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MicroRNAs (miRNAs) play an important role in various biological processes and

their abnormal expression could lead to the occurrence of diseases. Exploring

the potential relationships between miRNAs and diseases can contribute to the

diagnosis and treatment of complex diseases. The increasing databases storing

miRNA and disease information provide opportunities to develop

computational methods for discovering unobserved disease-related miRNAs,

but there are still some challenges in how to effectively learn and fuse

information from multi-source data. In this study, we propose a multi-view

information fusion based method for miRNA-disease association (MDA)

prediction, named MVIFMDA. Firstly, multiple heterogeneous networks are

constructed by combining the known MDAs and different similarities of

miRNAs and diseases based on multi-source information. Secondly, the

topology features of miRNAs and diseases are obtained by using the graph

convolutional network to each heterogeneous network view, respectively.

Moreover, we design the attention strategy at the topology representation

level to adaptively fuse representations including different structural

information. Meanwhile, we learn the attribute representations of miRNAs

and diseases from their similarity attribute views with convolutional neural

networks, respectively. Finally, the complicated associations between

miRNAs and diseases are reconstructed by applying a bilinear decoder to

the combined features, which combine topology and attribute

representations. Experimental results on the public dataset demonstrate that

our proposed model consistently outperforms baseline methods. The case

studies further show the ability of the MVIFMDA model for inferring underlying

associations between miRNAs and diseases.
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1 Introduction

MicroRNAs (miRNAs) are endogenous non-coding RNAs of

approximately 21–23 nucleotides that play an important role in

the regulation of gene expression (Bartel, 2004). A large number

of studies have shown that miRNAs are involved in various

biological processes, including metabolism, cell proliferation, cell

cycle regulation, and differentiation (Cheng et al., 2005; Miska,

2005; Carleton et al., 2007; Bartel, 2009), and abnormal

expression of miRNAs is related to the pathogenesis of

various diseases such as cancer (Calin and Croce, 2006; Small

and Olson, 2011; Bracken et al., 2016; Metzinger-Le Meuth and

Metzinger, 2019; Sereshgi et al., 2019). Considering the

important roles of miRNAs in different diseases, the

identification of potential associations between miRNAs and

diseases is helpful for the understanding of disease

pathogenesis and the diagnosis, treatment and prognosis of

diseases. Traditional biological assay methods for discovering

disease-related miRNAs are time-consuming and expensive.

Therefore, with the accumulation of biological data and the

improvement of computational power, more and more

researchers propose to predict potential miRNA-disease

associations (MDAs) by using computational methods.

Based on the hypothesis that miRNAs with similar functions

are more likely to be associated with diseases with similar

phenotypes and vice versa (Bandyopadhyay et al., 2010),

many computational models have been developed to predict

MDAs. For example, Jiang et al. (2010) used a hypergeometric

distribution model to evaluate the probability scores of unknown

MDAs based on a phenome-microRNAome network. But this

model only considers the direct neighbor information of each

node and ignores the indirect neighbors. Subsequently, Xuan

et al. (2013) developed a computational model HDMP based on k

most similar neighbors to infer disease-related miRNAs. To

improve the prediction result, HDMP puts forward to

estimate miRNA functional similarity by integrating the

information content of disease terms and phenotypic

similarity between diseases. However, HDMP only considers

the local information of the network and is not suitable for

predicting potential miRNAs for novel diseases without known

related miRNAs. Therefore, some methods that consider global

network information have been proposed by some researchers.

To make good use of structural information, Chen et al. (2012)

used the random walk with restart on the miRNA functional

similarity network to infer the potential associations between

miRNAs and diseases. The algorithm still has the limitation that

it is not applicable to new diseases and new miRNAs. Although

researchers have proposed many new models (Chen et al., 2016;

You et al., 2017; Chen et al., 2018b) to solve this problem, the

above similarity-based methods still cannot effectively capture

the complex relationships of miRNA-disease pairs.

In addition, matrix completion-based methods are also often

used for biomedical link prediction due to their ability to explore

the intrinsic and shared structures of heterogeneous data sources

(Ou-Yang et al., 2022). Specifically, we predict potential

connections by filling in the missing entries of part of the

observed matrix when using this method for MDA inference.

Li et al. (2017) put forward an efficient matrix completion model

to infer novel MDAs, called MCMDA. Subsequently, to solve the

problem that MCMDA cannot be used for new diseases, Chen

et al. (2018a) designed a new computational model based on

inductive matrix completion to predict potential miRNAs

associated with diseases, which uses integrated miRNA

similarity, disease similarity and validated MDA pairs to

complement missing MDAs. Meanwhile, Xiao et al. (2018)

presented a graph regularized non-negative matrix

factorization method to take full advantage of the intrinsic

geometric structure of the data, which enables it to effectively

discover potential relationships between miRNAs and diseases,

including new diseases and new miRNAs. Some matrix

completion-based methods have been developed to infer

underlying associations between miRNAs and diseases (Gao

et al., 2020; Zhang et al., 2020; Chen et al., 2021).

In recent years, as machine learning methods have been

widely used in various fields, some machine learning-based

models have been presented to further improve the prediction

performance of miRNA-disease potential associations. For

example, Xu et al. (2011) calculated four topological features

of miRNAs and constructed a support vector machine classifier

to reveal the relationships between diseases and miRNAs. Since

samples are randomly selected from unknown miRNA-disease

relationship pairs as negative samples, these negative samples are

unreliable, and they may be positive samples that have not been

experimentally verified. Given the limitations of existing

methods, Chen and Yan (2014) used a semi-supervised

learning-based computational model of regularized least

squares to identify miRNAs that may be associated with

diseases. This method can be used for diseases without

validated relevant miRNAs and avoid the selection of negative

samples by using semi-supervision. However, with the rapid

growth of biomedical data, traditional machine learning

methods are not suitable for complex and changeable data,

while deep learning has shown good performance in utilizing

unstructured data (Sheng et al., 2022; Zhang et al., 2022). Peng

et al. (2019) used auto-encoder to reduce the dimensionality of

features and calculated miRNA-disease relationship scores by the

convolutional neural network (CNN). Li et al. (2020) proposed to

use latent feature representations of miRNAs and diseases,

respectively learned by graph convolutional networks (GCNs)

(Kipf and Welling, 2016), as input for neural inductive matrix

completion to obtain scores for unknown miRNA-disease pairs.

Tang et al. (2021) presented a multi-view multichannel attention

graph convolutional network (MMGCN) to identify new disease-

related miRNAs, which uses GCNs to learn the embeddings of

miRNAs and diseases, furthermore adopts multi-channel

attention to enhance the learned latent representations. The
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GNN based on link representation proposed by Kang et al. (2022)

employed the GCN to obtain node embeddings and then

obtained the improved intermolecular relationship scores

according to the designed propagation rule and layer-wise

fusing rule. Although there are some methods using deep

learning for MDA prediction, many of them ignore the

effective learning and fusion of information from different

data sources, such as some methods simply utilize one type

information, some simply fill in the missing values of one type of

information with other types of information, and some ignore

information in known associations. Thus, the methods that

better utilize multi-source data information to identify

underlying disease-related miRNAs should be further explored.

In this study, we present a novel MDA prediction method

based on multi-view information fusion (MVIFMDA), which

attempts to effectively preserve the topological and attribute

information from multi-source data. The basic idea of

MVIFMDA is as follows. We firstly use multi-source data to

construct the known association network of miRNA-disease and

the similarity networks of miRNA and disease, including miRNA

sequence similarity network, miRNA functional similarity

network, disease semantic similarity network, and disease

functional similarity network. And then multiple

heterogeneous networks between miRNAs and diseases are

constructed based on the association network and similarity

networks of miRNA and disease. Secondly, GCNs are

employed to learn various topological representations of

miRNAs and diseases according to different heterogeneous

network views, respectively. Furthermore, the attention

strategy at the topology representation level is established to

obtain more informative topology embeddings by effectively

learning the importance of different topology features.

Meanwhile, CNNs are adopted to respectively get the attribute

representations of the miRNAs and diseases based on the various

miRNA similarity and disease similarity views. Finally, the

combined miRNA and disease embeddings are fed into a

bilinear decoder to calculate the MDA scores. 5-Fold cross-

validation (5-CV) and case studies demonstrate that the

MVIFMDA model extracts more information from multiple

biological data sources and is suitable for MDA prediction.

2 Materials and methods

In this study, we propose a new multi-view information

fusion model named MVIFMDA for MDA prediction. The

framework of MVIFMDA is shown in Figure 1. We firstly

construct miRNA-disease heterogeneous networks based on

known associations and various similarities of miRNA and

disease (Figure 1A). Additionally, GCNs are adopted to

encode heterogeneous network views including different

information, and an attention mechanism is designed to

adaptively integrate different topology representations for

miRNAs and diseases obtained from GCNs (Figure 1B).

FIGURE 1
Overview ofMVIFMDA. (A)Construction ofmultiplemiRNA-disease heterogeneous networks using knownMDAs and the similarities ofmiRNAs
and diseases. (B) Encoding of heterogeneous network views by GCN to extract topology representations, and using topology representation level
attention mechanism to adaptively fuse the different topology information. (C) and (D) Encoding of similarity views by CNN to obtain attribute
representations of miRNAs and diseases, respectively.
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Meanwhile, the attribute representations of the miRNAs and

diseases are learned by utilizing the CNN encoder (Figures

1C,D). Finally, the bilinear decoder combines the topology

and attribute representations of miRNAs and diseases to

predict the association scores between miRNAs and diseases.

2.1 Dataset

We downloaded experimentally validated human miRNA-

disease relationships from HMDD v3.2 (Huang et al., 2019),

which is a curated database. To take full advantage of multiple

biomedical data, we obtained the medical subject headings

(MeSH) descriptors from the National Library of Medicine

(https://www.nlm.nih.gov/), which provides semantic information

of diseases through directed acyclic graphs (DAGs). And disease-

gene associations andweighted gene-gene relationshipswere obtained

from DisGeNET (Piñero et al., 2020) and HumanNet (Hwang et al.,

2019), respectively. In addition, we downloaded the sequence

information of miRNAs from miRbase (Kozomara et al., 2019),

and the miRNA-gene relationships were got from miRTarBase

(Huang et al., 2020). By taking the intersection of data from

multiple data sources and merging duplicate data, we finally

acquired 12,446 associations among 853 miRNAs and 591 diseases

for the next association prediction, furthermore used these processed

data to calculate the similarities of miRNAs and diseases and build

heterogeneous networks between miRNAs and diseases.

2.2 Construction of heterogeneous
networks

2.2.1 Human miRNA-disease associations
We employ the obtained known human relationship pairs

between miRNAs and diseases to construct the association

matrix A ∈ RNm×Nd , where Nm and Nd represent the number

of miRNAs and diseases, respectively. When there is an observed

association between miRNA i and disease j, Aij � 1, that is, there

is an edge with the weight of 1 between themiRNA i node and the

disease j node. When there is an unknown or unobserved

association between miRNA i and disease j, Aij � 0, which

means that there is no edge between the two nodes.

2.2.2 Disease semantic similarity
As shown in (Wang et al., 2010a), DAGs can be used to

compute the semantic similarity of diseases. For example, a

disease d can be represented as DAG(d) � (d, Td, Ed), where
Td is the disease set composed of all ancestor nodes of disease d

(including itself), and Ed denotes all direct connections between

nodes. In DAG(d), the semantic contribution of disease t to

disease d is defined as follows:

{ Dd(t) � 1, if t � d
Dd(t) � max{ΔpDd(t′) ∣∣∣∣∣ t′ ∈ children of t}, if t ≠ d

,

(1)
where the semantic contribution factor Δ is set to 0.5 (Wang

et al., 2010b), which means that the farther the disease is from the

disease d, the smaller the semantic contribution to the disease d.

Then, the semantic similarity performance between disease i and

disease j is calculated as follows:

SD1(i, j) � ∑t∈T(i)∩T(j)(Di(t) +Dj(t))
∑t∈T(i)Di(t) +∑t∈T(j)Dj(t) . (2)

According to Eq. 2, we can finally get the weight matrix of the

disease semantic similarity network SD1 ∈ RNd×Nd , where if

SD1
ij ≠ 0, it means that there is an edge with a weight of

SD1
ij between the node i and j. On the contrary, when

SD1
ij � 0, it indicates that there is no semantically similar

edge between the node i and j.

2.2.3 Disease functional similarity
Driven by the hypothesis that similar disease tendencies

interact with similar genes (Xu and Li, 2006; Wei and Liu,

2020), we calculate the functional similarity of diseases

utilizing the relationship between disease and gene. The gene

functional interaction network can be obtained fromHumanNet,

where it provides a log-likelihood score (LLS) for each gene

interaction to assess the probability of functional connectivity

between genes (Lee et al., 2011; Hwang et al., 2019). We obtain

the similarity LLSN between genes through min-max

normalization based on LLS, and then the similarity score

between a gene g and a set of genes GS � {g1, g2,/, gk} is

defined as follows:

S(g, GS) � max
gi∈GS

(S(g, gi)) , (3)

where S(g, gi) represents the functional similarity score between

gene g and gene gi. It is defined as follows:

S(g, gi) � { 1 , if g � gi

LLS N(g, gi), if g ≠ gi
, (4)

where LLS N(g, gi) � 0 when there is no linkage between the

genes g and gi. Finally, we get the functional similarity between

disease i and disease j as follows:

SD2(i, j) � ∑g∈GSiS(g, GSj) +∑g∈GSjS(g, GSi)
|GSi| +

∣∣∣∣GSj∣∣∣∣ , (5)

where GSi and GSj denote gene sets related to diseases i and j

respectively, and |GSi| and |GSj|are the cardinality of the gene

sets. Analogously, according to Eq. 5, we finally get the weight

matrix of the disease functional similarity network SD2 ∈ RNd×Nd.

Frontiers in Genetics frontiersin.org04

Xie et al. 10.3389/fgene.2022.979815

https://www.nlm.nih.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.979815


2.2.4 miRNA sequence similarity
To measure the similarity of miRNA sequences, we employ

the Needleman-Wunsch Algorithm (Needleman and Wunsch,

1970) to quantify the similarity between two miRNAs by

sequence alignment. In addition, we normalize the sequence

similarity score Score(i, j) between miRNA i and miRNA j to

the range of [0,1] by min-max normalization, which can be

written as follows:

SM1(i, j) � Score(i, j) − Score min

Score max − Score min
, (6)

where Score min and Score max represent the minimum and

maximum similarity scores among all miRNA sequence pairs,

respectively. Similar to the disease similarity network, we obtain a

miRNA sequence similarity network with the edge weight matrix

SM1 ∈ RNm×Nm .

2.2.5 miRNA functional similarity
Similar to the calculation of disease functional similarity,

we utilize the relationships between miRNAs and genes to

calculate miRNA functional similarity, which avoids the

dependence on known associations between miRNAs and

diseases and enables the similarity calculation of new

miRNAs (Xiao et al., 2018; Xiao et al., 2021). Analogously,

we can define the functional similarity between miRNA i and

miRNA j as follows:

SM2(i, j) � ∑g∈GSiS(g, GSj) + ∑g∈GSjS(g, GSi)
|GSi| +

∣∣∣∣GSj∣∣∣∣ , (7)

where GSi and GSj are gene sets associated with miRNA i and j,

respectively. Similar to the miRNA sequence similarity network

construction, we use the calculated miRNA functional similarity

score as the edge weight of the network.

In addition, for miRNAs and diseases, different kinds of

similarity matrix views obtained from different data sources are

considered as their initial attribute feature, which can be used to

further learn their attribute representations.

2.2.6 Heterogeneous networks
By integrating the MDA network, two miRNA similarity

networks and two disease similarity networks, multiple miRNA-

disease heterogeneous networks are constructed, as shown in

Figure 1A. As mentioned above, in each heterogeneous network,

the weights of the edges between two miRNA nodes and between

two disease nodes are equal to the similarity scores between them,

respectively, while the edge weight between a miRNA node and a

disease node is determined by whether there is a known

association between two nodes. Given the MDA matrix A and

similarity matrices SD1, SD2, SM1 and SM2, we define the

adjacency matrices M of these heterogeneous networks as

follows:

M1 � [ SM1 A
AT SD1 ] ∈ R(Nm+Nd)×(Nm+Nd) ,

M2 � [ SM1 A
AT SD2 ] ∈ R(Nm+Nd)×(Nm+Nd) ,

M3 � [ SM2 A
AT SD1 ] ∈ R(Nm+Nd)×(Nm+Nd) ,

M4 � [ SM2 A
AT SD2 ] ∈ R(Nm+Nd)×(Nm+Nd) ,

where AT denotes the transpose of A, andM1, M2, M3 andM4

respectively represent the matrix representations of four different

heterogeneous network views, which reflect the relationship

between miRNAs and diseases and the degree of similarity

between nodes of the same type from the perspective of

different information sources.

2.3 Multi-view topology representation
learning

2.3.1 Topology representations learning by
graph convolutional network encoder

Graph convolutional network (GCN) is a powerful tool for

learning node embeddings of graph-structured data, which has

been proven both theoretically and practically (Zhou et al., 2020).

GCN generates a low-dimensional and efficient representation of

a node by aggregating the information of the neighbour nodes of

the node in the graph and capturing the dependencies between

the data. For an undirected graph, the layer-wise propagation

rule of a multi-layer GCN can be expressed as follows:

X(l+1) � σ(D−1
2GD−1

2X(l)W(l)) , (8)

Where X(l) is the representations of the nodes in the l-th layer, σ

denotes the nonlinear activation function, and W(l) is the

learnable weight matrix that maps the features to the latent

space. G is the adjacency matrix of the graph, and D is the

diagonal degree matrix ofG,Dii � ∑jGij, where i, j � 1, 2,/, N

and N represents the number of nodes in the graph.

For the miRNA-disease heterogeneous network views

constructed in the previous chapter, we use them as the input

of the GCN encoder respectively, and then obtain different

embeddings of miRNAs and diseases. Taking the use of GCN

to encode the heterogeneous network M1 as an example, we set

G � M1, and then according to Eq. 8, the first layer of the GCN

encoder can be defined as follows:

X(1)
md1 � σ(D−1

2
md1M

1D
−1
2

md1X
(0)
md1W

(0)
md1) , (9)

where W(0)
dm1 ∈ R(Nm+Nd)×fmd is the weight matrix input to the

hidden layer, fmd represents the dimension of the embedding

feature, and the initial embedding X(0)
dm1 � M1. According to Eq.
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8, we can get the embedding of the heterogeneous networkM1 as

follows:

Xmd1 � {X(1)
md1, X

(2)
md1,/, X(L)

md1} , (10)

where the GCN has L layers to learn topology information of the

M1 heterogeneous network view.

Similarly, we can obtain the embedding Xmdi of miRNA and

disease according to the miRNA-disease heterogeneous network

view Mi in turn, where i � 2, 3,/, n and n is the number of the

heterogeneous network views. The obtained embeddings can be

represented as:

Xmd2 � {X(1)
md2, X

(2)
md2,/, X(L)

md2} , (11)
Xmd3 � {X(1)

md3, X
(2)
md3,/, X(L)

md3} , (12)
..
.

Xmdn � {X(1)
mdn, X

(2)
mdn,/, X(L)

mdn} . (13)

Furthermore, as shown in Figure 1B, we get topological

representations of miRNAs and diseases from different

perspectives according to the multi-layer GCN encoder and

the next section will describe how to integrate these

representations, which contain different structural information.

2.3.2 Topology representations fusing by
attention mechanism

The structural information of the input network captured by

different GCN layers is different. For instance, the first layer

captures the direct connection information between nodes, and

by updating the embeddings layer by layer, multi-hop neighbour

information can be captured by higher layer embeddings (He

et al., 2020; Yu et al., 2021). In addition, the embeddings from

different heterogeneous network views are not equally important

to explore MDAs. Therefore, we design the attention strategy at

the topology representation level to adaptively fuse multiple

topology embeddings of miRNAs and diseases learned by

GCN encoder. The multiple feature matrices of miRNAs and

diseases from the heterogeneous network views are stacked to

form a feature tensor Xmd ∈ R(Nm+Nd)×fmd×(n×L). Given the

feature tensor of Xmd, the attention weight βa is calculated as

follows:

sia � qTa tanh(WaXmd
i + ba) , (14)

βia �
exp(sia)∑n×L
j�1 exp(sja), (15)

where Wa, ba and qa denote the weight matrix, the bias vector

and the topology representation attention vector, respectively. sia
is the information score of the i-th topology representation. After

obtaining the attention score at topology representation level, we

could focus on more important features by combining the

topology representations with attention, and the topological

features [Z1
m

Z1
d
] ∈ R(Nm+Nd)×fmd after attention enhancement

are expressed as follows:

[Z1
m

Z1
d
] � ∑n×L

i�1 βiaX
i
md. (16)

2.4 Multi-view attribute representations
learning by convolutional neural network
encoder

Convolutional neural network (CNN) can obtain the local

message contained in the feature map through multiple

convolution kernels, which helps us to use CNN to extract the

deep attribute features of miRNAs and diseases from different

information sources respectively. We take P different kinds of

miRNA similarity matrix views as the initial attribute feature of

miRNAs SM � [SM1, SM2,/, SMP] and regard Q different

disease similarity matrix views as the initial attribute feature of

disease SD � [SD1, SD2,/, SDQ]. Given the initial attribute

feature SM of miRNAs nodes, the embedding of t-th output

channel outputt is expressed as:

outputt � ∑P

i�1SM
i ⊗ Wt

m + btm, (17)

where Wt
m ∈ RNm×1 represents the t-th convolution filter,

btm ∈ RNm×1 denotes the bias vector, and ⊗ is the convolution

operator. The final miRNA attribute representation

Z2
m ∈ RNm×fchannel can be got by stacking the output

embeddings of multiple channels, where fchannel is the

number of the output channels. Similarly, as shown in

Figure 1D, we can extract the disease attribute representation

Z2
d ∈ RNd×fchannel by leveraging the CNN encoder to the initial

attribute feature SD.

In order to make full use of the information from different

data sources, we combine the topological features from multiple

miRNA-disease heterogeneous networks learned by GCN

encoder and the attribute features from multiple similarity

matrices learned by CNN encoder as the final embeddings,

which is expressed as follows:

Zm � Z1
m ⊕ Z2

m, (18)
Zd � Z1

d ⊕ Z2
d, (19)

where ⊕ represents the concatenation operation, and Zm and Zd

are respectively the final embeddings of miRNA nodes and

disease nodes.

2.4.1 The reconstruction of miRNA-disease
associations and optimization

Although the inner product of node embeddings is often used

to predict relationship probabilities between nodes, it is limited in

capturing complex associations between nodes. Here, we
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reconstruct the associations between miRNAs and diseases by

introducing a bilinear decoder. Based on the obtained embedding

matrices Zm ∈ RNm×(fmd+fchannel) for miRNAs and

Zd ∈ RNd×(fmd+fchannel) for diseases, the prediction scores

between miRNAs and diseases are calculated as follows:

A′ � sigmoid(ZmWbZ
T
d) , (20)

where Wb denotes a learnable matrix, and Ai,j
′ is the

prediction probability that miRNA i and disease j are associated.

The higher the predicted score between miRNA i and disease j, the

more likely that miRNA i is correlated with disease j.

In this study, we train MVIFMDA to learn the parameters of

the model by utilizing the following cross-entropy loss L:

L � −(∑(i,j)∈y+ logAi,j
′ +∑(i,j)∈y− log(1 − Ai,j

′ )) , (21)

where y+ and y− represents the set of positive samples and the set

of negative samples, respectively. The known MDA pairs are

regarded as the positive samples and the other unobserved pairs

are considered as negative samples. In addition, we leverage the

Adam optimizer (Kingma and Ba, 2014) to minimize the loss

function and train the model end-to-end by a back propagation

algorithm.

3 Results

3.1 Experiment settings

In this study, 5-CV is adopted to evaluate the performance

of MVIFMDA for identifying candidate disease-associated

miRNAs. For 5-CV, all known MDAs (also named positive

samples) are randomly divided into five equal parts, and each

part in turn is utilized for testing while the remaining is

adopted for training. In each fold, the miRNA-disease

heterogeneous networks are updated based on new known

associations, where the known associations for testing are

treated as unobserved associations. MDA prediction can be

viewed as a classification task, therefore, several common

classification metrics are used to evaluate the prediction

performance of MVIFMDA and baseline models, including

area under receiver operating characteristic (ROC) curve

(AUC), area under the precision-recall (PR) curve (AUPR),

accuracy, precision, recall, specificity, and precision rate and

recall rate within the top k. In addition, we set k � {5%, 10%}
in the study and repeat the experiments 10 times to get the

average of these metrics.

In MVIFMDA, there are several hyperparameters to adjust,

such as the number of GCN layer L, topology embedding

dimension for miRNAs and diseases fmd, attribute embedding

dimension fchannel and learning rate lr. By adjusting the

parameters empirically, we set the parameter L � 2,

fmd � 256, fchannel � 256, lr � 0.001 for the MVIFMDA

model. In addition, we take the optimal values given by the

authors as the parameters of the baseline models.

3.2 Ablation experiments

In the study, we combine GCN encoder and CNN encoder to

enhance the feature embeddings of miRNAs and diseases. In

order to validate the effectiveness of the main components in

MVIFMDA, we designed two variants of MVIFMDA

(MVIFMDA-noTR, MVIFMDA-noAR) for the ablation study.

MVIFMDA-noTR removes the topology representations of

miRNAs and diseases based on the GCN encoder.

MVIFMDA-noAR only adopts the topology features without

using the attribute representations based on the CNN encoder.

The experimental results of MVIFMDA and two variants are

shown in Table 1. The results demonstrate that MVIFMDA

outperforms the other two variant models on all evaluation

metrics. It means that the topological representations obtained

by the GCN encoder and the attribute representations learned by

the CNN encoder can play a complementary role and the

combination of the two can more effectively learn the multi-

view information of miRNA and disease nodes from different

information sources. For MVIFMDA-noTR and MVIFMDA-

noAR, the performance of MVIFMDA-noAR is better, i.e., the

topological information extracted from the heterogeneous

network views is very useful and the topological level

attention mechanism effectively integrates the different

structural information. In conclusion, the combination of

topological representations from multiple heterogeneous

network views learned by the GCN encoder and attribute

representations from multiple similarity views learned by the

CNN encoder makes our proposed model perform better.

3.3 Comparison with other methods

To demonstrate the performance of MVIFMDA in

identifying potential disease-related miRNAs, we compared it

with six state-of-the-art approaches that were developed for

MDA prediction, including MDHGI (Chen et al., 2018b),

ABMDA (Zhao et al., 2019), NIMGSA (Jin et al., 2022),

NIMCGCN (Li et al., 2020), DANE-MDA (Ji et al., 2021),

MMGCN (Tang et al., 2021).

For a fair comparison, all models are evaluated using 5-

CV. Figure 2 and Table 2 show that except that the recall of

MVIFMDA is slightly lower than that of MMGCN, all other

metrics are significantly higher than the comparison methods,

whereas compared to MMGCN, the AUC and AUPR are

improved by 1.8 and 4.7%, respectively. One of the possible

reasons is that MVIFMDA is able to enhance the

representation of nodes by combining topological

representations from different heterogeneous network views
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and attribute representations from different similarity views, which

further shows that the design of our model is sound. Compared

with MDHGI, ABMDA, NIMGSA, and NIMCGCN, MVIFMDA

builds multiple heterogeneous networks with different similarities

and learns topological representations from these heterogeneous

networks respectively, and uses CNNs to learn high-level features

from multiple similarity matrices, which replaces simply

combining the multiple similarities into one like the compared

methods. Although DANE-MDA considers both the attribute

information and topology information, its performance is not

as good as MVIFMDA. This may be because of that DANE-MDA

simply uses miRNA sequence similarity and disease semantic

similarity to obtain node embeddings of miRNAs and diseases,

while MVIFMDA learns topological and attribute information

from two different similarities more efficiently. Furthermore,

although MMGCN uses a multichannel attention mechanism to

capture more important topological features from different

similarity network views, its performance is also not as good as

that of MVIFMDA in addition to the recall, probably because

MVIFMDA is capable of combining topological representations

learned by GCN and attribute representations learned by CNN to

more effectively capture information in multi-view networks. In

addition, we further evaluate the performance of MVIFMDA and

the comparison methods using the paired t-test based on 10 runs

TABLE 1 Results of our model and its variant models.

Metrics (mean ± std) MVIFMDA-noTR MVIFMDA-noAR MVIFMDA

AUC 0.9063 ± 0.0350 0.9371 ± 0.0003 0.9396 ± 0.0004

AUPR 0.2024 ± 0.0123 0.2591 ± 0.0009 0.2696 ± 0.0009

accuracy 0.9931 ± 0.0002 0.9935 ± 0.0001 0.9936 ± 0.0002

precision 0.2886 ± 0.0171 0.3420 ± 0.0073 0.3494 ± 0.0118

recall 0.2515 ± 0.0173 0.2962 ± 0.0066 0.2982 ± 0.0080

F1 0.2674 ± 0.0163 0.3162 ± 0.0019 0.3202 ± 0.0006

precision@5% 0.0632 ± 0.0037 0.0696 ± 0.0002 0.0701 ± 0.0002

precision@10% 0.0382 ± 0.0022 0.0414 ± 0.0001 0.0416 ± 0.00003

recall @5% 0.6404 ± 0.0374 0.7045 ± 0.0018 0.7097 ± 0.0018

recall @10% 0.7576 ± 0.0433 0.8214 ± 0.0010 0.8261 ± 0.0006

The bold values indicate the best values in rows.

FIGURE 2
ROC curves and PR curves of MVIFMDA with all comparison methods.
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of 5-CV. Table 3 shows that MVIFMDA is significantly preferred

to other computational methods in terms of AUC and

AUPR (P< 0.05).

3.4 Case studies: Colonic neoplasms,
esophageal neoplasms and lymphoma

To further demonstrate the reliability of the MVIFMDA

model in real cases, we construct case studies for colonic

neoplasms, esophageal neoplasms and lymphoma. All known

MDAs are used as positive samples to train the model, then this

trained model is used to predict the probability scores of all

unknown relationship pairs. For each disease, the predicted

scores are sorted in descending order.

The top-rank 20 miRNAs associated with each disease are

shown in Tables 4–6, where we use dbDEMC 3.0 (Yang et al.,

2017) to validate the candidate MDAs. Colon tumours are the

third leading cause of cancer-related deaths in the

United States (Siegel et al., 2016). As shown in Table 4,

among the top-rank 20 disease-related candidate miRNAs,

18 are identified by dbDEMC, which suggests that these

miRNAs are associated with colonic neoplasms.

Overexpression of hsa-miR-122 increases the sensitivity of

TABLE 2 The performance of MVIFMDA with all comparison methods.

Metrics (mean ± std) MDHGI ABMDA NIMGSA NIMCGCN DANE-MDA MMGCN MVIFMDA

AUC 0.8678 ± 0.0008 0.9205 ± 0.0036 0.8854 ± 0.0022 0.9038 ± 0.0064 0.9224 ± 0.0006 0.9230 ± 0.0023 0.9396 ± 0.0004

AUPR 0.0817 ± 0.0012 0.1042 ± 0.0154 0.1189 ± 0.0089 0.1732 ± 0.0174 0.2024 ± 0.0030 0.2575 ± 0.0008 0.2696 ± 0.0009

accuracy 0.9894 ± 0.0004 0.9851 ± 0.0088 0.9908 ± 0.0008 0.9928 ± 0.0007 0.9933 ± 0.0008 0.9934 ± 0.0001 0.9936 ± 0.0002

precision 0.1428 ± 0.0101 0.0690 ± 0.0448 0.1680 ± 0.0232 0.2569 ± 0.0292 0.1559 ± 0.0819 0.3338 ± 0.0081 0.3494 ± 0.0118

recall 0.2200 ± 0.0135 0.1416 ± 0.0932 0.1891 ± 0.0156 0.2146 ± 0.0203 0.1683 ± 0.0861 0.2986 ± 0.0067 0.2982 ± 0.0080

F1 0.1719 ± 0.0109 0.0751 ± 0.0452 0.1741 ± 0.0161 0.2305 ± 0.0202 0.1603 ± 0.0826 0.3141 ± 0.0007 0.3202 ± 0.0006

precision@5% 0.0504 ± 0.0003 0.0553 ± 0.0028 0.0500 ± 0.0008 0.0589 ± 0.0016 0.0689 ± 0.0002 0.0695 ± 0.0001 0.0701 ± 0.0002

precision@10% 0.0329 ± 0.0001 0.0382 ± 0.0009 0.0323 ± 0.0004 0.0371 ± 0.0007 0.0410 ± 0.0001 0.0412 ± 0.0001 0.0416 ± 0.00003

recall @5% 0.5102 ± 0.0027 0.5607 ± 0.0279 0.5062 ± 0.0078 0.5961 ± 0.0165 0.6979 ± 0.0018 0.7038 ± 0.0010 0.7097 ± 0.0018

recall @10% 0.6525 ± 0.0027 0.7579 ± 0.0171 0.6412 ± 0.0088 0.7370 ± 0.0136 0.8150 ± 0.0018 0.8179 ± 0.0016 0.8261 ± 0.0006

The bold values indicate the best values in rows.

TABLE 3 The statistical results by paired t-test for MVIFMDA and all comparison methods.

MVIFMDA versus MDHGI ABMDA NIMGSA NIMCGCN DANE-MDA MMGCN

P-vaule of AUC 6.7944e-18 1.1456e-07 6.5493e-14 3.5915e-08 2.0171e-13 9.7205e-09

P-vaule of AUPR 2.0333e-19 1.3929e-10 2.5665e-12 4.7847e-08 1.7074e-13 2.6278e-10

TABLE 4 Top 20 miRNA candidates related to colonic neoplasms.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-122 Unconfirmed 11 hsa-mir-100 dbDEMC

2 hsa-mir-146b dbDEMC 12 hsa-mir-34b dbDEMC

3 hsa-mir-182 dbDEMC 13 hsa-mir-149 dbDEMC

4 hsa-mir-214 dbDEMC 14 hsa-mir-342 dbDEMC

5 hsa-mir-29c dbDEMC 15 hsa-mir-26b dbDEMC

6 hsa-mir-27b dbDEMC 16 hsa-mir-196a-2 Unconfirmed

7 hsa-mir-206 dbDEMC 17 hsa-mir-193b dbDEMC

8 hsa-mir-183 dbDEMC 18 hsa-mir-99a dbDEMC

9 hsa-mir-34c dbDEMC 19 hsa-mir-29b-2 dbDEMC

10 hsa-mir-144 dbDEMC 20 hsa-mir-494 dbDEMC
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fluorouracil (5-FU)-resistant colon cancer cells to 5-FU

through PKM2 downregulation (He et al., 2014). High

levels of hsa-miR-122-5p in plasma could suggest liver

metastases from colorectal cancer and correlate with poorer

recurrence-free survival and overall survival times

(Maierthaler et al., 2017; Sun et al., 2020). Colorectal

cancer is a collective term for colon cancer and rectal

cancer, implying that hsa-miR-122-5p may be associated

with the survival prognosis of colon cancer patients. High

levels of miR-196a in colorectal cancer can actuate the Akt

signaling pathway and accelerate cancer cell metastasis and

infiltration (Schimanski et al., 2009; Wang et al., 2010b).

Furthermore, it was mentioned in (Ge et al., 2014) that

miR-196a in colorectal cancer displays an association with

aggressive disease and a detrimental effect on therapeutic

outcomes. Esophageal tumours are the major malignant

tumours of the digestive system, with the sixth and fourth

highest incidence and mortality rates, respectively, among all

malignancies. Lymphoma, meanwhile, is a malignant tumour

of the lymphatic hematopoietic system, the incidence of which

is increasing annually. From Tables 5, 6, it can be seen that the

top-rank 20 candidate miRNAs predicted by the MVIFMDA

model with regard to esophageal neoplasms and lymphomas

can all be confirmed by the dbDEMC dataset. In summary, the

case studies further show that our model is effective in

inferring new disease-related miRNAs.

3.5 Prediction of novel diseases

To show the predictive performance of MVIFMDA for new

diseases without known relevant miRNAs, we construct another

case study for novel diseases in this experiment. When predicting

miRNAs relevant to a new disease, we use known relationship pairs

other than those associated with the specific disease as positive

samples to train the MVIFMDA model and then explore the

relationship probabilities between the specific disease and all

miRNAs. Based on the descending ranked prediction scores, we

use HMDD v3.2 to verify these top-rank 20 candidate MDA pairs.

TABLE 5 Top 20 miRNA candidates related to esophageal neoplasms.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-17 dbDEMC 11 hsa-mir-23a dbDEMC

2 hsa-mir-29a dbDEMC 12 hsa-mir-125a dbDEMC

3 hsa-mir-222 dbDEMC 13 hsa-mir-15b dbDEMC

4 hsa-mir-142 dbDEMC 14 hsa-mir-206 dbDEMC

5 hsa-mir-30a dbDEMC 15 hsa-mir-125b-1 dbDEMC

6 hsa-mir-132 dbDEMC 16 hsa-mir-23b dbDEMC

7 hsa-mir-18a dbDEMC 17 hsa-mir-16-1 dbDEMC

8 hsa-mir-200b dbDEMC 18 hsa-let-7d dbDEMC

9 hsa-mir-182 dbDEMC 19 hsa-mir-125b-2 dbDEMC

10 hsa-mir-19b-1 dbDEMC 20 hsa-mir-107 dbDEMC

TABLE 6 Top 20 miRNA candidates related to lymphoma.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-34a dbDEMC 11 hsa-mir-132 dbDEMC

2 hsa-mir-223 dbDEMC 12 hsa-mir-23a dbDEMC

3 hsa-mir-145 dbDEMC 13 hsa-mir-182 dbDEMC

4 hsa-mir-29a dbDEMC 14 hsa-mir-192 dbDEMC

5 hsa-mir-30a dbDEMC 15 hsa-mir-214 dbDEMC

6 hsa-let-7b dbDEMC 16 hsa-mir-15b dbDEMC

7 hsa-mir-195 dbDEMC 17 hsa-mir-183 dbDEMC

8 hsa-mir-106b dbDEMC 18 hsa-let-7c dbDEMC

9 hsa-mir-146b dbDEMC 19 hsa-mir-130a dbDEMC

10 hsa-mir-27a dbDEMC 20 hsa-mir-205 dbDEMC

TABLE 7 Top 20 miRNA candidates related to breast neoplasms. The
miRNAs associated with breast neoplasms are deleted before
training the MVIFMDA model.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-21 HMDD 11 hsa-mir-210 HMDD

2 hsa-mir-155 HMDD 12 hsa-mir-221 HMDD

3 hsa-mir-146a HMDD 13 hsa-mir-20a HMDD

4 hsa-mir-126 HMDD 14 hsa-mir-19a HMDD

5 hsa-mir-150 HMDD 15 hsa-mir-146b HMDD

6 hsa-mir-223 HMDD 16 hsa-mir-142 HMDD

7 hsa-mir-34a HMDD 17 hsa-mir-143 HMDD

8 hsa-mir-17 HMDD 18 hsa-mir-122 HMDD

9 hsa-mir-145 HMDD 19 hsa-mir-222 HMDD

10 hsa-mir-29a HMDD 20 hsa-mir-22 HMDD
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Breast cancer is the most common cancer worldwide, and

miRNAs are considered as new diagnostic and prognostic

markers for it. Therefore, here we predict miRNAs associated

with breast neoplasms by employing the MVIFMDA model,

and as shown in Table 7, 20 of the top 20 miRNAs are

validated by the HMDD dataset, which show that our

model is good in identifying miRNAs associated with novel

diseases.

4 Conclusion

In this study, we propose a new end-to-end model called

MVIFMDA to predict potential MDAs. This model captures

topological features in multiple heterogeneous network views

by GCN encoder, then adaptively fuses different topological

features using an attention mechanism, furthermore employs

CNN encoder to extract attribute features from different

similarity views of miRNAs and diseases, respectively,

finally its prediction performance is improved by

combining topological and attribute features. The

comparison with six advanced methods for identifying new

MDAs and the case studies indicate that MVIFMDA has

excellent predictive performance and can perform well in

practical applications.

Although MVIFMDA has shown good predictive

performance, it still has some issues that need further

investigation. First, we use CNN to learn the attribute

representations of miRNA and disease node levels, whether

the attribute embeddings of miRNA and disease node pairs

levels can improve the prediction performance of MDAs needs

to be further studied. Second, we use only two similarities of

both miRNAs and diseases, and more relevant evidence of

miRNA and disease should be used to construct the

similarity networks, such as the interaction relationships

between miRNAs and lncRNAs and the association

relationships between lncRNAs and diseases. In addition,

though we consider using gene-related information to

calculate the similarity of diseases and miRNAs, a multi-

layer network among genes, miRNAs and diseases is not

directly constructed to explore the miRNAs correlated with

diseases. Therefore, it is still worthwhile to continue

investigating how to effectively utilize the information from

multiple data sources.
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