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Abstract

Jasmonic acid (JA) is a crucial hormone in plant antiviral immunity. Increasing evidence

shows that viruses counter this host immune response by interfering with JA biosynthesis

and signaling. However, the mechanism by which viruses affect JA biosynthesis is still

largely unexplored. Here, we show that a highly conserved chloroplast protein cpSRP54

was downregulated in Nicotiana benthamiana infected by turnip mosaic virus (TuMV). Its

silencing facilitated TuMV infection. Furthermore, cpSRP54 interacted with allene oxide

cyclases (AOCs), key JA biosynthesis enzymes, and was responsible for delivering AOCs

onto the thylakoid membrane (TM). Interestingly, TuMV P1 protein interacted with cpSRP54

and mediated its degradation via the 26S proteosome and autophagy pathways. The results

suggest that TuMV has evolved a strategy, through the inhibition of cpSRP54 and its deliv-

ery of AOCs to the TM, to suppress JA biosynthesis and enhance viral infection. Interaction

between cpSRP54 and AOCs was shown to be conserved in Arabidopsis and rice, while

cpSRP54 also interacted with, and was degraded by, pepper mild mottle virus (PMMoV)

126 kDa protein and potato virus X (PVX) p25 protein, indicating that suppression of

cpSRP54 may be a common mechanism used by viruses to counter the antiviral JA

pathway.

Author summary

Jasmonic acid pathway has emerged as one of the predominant battlefields between plants

and viruses. Several studies have indicated that, in addition to interfering with JA signal-

ing, plant viruses can also affect JA biosynthesis, but the direct molecular links between

them remain elusive. Here, we identify a highly conserved chloroplast protein cpSRP54 as
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a key positive regulator in JA biosynthesis and a common target for viruses belong to dif-

ferent genera. Through associating with cpSRP54 and inducing its degradation using the

protein they encoded, the viruses can inhibit the cpSRP54-facilitated delivery of AOCs to

the thylakoid membrane and manipulation of JA-mediated defense. This capability of

viruses might define a novel and effective strategy against the antiviral JA pathway.

Introduction

The lipid-based hormone jasmonic acid (JA) is an essential signaling molecule during plant

development and in plant stress responses [1]. JA biosynthesis is initiated from α-linolenic

acid (α-LeA, 18:3) by sequential catalyzation of 13-lipoxygenase (13LOX), allene oxide

synthase (AOS) and allene oxide cyclase (AOC), leading to the formation of the JA precursor

OPDA within chloroplasts. OPDA is then transported into peroxisomes where it undergoes

reduction by OPDA reductase 3 (OPR3) and three subsequent steps of β–oxidization to gener-

ate JA [2]. The JA receptor CORONATINE INSENSITIVE 1 (COI1), which forms the SCFCOI1

complex, degrades JA ZIM (JAZ) proteins through the 26S proteosome, thus releasing the

repression of downstream transcription factors such as MYC2, MYB21 and ORA59, and

inducing the expression of defense-related genes like PDF1.2, PR3 and PR4 [1,3].

JA plays a vital role in plant antiviral defense [4,5]. Exogenous application of methyl jasmo-

nate (MeJA), a volatile methyl ester of JA, efficiently induces resistance in Arabidopsis thaliana
to beet curly top virus (BCTV, genus Begomovirus), in Nicotiana benthamiana to tobacco

mosaic virus (TMV, genus Tobamovirus) and tomato spotted wilt virus (TSWV, genus Tospo-
virus) and in rice to rice ragged stunt virus (RRSV, genus Oryzavirus), rice stripe virus (RSV,

genus Tenuivirus) and rice black streaked dwarf virus (RBSDV, genus Fijivirus) [6–12]. Con-

versely, inhibition of JA signaling is beneficial for viral infection: the JA-insensitive mutant

coi1 andmyc3 of rice are more susceptible to rice-infecting viruses including RBSDV and RSV

than the wild type [11,13,14].

Increasing evidence shows that viruses counter the plant JA-mediated defense by interfer-

ing with the JA pathway, especially JA signaling, to enhance viral infection [5]. For example,

cucumber mosaic virus (CMV; genus Cucumovirus) 2b protein competitively binds to JAZ

proteins with COI1, the receptor of JA, preventing JA-induced degradation of JAZ repressors,

thereby inhibiting JA signaling [15]. βC1 of tomato yellow leaf curl China virus (TYLCCNV;

genus Begomovirus) interacts with MYC2 and interferes with its dimerization, thus inhibiting

the JA-mediate response [16]. Several rice-infecting viruses encode transcription repressors to

disassociate the MED25-MYC complex and cooperate with JAZ to improve their transcrip-

tional repression activity, thus inhibit JA signaling [14]. Hijacking the ubiquitin proteasome

system has also been shown to be a common strategy adopted by viruses to repress JA signal-

ing. Both the C2 protein of tomato yellow leaf curl virus (TYLCV; genus Begomovirus) and the

RBSDV P5-1 protein inhibit the ubiquitination activity of SCF E3 ligases, thus affecting the

transcription of response genes in the JA signaling pathway [10,17].

Several reports have shown that the expression of genes involved in JA biosynthesis is sup-

pressed in plants infected by RRSV, RBSDV and tomato yellow leaf curl Sardinia virus

(TYLCSV, genus Begomovirus), which suggests that JA biosynthesis can also be targeted by

viruses to enhance viral infection [7,12]. However, it is not yet clear how this regulation oper-

ates. We now show that the P1 protein of turnip mosaic virus (TuMV, genus Potyvirus) medi-

ates the degradation of cpSRP54 through the 26S proteosome and autophagy pathways.

cpSRP54 is described as an essential component of a chloroplast translocation system cpSRP,
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which is required for efficient targeting of many thylakoid membrane proteins [18]. Here, we

found that cpSRP54 is responsible for localizing AOCs, key enzymes for JA biosynthesis, onto

the thylakoid membrane (TM), suggesting a mechanism by which TuMV suppresses JA bio-

synthesis to enhance its infection. We also demonstrate that cpSRP54 interacts with AOC in

Arabidopsis and rice, and that cpSRP54 can also be repressed by pepper mild mottle virus

(PMMoV; genus Tobamovirus) and potato virus X (PVX; genus Potexvirus) in N. benthami-
ana, indicating that cpSRP54 may be a common target that viruses manipulate to inhibit JA-

mediated defense.

Results

cpSRP54 is downregulated in TuMV-infected Nicotiana benthamiana and

its silencing facilitates viral infection

cpSRP54 is a highly conserved 54-kDa chloroplast signal recognition particle subunit which is

required for many key photosynthetic proteins to target thylakoid membranes (TM) [18]. The

cpSRP54 of N. benthamiana has respectively 71.7%, 67.7% and 80.4% amino acid identity with

two rice cpSRP54 homologues, cpSRP54a (OscpSRP54a, accession no. BAT12736.1),

cpSRP54b (OscpSRP54b, accession no. ABG22369), and Arabidopsis cpSRP54 (AtcpSRP54,

accession no. AAC64139.1) (S1A and S1B Fig). Our previous label-free quantitative proteo-

mics analysis had shown that the accumulation of cpSRP54 was significantly reduced by RSV

infection in N. benthamiana [19] and in this study cpSRP54 protein accumulated at a lower

level in N. benthamiana leaves infected by TuMV than in the mock-inoculated controls, sug-

gesting the downregulation of cpSRP54 in TuMV-infected N. benthamiana (Fig 1A). Consis-

tently, cpSRP54 transcripts were also down-regulated in TuMV-infected plants (S1C Fig).

To determine the potential biological function of cpSRP54 during TuMV infection, we

silenced cpSRP54 in N. benthamiana plants using the tobacco rattle virus (TRV)-induced gene

silencing system (VIGS) and then inoculated plants with a modified clone of TuMV expressing

the green fluorescent protein (TuMV-GFP) to monitor infection. To silence cpSRP54, a partial

sequence of cpSRP54 was inserted into TRV RNA2, producing TRV:cpSRP54, according to the

method reported previously [20]. The empty TRV vector (TRV:00) was used as a control. At

12 dpi, TRV:cpSRP54 treatment caused chlorosis in leaves (Fig 1B) and the levels of cpSRP54
transcripts in them were only 5% of those in the TRV:00-treated controls (Fig 1C). Corre-

spondingly, the protein levels of cpSRP54 were significantly less in the TRV:cpSRP54-treated

plants than in the non-silenced control plants (Fig 1D). These results confirm the effective

silencing of cpSRP54. TuMV-GFP was then inoculated onto the plants. At 6 dpi of

TuMV-GFP, green fluorescence appeared under UV light in the top leaves of both cpSRP54-

silenced and non-silenced plants, indicating systemic infection by TuMV-GFP, but the fluores-

cence was more intensive and extensive on the silenced plants (Fig 1E). Consistently, TuMV

CP accumulated at a higher level in cpSRP54-silenced leaves (Fig 1F and 1G).

To minimize any effect of the chlorosis caused by TRV:cpSRP54-inoculation on TuMV

infection, we silenced cpSRP54 by transiently expressing the cpSRP54 hairpin RNAi construct.

Leaves agroinfiltrated with cpSRP54 hairpin RNAi construct alone had reduced mRNA levels

of cpSRP54 (94%) and did not show obvious chlorosis at 3 dpi (S2A and S2B Fig). Silenced

leaves were then mechanically inoculated with TuMV-GFP. At 7 dpi of TuMV-GFP, TuMV

CP accumulated to a higher level in the top leaves of plants treated with cpSRP54 hairpin RNAi

construct compared with those treated with the control hairpin construct targeting the unre-

lated β-glucuronidase (GUS) gene, which indicates that the effect of cpSRP54 silencing on

TuMV infection was not due to chlorosis (S2C and S2D Fig).
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Taken together, the results demonstrate that TuMV infection downregulates cpSRP54

expression and that silencing of cpSRP54 facilitates viral infection.

JA is reduced in cpSRP54-silenced plants and MeJA treatment alleviates the

susceptibility of cpSRP54-silenced N. benthamiana to TuMV

Chloroplast-derived hormones, including JA, salicylic acid (SA) and abscisic acid (ABA), play

a vital role in virus-plant interactions [4,21–23]. We therefore investigated whether these hor-

mones were affected in cpSRP54-silenced plants. The JA content in cpSRP54-silenced plants

was significantly lower than that in non-silenced plants (Fig 2A) whereas SA and ABA were

not greatly affected by the reduced expression of cpSRP54 (S3A and S3B Fig). Consistently,

transcription levels of the JA-responsive genes, PDF1.2, PR3 and PR4 [24,25], were downregu-

lated in cpSRP54-silenced plants (Fig 2B). These results demonstrate the suppression of the JA

pathway in cpSRP54-silenced plants.

We next examined whether JA plays a role during TuMV infection. First, we treated plants

with 50 μM MeJA for 24 hours and then inoculated them with TuMV-GFP. At 7 dpi, MeJA-

treated plants had less TuMV CP than the control plants pretreated with 0.1% ethanol, indicat-

ing that JA plays a defensive role against TuMV in N. benthamiana (Fig 2C and 2D). To fur-

ther confirm this, we silenced the AOCs which encode allene oxide cyclases that catalyze the

cyclization of highly unstable 12, 13-epoxy-octadecatrienoic acid to the JA precursor OPDA

during JA biosynthesis [26,27], and monitored TuMV-GFP infection on the silenced plants. In

the N. benthamiana genome, there are two homologs of AOC with 91.5% amino acid identity,

named AOC.1 (Sequence ID in Sol Genomics Network: Niben101Scf02772g02001.1) and

Fig 1. Silencing of cpSRP54 facilitates TuMV infection. A. TuMV coat protein (CP) gene was detected by RT-PCR to confirm the infection of TuMV in plants at 6

dpi. The accumulation of cpSRP54 proteins in TuMV-infected plants was detected by its antibody through western blot (WB) analysis. Ponceau S-stained RBCL was

used as a loading control. B. Phenotype of TRV:00 or TRV:cpSRP54 treated plants at 12 dpi. TRV:cpSRP54 treated plants showed chlorosis on the top leaves but no

other developmental defects. Scale bar, 2 cm. C. Quantification of cpSRP54mRNA levels in TRV: cpSRP54 treated plants at 12 dpi by qRT-PCR analysis.

Means ± SD values are from three independent plants per treatment and were normalized against Actin. ��, P<0.01 according to Student’s t-test. D. cpSRP54

protein level in TRV:cpSRP54 treated plants was detected by WB analysis using its antibody at 12 dpi. Actin served as a loading control. Tests were independently

performed three times with similar results. E. GFP fluorescence on the newly-emerged leaves of plants pretreated with TRV:00 or TRV:cpSRP54 then infected by

TuMV-GFP. Plants were photographed under UV light at 6 dpi. Scale bar, 2 cm. F. Viral RNA was assessed by qRT-PCR, using Actin as an internal control.

Means ± SD values are from three independent plants per treatment. ��, P<0.01 according to Student’s t-test. G. Viral CP accumulation was detected by WB assay

using CP antibodies.

https://doi.org/10.1371/journal.ppat.1010108.g001
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AOC.2 (Niben101Scf13816g00005.1). The sequences were both silenced simultaneously by

VIGS as a result of their high sequence identity (Fig 2E). Plants in which AOCs were silenced,

had less JA accumulation (~50%) and decreased expression of the JA-responsive genes without

Fig 2. cpSRP54 is associated with jasmonic acid (JA) that regulates TuMV infection negatively. A. JA content quantified in TRV:00 or TRV:cpSRP54 treated plants

at 12 dpi. ��, P<0.01 according to Student’s t-test. B. Relative expression level of PDF1.2, PR3, and PR4 by qRT-PCR. Data are the means ± SD of three biological

replicates from each treatment. Actin was used as the normalizer. ��, P<0.01 according to Student’s t-test. C. TuMV-GFP infection of plants treated with MeJA or CK

(0.1% ethanol) at 6 dpi. Plants were photographed under UV light. Viral CP accumulation was detected by WB. Ponceau S-stained RBCL was used as a loading

control. Tests were performed independently three times with similar results. D. Quantification of viral RNA levels by qRT-PCR. Values are shown as means ± SD

relative to CK treated plants. Actin was used as the normalizer. ��, P<0.01 according to Student’s t-test. E. qRT-PCR analysis confirming the silencing of AOCs at 12

dpi. F and G. Relative levels of JA content (F) and JA-responsive genes (G) in plants inoculated with TRV:00 or TRV:AOCs at 12 dpi. ��, P<0.01, �, P<0.05, according

to Student’s t-test. H. GFP fluorescence and viral accumulation in plants inoculated with TRV:00 or TRV:AOCs at 6 dpi of TuMV-GFP. Viral CP accumulation was

detected by WB. Ponceau S-stained RBCL was used as a loading control. Tests were performed independently three times with similar results. I. Quantification of viral

RNA levels by qRT-PCR. Values are shown as means ± SD relative to TRV:00 treated plants. J. Effect of MeJA treatment on TuMV-infection in plants inoculated with

TRV:00 or TRV:cpSRP54 at 7 dpi. Viral CP accumulation was determined by WB. Actin served as a loading control. Tests were performed independently three times

with similar results. K. Relative level of viral RNA by qRT-PCR analysis. Different letter on histograms indicated significant differences (P<0.05). The protein levels

were quantified by ImageJ. Bars, 2 cm.

https://doi.org/10.1371/journal.ppat.1010108.g002
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inducing obvious phenotypes (Figs 2F, 2G and S4A) and supported higher accumulation of

TuMV (Fig 2H and 2I). Exogenous application of MeJA alleviated the susceptibility of AOCs-
silenced plants to TuMV (S4B–S4D Fig), further indicating the essential role of the JA pathway

in defense against TuMV infection.

As expected, MeJA treatment also alleviated the susceptibility of cpSRP54-silenced plants to

TuMV (Fig 2J and 2K). Thus silencing of cpSRP54 facilitates TuMV infection by suppressing

the defense role of the JA pathway, indicating that cpSRP54 positively regulates the JA pathway.

AOCs are substrates of cpSRP54 for localization to the thylakoid membrane

Next, we wanted to know how cpSRP54 regulates the JA pathway. cpSRP54 is known to form a

high affinity complex with cpSRP43 to transport the nuclear-encoded light-harvesting chloro-

phyll a/b binding proteins (LHCPs) to the thylakoid membrane (TM) where they normally

function [28–30]. JA biosynthesis enzymes such as 13-LOX, AOS, and AOC are largely found

associated with the TM [31,32] and we wondered whether these proteins are substrates of

cpSRP54. In a yeast two hybrid (Y2H) assay, the AOC.1 and AOC.2 proteins of N. benthami-
ana both interacted with cpSRP54 (Fig 3A) and this interaction was further confirmed by co-

immunoprecipitation (Co-IP) and bimolecular-fluorescence complementation (BiFC) assays

(Figs 3B, 3C and S5A and S5B). In addition, the co-localization pattern of cpSRP54-mCherry

and AOC.1-GFP was similar to the bright spot-like interaction complex seen within chloro-

plasts in the BiFC assay (Fig 3D).

We next examined the effect of cpSRP54 on localization of AOCs. As expected, AOC.1-GFP

co-localized with mCherry-fused ArabidopsisOE23 protein (AtOE23-mCherry), a thylakoid

marker which is transported by chloroplast twin-arginine translocation (cpTat) pathway [30],

and formed fluorescent spots in the chloroplast, indicating the thylakoid localization of AOC.1

(Fig 4A). However, in cpSRP54-silenced cells, fewer green punctate structures of AOC.1-GFP

were detected (Fig 4A). Immunolocalization under electron microscopy was then used to con-

firm the results. AOC.1-GFP was expressed transiently in leaves of TRV:00 or TRV:cpSRP54

inoculated plants by agroinfiltration. At 2 dpi of AOC.1-GFP, ultrathin sections of N.

benthamiana leaves were incubated with anti-GFP antibody and visualized with a gold-conju-

gated antibody against mouse IgG. The results showed that AOC.1-GFP was abundant in the

TM of TRV:00-inoculated plants, but much less so in TRV:cpSRP54-inoculated plants (Fig 4B,

4C and S2 Table). As further confirmation, we isolated thylakoids to detect the accumulation

of AOC.1-GFP in cells. The total AOC.1-GFP in protoplasts isolated from cpSRP54-silenced

cells and non-silenced cells was similar but there was much less AOC.1-GFP in the thylakoid

fraction of cpSRP54-silenced cells than in non-silenced cells (Fig 4D).

To determine whether the interaction between cpSRP54 and AOCs influences the stability

of AOCs, we expressed AOC.1-GFP with cpSRP54-Myc or the control GUS-Myc. Accumula-

tion of AOC.1-GFP was not affected by expression of cpSRP54, which indicates that the inter-

action between cpSRP54 and AOCs did not influence the stability of AOCs (S6 Fig).

Using a BiFC assay, we also detected an interaction between cpSRP54 and AOC in rice and

Arabidopsis, suggesting that cpSRP54-dependent delivery of AOCs is conserved in plants (S7

and S8 Figs). The results thus demonstrate that cpSRP54 is responsible for transporting

AOC.1 to TM and indicate that AOC.1 is a newly-identified substrate protein of cpSRP54 for

localization at the TM.

AOCs delivery to the TM is impaired in TuMV-infected cells

Since TuMV infection leads to the downregulation of cpSRP54, we next examined the effect of

the virus on cpSRP54-dependant AOCs delivery by confocal microscopy. In a BiFC assay, the
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interaction between cpSRP54 and AOCs was not disrupted by viral infection (S9 Fig). When

AOC.1-GFP was transiently expressed in TuMV-inoculated N. benthamiana there were fewer

green punctate structures of AOC.1-GFP, similar to the effect observed in TRV:cpSRP54-inocu-

lated plants. Consistent with this, the accumulation of AOC.1-GFP in TM was reduced (Fig 5A

Fig 3. cpSRP54 interacts with AOC.1. A. Yeast two hybrid (Y2H) assay showing the interaction between cpSRP54 and AOCs. pDHB1-cpSRP54 and

pPR3-AOC.1, pPR3-AOC.2 were co-transformed into NMY51, subjected to 10-fold serial dilutions and plated on synthetic defined (SD) medium (-Ade/-His/-

Leu/-Trp). Yeast co-transformed with pDHB1-LargeT and pDSL-p53 served as a positive control and the combinations pDHB1 with pPR3, and pDHB1-cpSRP54

with pPR3 are negative controls. B. Co-immunoprecipitation (Co-IP) assay confirming the interaction between cpSRP54 and AOC.1 in vivo. N.benthamiana
leaves were co-infiltrated with Agrobacterium cultures harbouring expression vectors to express AOC.1-FLAG and GFP (Lane 1), and AOC.1-FLAG and

cpSRP54-GFP (Lane 2). Total protein extracts were incubated with GFP beads. Samples before (Input) and after (IP) immunopurification were verified using

FLAG and GFP antibody. C. Bimolecular fluorescence complementation (BiFC) confirming the interaction between cpSRP54 and AOC.1. cpSRP54 and AOC.1

were respectively fused to the C-terminal (cYFP) and N-terminal (nYFP) half of YFP. Confocal imaging was performed at 2 dpi. Scale bar, 10 μm. D. Co-

localization of cpSRP54-mCherry and AOC.1-GFP in protoplast cells by confocal microscopy at 2 dpi. cpSRP54-mCherry and AOC.1-GFP co-localized with

purple chloroplast autofluorescence. Scale bar, 10 μm.

https://doi.org/10.1371/journal.ppat.1010108.g003
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and 5B). GFP alone was not affected by TuMV infection (Fig 5A). When AOC.1-GFP was co-

expressed with cpSRP54-Myc in TuMV-infected plants, the normal distribution of AOC.1 was

partially restored (Figs 5B, 5C and S10). There was also up-regulated expression of transcripts

of AOCs in TuMV-infected plants (S11 Fig). Taken together, these results indicate that TuMV

infection impairs the delivery of AOCs to the TM, possibly by suppressing cpSRP54.

In the period from 3.5 to 14 dpi of TuMV-GFP, the production of JA first increased during

the early stages of viral infection, but as viral infection progressed, the relative JA levels in

these infected plants declined continuously to reach their lowest level at 9.5 dpi, indicating the

ability of TuMV to suppress JA biosynthesis (Fig 5D). Levels increased again at the later stages

of TuMV infection presumably because the plants responded to maintain a JA balance (Fig

5D). Therefore, it seems likely from these results that TuMV infection downregulates JA bio-

synthesis because it suppresses cpSRP54.

TuMV P1 interacts with cpSRP54 and degrades it through 26S proteosome

and autophagy pathways

Protein-protein interactions between viral proteins and host proteins are one of the main

mechanisms used by viruses to establish efficient infection. Although cpSRP54 expression was

Fig 4. Silencing of cpSRP54 changes the localization pattern of AOC.1 within chloroplasts. A. Co-expression of AOC.1-GFP or free GFP together with

mCherry-fused AtOE23 (a thylakoid marker) in cpSRP54-silenced or non-silencedN. benthamiana protoplasts at 48 hpi. Scale bar, 10 μm. B. Subcellular

localization of AOC.1-GFP using immunocytochemistry and electron microscopy. Ultrathin sections were incubated with an anti-GFP antibody and visualized

with gold particle anti-mouse antibodies. Arrowheads show some of the gold particles associated with the thylakoid membrane (TM), arrows indicate labelling in

the stroma (S). Starch (ST) areas are also shown. Bars, 0.2 μm. C. Percentage of TM-associated AOC.1-GFP labelling in chloroplasts. Gold particles were counted

from 4 random chloroplast profiles of the above two treatments. Values represent the average percentage of 4 replicates from each treatment. Error bars represent

SD. ��, P<0.01 according to Student’s t-test. D. AOC.1-GFP in protoplasts and thylakoid fractions isolated from cpSRP54-silenced or non-silencedN. benthamiana
plants were detected with GFP antibody by WB analysis. UGPase, UDP-glucose pyrophosphorylase (cytoplasm marker); RBCL (chloroplast stroma marker). The

protein levels were quantified by ImageJ and normalized against AtOE23-mCherry protein levels.

https://doi.org/10.1371/journal.ppat.1010108.g004
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downregulated by TuMV, we wondered whether TuMV could also directly manipulate

cpSRP54. In a BiFC assay, TuMV P1 protein interacted with cpSRP54, and this was confirmed

by Y2H and Co-IP assay (Fig 6A–6C). Interestingly, in the Co-IP assay, we noticed that the

Fig 5. TuMV infection interferes with the localization of AOC.1. A. Subcellular localization of AOC.1-GFP and free GFP in protoplasts of mock (inoculated with

buffer) and TuMV-infectedN. benthamiana plants by confocal microscopy at 2 dpi. Scale bar, 10 μm. B. WB of protoplast- and thylakoid-localized AOC.1-GFP

transiently expressed in mock and TuMV-infected plants, and in TuMV-infected plants when co-expressed with GUS-Myc or cpSRP54-Myc. Tests were

performed twice. C. Localization of AOC.1-GFP in protoplasts of TuMV-infectedN. benthamiana plants when co-expressed with GUS-Myc or cpSRP54-Myc by

confocal microscopy at 2 dpi. Scale bar, 10 μm. D. Relative JA levels in TuMV-infectedN. benthamiana plants within 14 dpi measured by LC-MS compared to

mock plants (agroinfiltrated with empty plasmid). Data are the means ± SD of three biological replicates from each treatment. PC, plastocyanin (thylakoid marker);

UGPase, UDP-glucose pyrophosphorylase (cytoplasm marker); RBCL (chloroplast stroma marker). The protein levels were quantified by ImageJ and normalized

against PC protein levels.

https://doi.org/10.1371/journal.ppat.1010108.g005
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accumulation of cpSRP54-Myc was obviously reduced when co-expressed with P1-GFP pro-

tein (Fig 6C), which suggested that P1 might interfere with cpSRP54 accumulation. To confirm

this, cpSRP54-Myc (or GUS-Myc for the controls) was co-expressed with GFP or P1-GFP in

leaves of N. benthamiana. The protein level of cpSRP54 was obviously decreased when co-

expressed with P1-GFP, whereas there were no significant changes in its mRNA level (Figs 6D

and S12). In the control experiments, accumulation of GUS-Myc was not affected by P1-GFP,

Fig 6. TuMV P1 protein interacts with cpSRP54 and mediates its degradation through both the 26S proteosome and autophagy pathways. A. BiFC assay

showing the interaction between TuMV P1 protein and cpSRP54 in N. benthamiana. Confocal imaging was performed at 2 dpi. Scale bar, 25 μm. B. Y2H assay

showing the interaction between P1 and cpSRP54. pDHB1-cpSRP54 and pPR3-P1 were co-transformed into NMY51. pDHB1-LargeT co-transformed with

pDSL-p53 was used as a positive control. pDHB1 or pDHB1-cpSRP54 co-transformed with pPR3 into yeast was used as the negative control. A 10-fold series

dilutions (1, 10−1 and 10−2) are shown from left to right. C. The interaction between cpSRP54-Myc and P1-GFP was confirmed by Co-IP assay. Co-expression

of cpSRP54-Myc and GFP serves as a negative control. D. Accumulation of cpSRP54-Myc was reduced by co-expressing P1-GFP. GUS-Myc and empty GFP

were used as controls. E. WB of protoplast- and thylakoid-localized AOC.1-GFP transiently expressed in plants when co-expressed with GUS-Myc or P1-Myc

at 3 dpi. PC, plastocyanin (thylakoid marker); UGPase, UDP-glucose pyrophosphorylase (cytoplasm marker); RBCL (chloroplast stroma marker). The protein

levels were quantified by ImageJ and normalized against PC protein levels. Tests were performed twice. F. Relative JA level in leaves expressing P1-Myc or

GUS-Myc at 60 hpi. The endogenous JA in leaves expressing GUS-Myc was set as the baseline. Data are the means ± SD of three biological replicates from each

treatment. �, P<0.05. G. Reduction of cpSRP54-Myc caused by expression of P1-GFP was rescued by 26S proteosome inhibitor MG132 and autophagy

inhibitor 3-MA. H. Reduction of cpSRP54-Myc caused by expression of P1-GFP was rescued by silencing RPN10 or RPN13 (two genes encoding key

components of the 26S proteosome), or by silencing ATG5 or ATG7 (two genes encoding key components in autophagy). The protein levels were quantified by

ImageJ and normalized against RBCL protein levels. Tests were independently repeated three times and representative results are shown.

https://doi.org/10.1371/journal.ppat.1010108.g006

PLOS PATHOGENS Viruses suppress cpSRP54 to deliver AOCs to the thylakoid membrane

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010108 December 1, 2021 10 / 24

https://doi.org/10.1371/journal.ppat.1010108.g006
https://doi.org/10.1371/journal.ppat.1010108


suggesting that P1 specifically reduced cpSRP54 accumulation (Fig 6D). Potential P1-mediated

inhibition of cpSRP54 is also illustrated by the fact that the presence of P1-Myc impaired the

cpSRP54-depedant delivery of AOC.1 as well as JA biosynthesis (Figs 6E, 6F and S13). AOC.2

delivery was also blocked in the context of P1 expression as well as TuMV infection (S14 Fig).

There are two major pathways in cells by which proteins are degraded, the 26S proteosome

system and autophagy pathway [33–35]. To investigate which pathway was responsible for the

reduction of cpSRP54 mediated by P1, further infiltrations were conducted in the presence of

either MG132 (an inhibitor of the 26S proteosome system) or 3-methyladenine (3-MA) (an

inhibitor of autophagy). The accumulation of cpSRP54-Myc was increased by the co-expres-

sion of either MG132 or 3-MA with P1-GFP, while there were no effects of these inhibitors

when co-expressing cpSRP54-Myc and GFP, cpSRP54-Myc and CP-GFP, or GUS-Myc and

P1-GFP (Figs 6G and S15). The biological relevance of the potential involvement of the two

pathways in P1-mediated cpSRP54 degradation was further illustrated by the fact that silencing

of genes related to either the 26S proteosome pathway (RPN10, RPN13) or autophagy (ATG5,

ATG7) increased the accumulation of cpSRP54 when co-expressed with P1-GFP (Figs 6H and

S16). Moreover, the thylakoid distribution of AOC.1 and JA level were restored when P1 was

expressed in RPN10-silenced plants (S17A and S17B Fig). The results suggest that TuMV P1

interacts with cpSRP54 and mediates its degradation through both the 26S proteosome and

autophagy pathways, which leads to impaired AOCs delivery and hence, the reduced JA level.

cpSRP54 is a common target of viruses to inhibit JA-mediated defense

Because the viral RNA silencing suppressors (VSRs) p25 of PVX and 126 kDa protein (p126)

of the tobamovirus TMV have previously been shown to inhibit JA-induced gene expression

in N. benthamiana [36], we investigated whether VSRs like these might act like TuMV P1 and

repress cpSRP54 accumulation. To test this possibility, we selected p25 from PVX and p126

from another tobamovirus, PMMoV (two viruses available in our lab), and transiently

expressed their RFP fusion proteins, p25-RFP or p126-RFP, to test their effect on the expres-

sion of cpSRP54 and JA response genes. According to the qRT-PCR analysis, both VSRs

caused a decrease in the mRNA levels of JA response genes PR3 and PR4 at 2 dpi, but had no

noticeable effect on the mRNA level of cpSRP54 (S18A and S18B Fig). Interestingly, the west-

ern blot assay showed that the protein level of cpSRP54 was markedly decreased with increas-

ing amounts of p25 or p126, indicating that these two unrelated VSRs are capable of triggering

cpSRP54 degradation (Fig 7A). A further BiFC assay indicated a potential interaction between

cpSRP54 and the two VSRs (Fig 7B).

Consistently, the cpSRP54 protein level was reduced by both PMMoV and PVX as shown

by the western blot assay (S19A Fig). The biological relevance of the virus-mediated inhibition

of cpSRP54 was also illustrated by the fact that N. benthamiana plants in which cpSRP54 has

been knocked down by VIGS were more susceptible to both PMMoV and PVX (S19B and

S19C Fig). The defense role of JA during viral infection was also demonstrated by an assay

showing that MeJA treatment conferred plant resistance to viruses (S19B and S19C Fig).

Discussion

JA plays an important role in plant immunity against various pathogens including plant

viruses [6,37,38]. JA signaling can induce pathogenesis-related (PR) defense genes such as

PR3, PR4 and PDF1.2. Upon viral infection, JA has been shown to network with other antiviral

defense pathways such as the RNA silencing machinery [13], and plant hormones including

brassinosteroid (BR) [11] and SA [8], to mediate defense responses, making plants respond

more efficiently to viruses. Viruses in turn have evolved strategies for survival that include
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suppression of JA levels or signaling. Many viral factors have been found to interfere with JA

signaling, especially the key JAZ-MYC hub, through virus-plant interactions [4]. Meanwhile,

several lines of evidence indicates that the biosynthesis of JA could also be modulated by

viruses: (1) RBSDV infection leads to decreased JA levels in wheat plants [12]; (2) At the late

stage of RBSDV infection in rice plants, JA concentration is significantly lower than that of the

uninfected control plants [10]; (3) TYLCSV C2 protein can suppress the expression of several

JA biosynthesis genes [7]; (4) RRSV suppresses the expression of JA biosynthesis genes

through viral-induced miRNA319 and its target gene TCP21 [12]. However, direct evidence of

how viruses regulate JA biosynthesis is still lacking. Our study here first shows that viruses trig-

ger degradation of cpSRP54, a chloroplast protein that is responsible for delivering the JA bio-

synthesis enzymes AOCs to the TM where it normally functions. This directly inhibits JA

biosynthesis.

For more than a decade, there has been conflicting evidence regarding the precise localiza-

tion of JA biosynthesis enzymes (13LOX, AOS and AOC) in chloroplasts. In contrast to studies

showing that LOX and AOS are bound to chloroplast envelopes [39–41], 13LOX and AOS

from tomato, tea, and Arabidopsis were shown to be targeted to the TM [32,42]. Consistently,

compelling evidence obtained from potato showed that 13LOX, AOS and AOC were all bound

to the TM to varying degrees, indicating that the TM a crucial site for JA biosynthesis [31].

The results did not exclude the association of LOX and AOC to stroma, which suggested that

partition of LOX and AOC between stroma and TM may be subjected to a dynamic process in

Fig 7. PVX p25 protein and PMMoV p126 induce cpSRP54 degradation. A. Accumulation of cpSRP54-Myc decreased with increasing amounts of p25-RFP or

p126-RFP. In the presence of p25-RFP or p126-RFP, the protein levels of GUS-Myc showed no obvious change. B. BiFC assays showing the interaction of cpSRP54

with p126 and p25. Scale bar, 50 μm.

https://doi.org/10.1371/journal.ppat.1010108.g007
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response to hitherto unknown factors. The results reported here indicate that AOC.1 in N.

benthamiana could co-localize with a thylakoid marker and be detected in the thylakoid frac-

tion (Fig 4A and 4D). Additionally, most AOC.1 was found localized to the TM with a smaller

amount in the stroma (Fig 4B and 4C), supporting the idea that the TM is a key site for this

branch of oxylipin synthesis, and that AOCs may be dynamically transported between the

stroma and the TM.

In higher plants, cpSRP54 forms a signal peptide-based sorting system with cpSRP43, tar-

geting a subset of proteins (mainly LHCPs) to the TM. After import into the chloroplast and

removal of its transit peptide, LHCP binds cpSRP to form a cpSRP/LHCP transit complex.

This transit complex traverses the chloroplast stroma and docks to the TM by interactions

with the TM-bound cpSRP receptor cpFtsY and the integrase Alb3 [29,30,43]. In this system,

cpSRP54 directly binds to cpSRP43 and its receptor cpFtsY, and LHCP is able to interact with

cpSRP43 and Alb3 [29]. It is debated whether LHCP binds to cpSRP54, since their binding

was observed in some studies, but not in others [44–47]. Here we demonstrate that cpSRP54

interacts with AOC.1 within chloroplasts, and is responsible for delivering AOC.1 to the TM

(Figs 3 and 4). Like LHCPs, AOCs are nuclear-encoded proteins with a predicted N-terminal

cleavable chloroplast transit peptide [48], but whether AOCs uses the same cpSRP54/

cpSRP43/cpFtsY/Alb3 mechanism or not is not yet clear. Understanding the connection

between AOCs and other elements in this process is necessary to address this issue.

cpSRP54 functions to deliver the TM-related proteins onto the membrane of TM. Suppres-

sion of cpSRP54 expression may have other effects that could possibly crosstalk with

cpSRP54-mediated immunity. We therefore tried to detect other ways in which cpSRP54

might function in defense against viruses, especially through the SA or ABA pathways. Our

results showed that the content of SA or ABA did not change significantly in cpSRP54-silenced

plants, which indicates that the SA and ABA pathways are very unlikely to be cross talking

with cpSRP54-mediated immunity (S3A and S3B Fig). Additionally, the expression of 13LOX
and AOS transcripts was clearly repressed when cpSRP54 was silenced (S20 Fig). This suggests

that cpSRP54 may also affect JA biosynthesis at the transcriptional level by regulating gene

expression. Further experimental analysis is needed to illuminate any other roles of cpSRP54

in defense against viruses.

To establish efficient infection, viruses have evolved a variety of strategies to avoid or sup-

press host defense. Recent studies have shown that potyvirus P1 proteins play a role in coun-

tering host RNA silencing because the self-cleavage that separates it from HC-Pro activates its

RNA silencing suppressor (RSS) activity [49]. In fact, P1 itself does not have RSS activity, and

its real contribution in viral infection is still vague. Here we showed that P1 was able to sup-

press JA-mediated defense by inducing the degradation of cpSRP54 (Figs 6D–6F and S13).

This post-translational regulatory activity of P1 on proteins has consistently been observed in

a very recent study based on genetics and label-free proteomic approaches [50], and was fur-

ther shown to be linked to the 26S proteosome and autophagy in our study, although the

underlying molecular detail is still lacking (Fig 6G and 6H). P1 was localized in both nuclei

and cytoplasm when expressed in plants (S21 Fig). The relationship between the cytosol-local-

izing 26S proteasome pathway and the chloroplast-localizing cpSRP54-P1 needs further inves-

tigation because it appears difficult to understand how the interaction might work during

TuMV infection. However, several reports have indicated an association of the 26S proteasome

with chloroplasts. For example, it has been reported that some E3 ligases are localized in plas-

tids and can directly target chloroplast proteins for degradation by the 26S proteosome

[51,52]. Also, some E3 ligases can ubiquitylate chloroplast proteases, thereby regulating protein

degradation in chloroplasts [53]. It therefore seems possible that cpSRP54-P1 could be
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associated with the 26S proteosome in such a manner. The mechanism by which cpSRP54-P1

and the 26S proteosome interact needs to be explored next.

The hypothesis that cpSRP54 acts upstream of JA biosynthesis and in the context of a

relatively conserved antiviral defense role of JA, is supported by our findings that PMMoV

and PVX infection could also downregulate the protein level of cpSRP54, which implies

that cpSRP54 is a common target for various viruses to combat JA-mediated defense. It is

notable that transcripts of cpSRP54 were also downregulated in TuMV-infected plants,

which indicates a possible mechanism by which TuMV regulates JA synthesis at the tran-

scriptional level (S1C Fig). In addition to manipulating the JA pathway, plant viruses

strike back on every aspect of plant defense, including RNA silencing, the ubiquitin pro-

teosome system or autophagy, translation repression, other defense hormone and hor-

mone regulatory pathways, and plant innate immunity, to win the arms race [54,55].

Some conserved core elements, such as the JAZ-MYC hub in JA signaling, rice auxin

response factor 17 (OsARF17) in auxin signaling, and Argonaute 1 (AGO1) in RNA

silencing defense pathway, have been shown to be convergently targeted by various

viruses. Identification of more common factors will open new possibilities in the develop-

ment of broad-spectrum antiviral strategies. Interestingly, the relative JA levels and the

expression of cpSRP54 and AOCs in plants recover at the late stages of TuMV infection

(Figs 5D, S1C and S11). This may indicate a mechanism by which plants maintain the JA

balance needed for survival, and which needs to be investigated next.

Most identified VSRs are multifunctional [56]. Besides being a VSR, they also function as

replicases, coat proteins, proteases, movement proteins, or helper components for viral trans-

mission, participating in the virus life cycle [57–61]. Additionally, it was shown that transgenic

expression of VSRs including 2b of CMV, p25 of PVX, HC-Pro of potato virus Y (PVY; genus

Potyvirus) and p126 of TMV inhibited the expression of JA-regulated genes [36]. We here

found that p25 (from PVX) and p126 (from PMMoV) induced the degradation of cpSRP54

and inhibited JA responses, which suggests that it may not be unusual or incidental for VSRs

to interfere with JA responses (Fig 7).

In summary we propose a model in which TuMV downregulates a chloroplast protein,

cpSRP54, to inhibit JA biosynthesis and promote efficient viral infection (Fig 8). In this model,

cpSRP54 interacts with JA biosynthesis enzyme AOCs and is responsible for delivering AOCs

to the thylakoid membrane (TM) to maintain its normal function. TuMV P1 directly associ-

ates with cpSRP54 and mediates its degradation through both the 26S proteosome and autop-

hagy pathways. Moreover, cpSRP54 interacts with AOC in Arabidopsis and rice, and is also

suppressed by PMMoV and PVX, indicating that is commonly targeted by viruses to inhibit

JA-mediated defense.

Experimental procedures

Plant materials and virus inoculation

Nicotiana benthamiana plants were all grown in soil at 26˚C with 16-h light/ 8-h dark cycle.

Three- to four-week-old N. benthamiana plants were used for Agrobacterium tumefaciens
(strain GV3101)-mediated expression as described previously [62]. For virus infection analysis,

Agrobacterium cultures carrying different virus infectious clone (TuMV-GFP, TuMV,

PVX-GFP, or PMMoV-GFP) were infiltrated into leaves. Control plants were infiltrated with

empty plasmids. Virus symptoms were examined daily and GFP fluorescence of virus was

observed under UV-light. All virus infection assays were repeated at least three times and each

experiment included at least six plants.
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Vector construction

Gene sequences were amplified by PCR using ExTaqDNA Polymerase (TaKaRA). To construct

transient expression vectors expressing proteins tagged at the C-terminal with GFP, mCherry,

4×Myc, 3×Flag, N-terminal half of YFP, and C-terminal half of YFP, the resulting PCR products

were cloned into pJG045 (with corresponding tag), a pCMBIA 1300-based T-DNA vector [63].

Vectors pTRV1 and pTRV2-LIC were described previously [64]. For yeast two hybrid (Y2H)

analysis, the corresponding PCR products were cloned into two SfiI restriction sites of the pPR3

or pDHB1 vector. For hairpin-mediated silencing, a partial sequence from NbcpSRP54 CDS

(183 nt) or β-glucuronidase (160 nt) (as the control) was cloned into pFGC5941 in both sense

and antisense orientations. All constructs were confirmed by DNA sequencing.

Virus-induced gene silencing in N. benthamiana
The pTRV vectors used for gene silencing were kindly provided by Dr Yule Liu (Tsinghua

University, Beijing, China) [65]. To silence cpSRP54, a 300nt-sequence was amplified with

Fig 8. A proposed working model: viral proteins suppress JA defense by degrading cpSRP54 to facilitate viral infection. cpSRP54 is responsible for

translocating AOCs to the thylakoid membrane for its function in JA biosynthesis. JA mediates plant defense against TuMV, PMMoV and PVX. Meanwhile,

viral proteins, TuMV P1 protein, PMMoV p126 and PVX p25 protein interact with cpSRP54 and mediate its degradation through the 26S proteosome and

autophagy pathways to suppress JA defense, hence facilitating viral infection.

https://doi.org/10.1371/journal.ppat.1010108.g008
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primers NbcpSRP54-300nt-f and NbcpSRP54-300nt-r, then inserted into pTRV2-LIC expres-

sion vector (TRV: cpSRP54), and co-infiltrated with pTRV1 for VIGS. In parallel, the empty

vector TRV:00 was used for the control treatment. The same method was used to silence

AOCs. All constructs were transformed into Agrobacterium strain GV3101 and infiltrated into

N. benthamiana plants as previously described [21]. The primers used for construction are

listed in S1 Table.

RNA analysis

Total RNA was extracted using TRIzol regent (Invitrogen, now ThermoFisher Scientific,

https://www.thermofisher.com) according to the manufacturer’s protocol. For quantitative

RT-PCR, a LightCycler 480 Real-Time PCR System (Roche, https://www.roche.com) was used

for the reaction and the results were analyzed by the ΔΔCT method. N. benthamiana actin gene

was used as the internal reference control for analysis [66]. Biological triplicates with technical

replicates were performed. The primers used for RT-PCR of silencing pathway-related genes

and JA-related genes are listed in S1 Table.

Protein analysis

Total proteins for western blot (WB) assay were extracted from leaf tissues or isolated proto-

plasts or thylakoids as described [19,67]. Proteins were detected by specific antibodies against

cpSRP54 (Hangzhou Huaan Biotechnology Co., Ltd., (HuaBio), https://www.huabio.com),

TuMV CP (produced by the author’s lab), PVX CP (produced by the author’s lab), PMMoV

CP (produced by the author’s lab), plastocyanin (PC) (PhytoAB, http://www.phytoab.com),

UDP-glucose pyrophosphorylase (UGPase) (PhytoAB, http://www.phytoab.com), β-Actin

(ABclonal), RFP (ABclonal), GFP (TransGen, HT801) or Myc (TransGen, HT101-01) and

were visualized using nitrotetrazolium blue chloride/5-bromo-4-chloro-3-indolyl phosphate

(NBT/BCIP) buffer (Sigma-Aldrich, https://www.signmaaldrich.com) or enhanced chemilu-

minescence reaction, ECL (Transgene Biotech, Beijing, China, https://www.transgenbiotech.

com).

For Co-immunoprecipitation (Co-IP) assays, total proteins were extracted at 60–72 hpi

with ice-cold GTEN extraction buffer (25 mM Tris -HCl, pH7.5, 1 mM EDTA, 10% glycerol,

and 150 mM NaCl), 10 mM DTT, 1 mM PMSF, 0.15% Nonidet P40 and 1 × protease inhibitor

cocktail (Roche) [68], and incubated with GFP-Trap_MA beads (Chromotek) for 1 h at room

temperature. The beads were collected by brief centrifugation and washed at least four times in

lysis buffer, and then immunoblotted with GFP, Flag or Myc antibodies.

Detection of hormone content

N. benthamiana leaf tissues (~800 mg) were analyzed by high-performance liquid chromatog-

raphy tandem mass spectrometry (HPLC-MS/MS) with JA-type, SA type, or ABA type samples

(Sigma-Aldrich) according to a method previously described [69]. Three independent repli-

cates each containing three biological repeats were used for hormone quantification. Hormone

levels were measured by Zoonbio Biotechnology Co., Ltd and RUIYUAN Biotechnology Co.,

Ltd.

Plant hormone treatment

The N. benthamiana leaves were sprayed every 2 d with 50 μM MeJA for 7 d or 8 d with 0.1%

ethanol as a control. 24 h after the first treatment of MeJA, plants were inoculated with

TuMV-GFP.
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Yeast two-hybrid assay

All work with yeast was done using the yeast strain NMY51. The yeast constructs were co-

introduced into NMY51 by LiOAc-mediated transformation as previously described [70].

Yeast cells were plated on SD (-Trp/-Leu) to test if a good transformation efficiency had been

achieved, and were then plated on selected SD (-Ade/-His/-Leu/-Trp) to analyse interactions

between the expressed proteins.

Laser confocal microscopy and transmission electron microscopy assay

The N. benthamiana leaf tissues or protoplasts expressing proteins were imaged using a Lecia

TCS SP5 confocal microscope at 48–72 hpi. The full-length coding regions of proteins were

fused either to the N-terminal (nYFP) or C-terminal (cYFP) half of YFP, or green fluorescent

protein (GFP), or mCherry for the bimolecular fluorescence complementation (BiFC) or co-

localization assays.

For immunocytochemistry, small leaf tissues (1 mm × 3 mm) were sampled, fixed and

embedded as described previously [31]. Thin sections were labelled with anti-GFP antibody

followed by gold-conjugated anti-mouse antibody, and analyzed on a transmission electron

microscopy.

Isolation of protoplasts and thylakoids

Protoplast isolation was done as previously described [19]. The purified intact protoplasts

were diluted appropriately and counted with a hemocytometer under a microscope for proto-

plast yield. Intact chloroplasts were isolated and purified on Percoll gradients [71]. Thylakoids

from intact chloroplasts were isolated using the methods described by [72]. Chloroplasts were

ruptured by osmotic shock in 50 mM Tris-HCl, pH 8.0, and 5 mM MgCl2 for 10 min. Then

the thylakoid fraction was collected, washed and resuspended in thylakoid resuspension buffer

(10 mM Tris-HCl, pH 8.0, and 5 mM MgCl2). Sequential sonication and centrifugation were

used to liberate the thylakoid membrane proteins. All the procedures were done at 4˚C and all

solutions contained 1 × protease inhibitor cocktail (Roche).

MG132 and 3-MA treatment

Phosphate-buffered saline containing 2% dimethyl sulfoxide (DMSO, as control) or an equal

volume of DMSO with 100 μM MG132 (Sigma), or H2O as a control and an equal volume of

H2O with 10 mM 3-MA (Sigma), was infiltrated into the leaves that pre-agroinfiltrated with

targeted proteins [35]. After 16 h, samples were collected.

Supporting information

S1 Fig. RNA expression level of cpSRP54 in TuMV-infected N. benthamiana. A. Amino

acid sequence alignment of cpSRP54s from N. benthamiana, rice and Arabidopsis. B. Amino

acid (numbers shadowed with light pink) and nucleotide identities (numbers shadowed with

light blue) between the cpSRP54s. C. Quantification of cpSRP54mRNA levels in TuMV-

infected plants within 14 dpi by qRT-PCR analysis. Means ± SD values are from three inde-

pendent plants per treatment.

(TIF)

S2 Fig. Silencing of cpSRP54 by RNAi construct in N. benthamiana. A. Phenotype of leaves

inoculated with GUS RNAi construct (as control) and cpSRP54 hairpin RNAi construct at 3

dpi. Silencing of cpSRP54 did not cause obvious chlorosis. B. cpSRP54mRNA level analysis by
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qRT-PCR in cpSRP54-silenced plants compared to control plants at 3 dpi. Means ± SD values

are from three independent plants per treatment and were normalized against NbActin. ��,

P<0.01 according to Student’s t-test. C. TuMV-GFP infection in plants pretreated with GUS
RNAi construct and cpSRP54 RNAi construct. Plants were photographed under UV at 7 dpi.

Viral CP accumulation in systemic leaves was determined by WB. Actin served as a loading

control. This experiment was repeated at least three times, and one representative result is

shown. The protein levels were quantified by ImageJ. D. Relative viral RNA levels quantified

by qRT-PCR. Means ± SD values are from three independent plants per treatment. ��, P<0.01

according to Student’s t-test.

(TIF)

S3 Fig. Relative levels of endogenous SA (A) and ABA (B) in TRV:00 and TRV:cpSRP54

treated plants by LC-MS at 12 dpi.

(TIF)

S4 Fig. MeJA treatment alleviated the susceptibility of AOCs-silenced plants to TuMV. A.

Phenotype in TRV:00 and TRV:AOCs treated plants at 12 dpi. B. Effect of MeJA treatment on

TuMV-infection in plants inoculated with TRV:00 or TRV:AOCs at 7 dpi. Plants were photo-

graphed under UV light. Bars, 2 cm. C. Accumulation of viral CP protein quantified by WB.

Ponceau S-stained RBCL was used as a loading control. Tests were performed independently

three times with similar results. D. Quantification of viral RNA levels by qRT-PCR.

Means ± SD values are from three independent plants per treatment. ��, P<0.01, �, P<0.05

according to Student’s t-test.

(TIF)

S5 Fig. The interaction analysis of cpSRP54 and AOC.2 by Co-IP (A) and BiFC (B) assays.

Scale bar, 10 μm.

(TIF)

S6 Fig. Accumulation of AOC.1-GFP was not affected by co-expression of cpSRP54-Myc.

GUS-Myc and empty GFP were used as controls. Ponceau S-stained RBCL was used as a load-

ing control. The protein levels were quantified by ImageJ. Tests were performed independently

three times.

(TIF)

S7 Fig. Sequence analysis of AOCs from different plants. A. Amino acid sequence alignment

of AOCs from N. benthamiana, rice and Arabidopsis. B. Amino acid (numbers shadowed with

light pink) and nucleotide identities (numbers shadowed with light blue) among NbAOC.1,

NbAOC.2, OsAOC, AtAOC1, AtAOC2, AtAOC3 and AtAOC4.

(TIF)

S8 Fig. Interaction between cpSRP54 and AOC in Arabidopsis (A) and rice (B) by BiFC

assay. cpSRP54s and AOCs were respectively fused to the C-terminal (cYFP) and N-terminal

(nYFP) half of YFP. Confocal imaging was performed at 2 dpi. Scale bar, 10 μm.

(TIF)

S9 Fig. BiFC analysis with cpSRP54-cYFP and AOC.1-nYFP in TuMV-infected plants at 2

dpi. Scale bar, 10 μm.

(TIF)

S10 Fig. WB analysis confirming the transient expression of cpSRP54-Myc.

(TIF)
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S11 Fig. qRT-PCR analysis of AOCs transcripts in TuMV-infected plants within 14 dpi.

Means ± SD values are from three independent plants per treatment.

(TIF)

S12 Fig. Results of qRT-PCR analysis showing that cpSRP54 transcripts were not affected

by expression of P1-GFP. Relative expression level of cpSRP54 in N. benthamiana plants tran-

siently expressed GFP or P1-GFP at 2 dpi. Bars represent the standard errors of the means

from three biological repeats. NbActin was used as the internal control.

(TIF)

S13 Fig. Confocal microscopy analysis showing the localization of AOC.1-GFP within

chloroplasts in the presence of P1-Myc at 3 dpi. Bars, 10 μm.

(TIF)

S14 Fig. Confocal microscopy analysis showing the localization of AOC.2-GFP within

chloroplasts in the context of P1-Myc expression (A) and TuMV infection (B) at 3 dpi.

(TIF)

S15 Fig. Control experiments in P1-mediated cpSRP54 degradation. A and B. Accumula-

tion of cpSRP54-Myc was not affected by empty GFP (A), or CP-GFP (B) whether treated with

MG132 and 3-MA or not. B. P1-GFP did not affect accumulation of GUS-Myc, whether

treated with MG132 and 3-MA or not.

(TIF)

S16 Fig. qRT-PCR analysis to confirm the silencing efficiency of ATG5, ATG7, RPN10, and

RPN13. The leaf samples were harvested at 14 dpi. Values represent the Means ± SD. ��,

P<0.01 according to Student’s t-test.

(TIF)

S17 Fig. The thylakoid distribution of AOC.1-GFP (A) and JA level (B) were restored

when P1 was co-expressed in RPN10-silenced plants. (A) Confocal microscopy analysis

showing the localization of AOC.1-GFP transiently expressed in TRV:00 or TRV:RPN10

treated plants when co-expressed with P1-Myc at 3 dpi. (B) The relative JA level in the above

plants. Three independent replicates each containing three biological repeats were used for

hormone quantification. �, P<0.05 according to Student’s t-test.

(TIF)

S18 Fig. qRT-PCR analysis showing the mRNA levels of cpSRP54, PR3 and PR4 in the pres-

ence of p25-RFP (A) or p126-RFP (B).

(TIF)

S19 Fig. Downregulation of cpSRP54 in PMMoV or PVX-infected plants impairs JA-medi-

ated defense against viral infection. A. The accumulation of cpSRP54 proteins in PMMoV or

PVX-infected N. benthamiana was determined by WB. B. PMMoV-GFP or PVX-GFP were

inoculated onto cpSRP54-silenced (TRV:cpSRP54), non-silenced, CK (0.1% ethanol) treated

wild type and MeJA (50 μM) treated wild type plants. GFP fluorescence on the newly-emerged

leaves indicate systemic infection by viruses at 7 dpi. Plants were photographed under UV

light. C. PMMoV and PVX CP antibody were used to detect the accumulation of

PMMoV-GFP and PVX-GFP, respectively, in plants at 7 dpi. The protein levels were quanti-

fied by ImageJ and normalized against actin protein levels. These experiments are the repre-

sentatives of three independent biological experiments with similar results.

(TIF)
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S20 Fig. qRT-PCR analysis showing the mRNA levels of 13LOX and AOS in cpSRP54
silenced N. benthamiana.

(TIF)

S21 Fig. Confocal analysis of transiently expressed P1-GFP in N. benthamiana. Bars,

50 μm.

(TIF)

S1 Table. Primers used for analysis.

(DOCX)

S2 Table. Statistics to support Fig 4C.

(DOCX)
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