and 47miRNAs are down-
regulated. There are 236 differentially expressed miRNAs in

colorectal cancer, among which 82 miRNAs are upregulated
and 154 miRNAs are downregulated. In the lung cancer
results, 64 miRNAs are found to be differentially expressed,
among which 46 miRNAs are upregulated and 18 miRNAs
are downregulated. Interestingly, the number of differentially
expressed miRNAs of different cancer types varies a lot. One
reasonable explanation is that these miRNAs may reflect
different regulatory mechanisms in different cancers and
different cancers may accumulate different set of miRNAs.

Another interesting observation is that the number of
upregulated and downregulated miRNAs in each cancer
differs too much; that is, the ratio of upregulated and
downregulated miRNAs differs a lot. In Table 2, we can see
that there aremore upregulatedmiRNAs than downregulated
miRNAs in prostate and stomach cancers. Differently, the
downregulated miRNAs in thyroid and liver cancers account
for amajor portion among the differently expressedmiRNAs.
Itmay possibly indicate the unique and similar characteristics
of different cancer types.

3.2. Specific Differentially Expressed miRNAs. A detailed
statistical analysis on specific differentially expressed miR-
NAs for single cancer type is conducted. The results are
summarized in Table 3. There are 51 specific differentially
expressedmiRNAs in breast cancer, amongwhich 21miRNAs
are upregulated and 30 miRNAs are downregulated. There
are 180 specific differentially expressed miRNAs in colorectal
cancer, among which 62 miRNAs are upregulated and 118
miRNAs are downregulated. In lung cancer, 46 miRNAs are
found as specific differentially expressed miRNAs, among
which 33 miRNAs are upregulated and 13 miRNAs are
downregulated. Similarly, while the majority of differen-
tially expressed circulating miRNAs in prostate and stomach
cancers are upregulated, in kidney and liver cancers, the
majority of such miRNAs are downregulated. The details of
the specific differentially expressed miRNAs in eight cancers
are illustrated in Table 3.

3.3. Specific miRNAs Biomarkers. The identification of spe-
cific miRNA biomarkers for each cancer is also performed in
this part. For each cancer type, we use the strategymentioned
inMaterials andMethods to find themiRNAs that have larger
upregulation in each cancer type and have high expression
value, and meanwhile the miRNAs have different changes
or expression values in other cancer types. Such miRNAs
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Table 3: The specific differentially expressed miRNAs in eight cancer types.

Cancer types Upregulation Downregulation All Ratio of up/down
BRCA 21 30 51 0.700
CRAD 62 118 180 0.525
KIDC 11 24 35 0.458
LIHC 19 41 60 0.463
LUNG 33 13 46 2.538
PRAD 19 2 21 9.500
STAD 51 8 59 6.375
THCA 15 25 40 0.600
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Figure 1: Specific differentially expressed miRNAs in eight cancer types.

can make a better distinction between one cancer and other
cancer types.

The detailed information is illustrated in Figure 1.MiRNA
MIMAT0000753 is taken as an example (the first one in
Figure 1). It shows the expression distribution of miRNA
MIMAT0000753 in breast cancer, normal breast, other can-
cers, and other normal tissues. MIMAT0000753 gets a fold
change value of nearly 0.92 in breast cancer, which indicates
its upregulation obviously.The approximate mean expression

values are 470 and 160 in breast cancer and normal samples,
respectively.The approximate mean expression values are 125
and 107 in other cancer and normal samples, respectively. So
MIMAT0000753 gets a better performance in prostate cancer
compared to other cancers. It could be used to distinguish
prostate cancer from other cancer types.

In some cases, using one single gene or miRNA is not
enough to distinguish the specific cancer. The identification
of the combination of some miRNAs is an important step
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Table 4: Five-miRNA biomarker for eight cancers.

Cancer types Markers Accuracy 1 Accuracy 2 Mean
BRCA MIMAT(0000076 + 0000259 + 0000434 + 0000753 + 0003218) 0.7702 0.7954 0.7828
CRAD MIMAT(0000067 + 0000070 + 0000253 + 0000438 + 0004598) 0.8300 0.8657 0.8478
KIDC MIMAT(0000068 + 0000076 + 0000255 + 0000267 + 0004494) 0.7473 0.8000 0.7736
LIHC MIMAT(0000075 + 0000255 + 0000441 + 0002871 + 0002888) 0.7021 0.7726 0.7373
LUNG MIMAT(0000100 + 0000261 + 0000432 + 0001080 + 0004494) 0.7311 0.7815 0.7563
PRAD MIMAT(0000074 + 0000083 + 0000432 + 0000728 + 0001413) 0.8060 0.8366 0.8213
STAD MIMAT(0000071 + 0000076 + 0000280 + 0000318 + 0004703) 0.7853 0.8029 0.7941
THCA MIMAT(0000256 + 0000257 + 0000278 + 0000279 + 0004558) 0.6876 0.8805 0.7841

of differentially expressed miRNA analysis. In order to find
the better combinations of miRNAs as biomarkers which
can be used to distinguish the specific cancer, 𝑘-miRNA
(𝑘 = 1, 2, 3, 4, 5) combinations of differentially expressed
miRNAs are selected in this section. By identifying different
miRNA combinationswhich have similar expression patterns
in single cancer type but have different expression patterns in
other cancers, we explore useful information of different and
various mechanisms about carcinogenesis with single cancer
type. In each 𝑘-miRNA combination, we calculate the clas-
sification capability in two aspects. One is the measurement
of the 𝑘-miRNA in a single cancer dataset, which calculates
the classification capability between cancer samples and the
paired normal samples of the same cancer type. The other is
the measurement of the 𝑘-miRNA in the datasets of multiple
cancer types, which calculates the classification capability
between one cancer type and the other cancer types using
the fold change values of the cancer samples and the normal
samples. Table 4 gives the results of distinguishing ability of
the top five-miRNA specific biomarker combinations in eight
cancers, respectively.

In Table 4, accuracy 1 is the results obtained by classifier
between cancer samples and their corresponding paired
normal samples; and accuracy 2 is the results obtained
by classifier between fold change values from each cancer
type and fold change values from other cancer types. These
miRNAs could be used as biomarkers for corresponding
cancer, and simultaneously they are found to be effective
discriminators for distinguishing each cancer fromother can-
cer types. For example, in breast cancer the top five-miRNA
of MIMAT(0000076 + 0000259 + 0000434 + 0000753 +
0003218) gets the accuracy of 77.02% in single dataset eval-
uation and accuracy of 79.54% in multiple cancer datasets
evaluation process, which are the best results among other
combinations. The mean value can reach 78.28%, which
indicates that the five-miRNA combination could be good
biomarkers for breast cancer.

As noted, several miRNAs in each combination have
been reported to be related to different cancers. For BRCA,
MIMAT0000076 (hsa-miR-21) is reported to be overex-
pressed in human breast cancer and associated with clin-
ical stage, metastasis, and prognosis [27]. MIMAT0000259
(hsa-miR-182) andMIMAT0003218 (hsa-miR-92b) are found
to be overexpressed in human breast tumor [28, 29].
MIMAT0000434 (hsa-miR-142) is reported to relate to

the regulation of tumorigenicity of human breast cancer
through the canonical WNT signaling pathway [30], and
MIMAT0000753 (hsa-miR-342) regulates BRCA1 expression
through modulation of ID4 in breast cancer [31].

For CRAD,MIMAT0000070 (hsa-miR-17) is found over-
expressed in colon cancer and the expression is correlated
with low survival rate in colorectal cancer patients [32], and
MIMAT0000253 (hsa-miR-10a) is reported to be overex-
pressed in human colon cancer [33]. MIMAT0000067 (hsa-
let-7g) is associated with tumorigenesis in colon cancer [34],
and MIMAT0000438 (hsa-mir-152) is associated with cell
proliferation, migration, and invasion in human cancer [35].
MIMAT0004598 (hsa-miR-141) is used as a novel biomarker
for metastatic colon cancer [36].

For KIDC, MIMAT0000068 (hsa-miR-15a) is reported
to be upregulated in urine of patients with renal cell carci-
noma and undetectable in oncocytoma, other tumors, and
urinary tract inflammation [37]. MIMAT0000076 (hsa-mir-
21), MIMAT0004494 (hsa-miR-21-3p), and MIMAT0000267
(hsa-miR-210) are upregulated in renal cell carcinoma [37].
MIMAT0000255 (hsa-miR-34a) is reported as a specific
oncogenic miRNA and shown to experience hypermethyla-
tion in kidney cancer cells [38].

For LIHC, MIMAT0000075 (hsa-miR-20a) is upregu-
lated in liver cancer and correlated with hepatitis C virus-
mediated liver disease progression [39]. MIMAT0000255
(hsa-miR-34a) and MIMAT 0002888 (hsa-miR-220) are
reported as a potential therapeutic target in human cancer
[40, 41]. MIMAT0000441 (hsa-miR-9) is upregulated in liver
cancer tissues [42], and MIMAT0002871 (hsa-miR-500) is
related to cancer survival [43].

For LUNG,MIMAT0000261 (hsa-miR-183) is reported to
be overexpressed in lung cancer cell and suggested that high
levels of CO2 increase these miRNA levels and it is related
tomitochondrial oxygen consumption, ATP production, and
cell proliferation [44]. MIMAT0000100 (hsa-miR-29b) is
found to mediate NF-𝜅B signaling in KRAS-induced non-
small-cell lung cancers (NSCLC) [45].MIMAT0000432 (hsa-
miR-141) and MIMAT0001080 (hsa-miR-196b) are upregu-
lated in lung cancer [46]. MIMAT0004494 (hsa-miR-21-3p)
is reported as biomarker to stratify for the subtype of lung
cancer [47].

For PRAD,MIMAT0000074 (hsa-miR-19b) is reported to
be related to prostate cancer and promoted prostate cell pro-
liferation by targeting PTEN, PI3K/Akt pathway, and cyclin
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Table 5: Enriched pathway information of eight cancer types.

Category Term Hint ratio
KEGG Apoptosis (hsa04210) 1.000
Wiki Pathways miRNAs involved in DDR (WP1545) 1.000
Wiki Pathways Leptin signaling pathway (WP2034) 1.000
KEGG Adipocytokine signaling pathway (hsa04920) 0.875
Wiki Pathways Estrogen signaling pathway (WP712) 0.875
Wiki Pathways Insulin signaling (WP481) 0.875
Wiki Pathways DNA damage response (WP707) 0.875
Wiki Pathways IL 4 signaling pathway (WP395) 0.875
KEGG Wnt signaling pathway (hsa04310) 0.875
KEGG Endocytosis (hsa04144) 0.875

D1 [48]. MIMAT0000083 (hsa-mir-26b) is overexpressed
in prostate cancer [49]. MIMAT0000432 (hsa-miR-141) is
reported as a promising biomarker for prostate cancer [50].
MIMAT0000728 (hsa-miR-375) plays a dual role in prostate
carcinogenesis [51], and the expression of MIMAT0001413
(hsa-miR-20b) is associated with progression of prostate
cancer cells [52].

For STAD, MIMAT0000280 (hsa-miR-223) has signifi-
cantly higher expression and plays a role in regulating cel-
lular apoptosis, proliferation, and invasion in gastric cancer
[53]. MIMAT0000071 (hsa-miR-17-3p) and MIMAT0000318
(hsa-miR-200b) are reported to be overexpressed in gastric
cancer patients [54, 55]. MIMAT0000076 (hsa-miR-21) is
used as potential diagnostic and prognostic biomarkers for
gastric cancer [56], and MIMAT0004703 (hsa-miR-335-3p)
is applied as prognostic signature in gastric cancer [57].

For THCA, MIMAT0000256 (hsa-miR-181a) is overex-
pressed in thyroid carcinoma and has been proposed to
play a role in the pathogenesis, development, progression,
metastasis, prognosis, and therapeutic response to chemo-
and radiotherapy [58]. MIMAT0000257 (hsa-miR-181b) is
reported as a key regulator of the oncogenic process in can-
cer [59]. MIMAT0000278 (hsa-miR-221), MIMAT0000279
(hsa-miR-222), and MIMAT0004558 (hsa-miR-181a-2-3p)
are upregulated in thyroid carcinoma [58].

3.4. Function and Pathway Analysis. In this section, the
function annotation and pathway enrichment are performed
using miEAA database. Firstly, we analyze the enriched
pathways on specific upexpressed miRNAs for each cancer
type among multiple cancer types, respectively. Then, we
select the enriched pathways in most cancer types and sort
them by the hint ratio. Table 5 gives top enriched pathway
information with top ranks according to their hint ratio by
miEAA [25]. The category means the source of pathway
databases, the term means the enriched pathways, and the
hint ratio means the enrichment score of miRNAs. From
Table 5, we can see that the top enriched pathways are derived
from Kyoto Encyclopedia of Genes and Genomes (KEGG)
[60] and Wiki Pathways [61].

The first enriched pathway is apoptosis, which is
described by its morphological characteristics and con-
tributed to the high rate of cell loss in malignant tumors
[62]. There are two enriched pathways, miRNAs involved

in DDR and DNA damage response, which are related to
DNAdamage.There is an incontrovertible link betweenDNA
damage and neoplastic phenotype in cancer [63]. Another
interesting pathway is endocytosis, which entails selective
packaging of cell-surface proteins and can be modified in
cancer [64]. There are six signaling pathways in the enrich-
ment results. Cellular signaling pathways are interconnected
to form complex signaling networks and altered in cancer
cells representing a major intellectual challenge [65].

4. Conclusions

Early detection of cancer is a very important and necessary
way for cancer prevention. The biomarkers, as effective indi-
cators to distinguish between cancer and normal samples or
among different groups of cancer samples, aremore andmore
used in cancer mechanism studies and clinical detection.The
research of miRNA biomarkers is attracting more attention.
But some of the biomarkers lack specificity and there are no
effective common biomarkers for multiple cancer types. In
this paper, we mainly focus on the identification of specific
miRNAs and the common miRNA biomarkers. The miRNA
expression data from RNA-Seq for eight cancer types are
obtained from TCGA database, and the circulating miRNA
information is collected from miRandola database.

For each cancer type, we apply Wilcoxon signed-rank
test, which eliminates false discovery rate by using FDR
controlling method, and improved fold change (FC) to
identifymiRNAswhich have differential expressions between
cancer samples and their corresponding normal samples.
Then, the specific miRNA biomarkers for each cancer are
further selected to act as discriminators for other cancers.
After obtaining the specific differentially expressed miRNAs
for each single cancer type, we further select the circulating
and upregulated miRNAs as biomarkers. Several identified
miRNA biomarkers in this paper are matched well with
those reported in existing literatures and most of them could
be taken as potential candidate indicators for clinical early
diagnosis applications.
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