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Abstract
Main protease  (Mpro) plays a key role in replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
This study was designed for finding natural inhibitors of SARS-CoV-2  Mpro by in silico methods. To this end, the co-crystal 
structure of  Mpro with telaprevir was explored and receptor-ligand pharmacophore models were developed and validated 
using pharmit. The database of “ZINC Natural Products” was screened, and 288 compounds were filtered according to 
pharmacophore features. In the next step, Lipinski’s rule of five was applied and absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) of the filtered compounds were calculated using in silico methods. The resulted 15 com-
pounds were docked into the active site of  Mpro and those with the highest binding scores and better interaction including 
ZINC61991204, ZINC67910260, ZINC61991203, and ZINC08790293 were selected. Further analysis by molecular dynamic 
simulation studies showed that ZINC61991203 and ZINC08790293 dissociated from  Mpro active site, while ZINC426421106 
and ZINC5481346 were stable. Root mean square deviation (RMSD), radius of gyration (Rg), number of hydrogen bonds 
between ligand and protein during the time of simulation, and root mean square fluctuations (RMSF) of protein and ligands 
were calculated, and components of binding free energy were calculated using the molecular mechanic/Poisson-Boltzmann 
surface area (MM/PBSA) method. The result of all the analysis indicated that ZINC61991204 and ZINC67910260 are drug-
like and nontoxic and have a high potential for inhibiting  Mpro.
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Introduction

Coronavirus disease 19 (COVID-19) has caused significant 
social, economic, and political problems worldwide [1–3]. 
Caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), it has affected more than 526 million people 
(as of May 21, 2022) and about 6.3 million died from this 
disease (https:// www. world omete rs. info/ coron avirus/). So 
far, several vaccines for COVID-19 have been developed 
by various pharmaceutical companies. Some of them have 
been authorized by the US Food and Drug Administration 

(FDA) and are widely used in many countries which had 
a major impact on reducing mortality from the disease 
[4–6]. However, the epidemic will probably continue until 
the global launch of safe and effective vaccines to provide 
herd immunity. To date, symptomatic treatment and respira-
tory support are the main way of patient management for 
COVID-19 [7, 8]. Remdesivir is the only drug approved by 
the FDA to treat COVID-19 [9, 10]. Besides several side 
effects particularly liver inflammation, it is only prescribed 
for people who are hospitalized with COVID-19. Two other 
drugs including Baricitinib and Paxlovid were granted an 
emergency use authorization (EUA) by the FDA [11, 12]. 
Baricitinib is only used in hospitalized adults, and Paxlovid 
is a combination of nirmatrelvir and ritonavir and is used 
to treat early COVID-19 infection and help to prevent more 
severe symptoms [13–15]. Despite all efforts, efficient treat-
ment of COVID-19 is still medically unmet, requiring fur-
ther efforts, and the introduction of a suitable drug to treat 
this disease is still one of the main priorities.
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Viral proteases play an essential role for the replication 
of many human pathogenic viruses by the cleavage of pep-
tide bonds in viral polyprotein precursors [16]. Accordingly, 
many drugs have been developed to prevent viral progress by 
inhibiting the protease enzymes, like lopinavir and ritonavir 
that have been approved for the treatment of acquired immu-
nodeficiency syndrome (AIDS) [17]. Two proteases are 
encoded by SARS-CoV-2 RNA genome including papain-
like protease (PLpro) and main protease (also known as 
 Mpro, chymotrypsin-like cysteine protease, 3C-like protease, 
and 3CLpro).  Mpro is a cysteine protease (EC 3.4.22.69) 
that cleaves the coronavirus polyprotein precursor at eleven 
conserved sites [18]. P1 for this enzyme is a Gln and P1′ 
is a small residue like Ser, Aln, or Gly. Active site of this 
enzyme includes Cys145 and His41 residues which make a 
catalytic dyad in which His as a general base makes sulfur of 
the Cys a stronger nucleophile [19, 20]. Telaprevir is a pro-
tease inhibitor used for the treatment of hepatitis C [21, 22]. 
It was designed against hepatitis C virus NS3/4A protease 
[23]. Recently, it was shown that this compound is able to 
inhibit the SARS-CoV-2  Mpro activity with an  IC50 value of 
18 μM [24]. Some groups determined the crystal structure 
of  Mpro in complex with telaprevir which provided an oppor-
tunity to develop structure based pharmacophore modeling 
for finding new inhibitors for  Mpro [25–27].

Many anti-coronaviral compounds with natural sources 
have been identified in recent years [28]. The mechanism 
of action of these compounds varies from blocking of viral 
entry (tetra-O-galloyl-β-D-glucose and caffeic acid), inhibi-
tion of protein synthesis (silvestrol), inhibition of viral repli-
cation (myricetin) to inhibition of viral proteases (a number 
of flavonoids), and other mechanisms [29]. This study was 
designed for finding potential inhibitors of SARS-CoV-2 
 Mpro among natural compounds by using structure-based 
pharmacophore modeling, molecular docking, and molecu-
lar dynamic simulation studies.

Materials and methods

Receptor‑ligand pharmacophore generation

The co-crystal structure of  Mpro with telaprevir was retrieved 
from the Protein Data Bank (PDB ID: 7LB7; Resolution: 
2.00 Å; R-value free: 0.225; and R-value work: 0.204) (www. 
rcsb. org) [25]. Analyzing the receptor–ligand interactions 
and defining the essential features of this interaction is the 
basis of structure-based pharmacophore modeling. The most 
important parts of the ligand that are responsible for ligand 
binding to the receptor are named pharmacophores. Pharmit 
(http:// pharm it. csb. pitt. edu) is an online tool for structure-
based pharmacophore modeling and virtual screening of 
large compound databases [30]. By providing protein–ligand 

complex, it will identify all pharmacophore features relevant 
to the protein–ligand interaction. Therefore,  Mpro-telaprevir 
complex (7LB7) was loaded in Pharmit, and pharmacophoric 
features important in binding of telaprevir to  Mpro were identi-
fied. At the first step, 20 pharmacophoric features important in 
 Mpro-telaprevir interaction were detected by Pharmit. Then, 10 
pharmacophore models with 4 to 6 features in each model were 
built. These models were used to screen actives and decoys 
libraries, and the model with the best results was selected for 
screening the natural compounds libraries.

Pharmacophore validation and virtual screening

Before using a pharmacophore model in virtual screening, it 
has to be validated. To this end, a set of previously described 
active compounds (Fig. S1) and a set of inactive or decoys for a 
specific target are required. A well-defined pharmacophore will 
detect the most numbers of active ligands and the least number 
of inactive or decoys [31]. By advanced literature search and 
UniProt (https:// www. unipr ot. org/), twenty-six chemically syn-
thesized active inhibitors of  Mpro were collected, which were 
docked with  Mpro protein by using SwissDock server [32, 33].

Decoy compounds used for pharmacophore validation 
were obtained from DUD.E (http:// dude. docki ng. org/) 
(accessed October 05, 2021) [34]. DUD-E is a database of 
thousands of active and decoy compounds for 102 targets. 
It can also make dozens of decoys per active ligand. Decoys 
are designed to have similar physicochemical properties to 
active ligands, but their 2-D topology is different.

Active and decoy compounds were uploaded in Pharmit 
as two separate libraries and were screened by using the 
generated pharmacophore models to see which model leads 
to the best result. Sensitivity and specificity (Eqs. (1) and 
(2)), the yield of actives (YA or recall), the enrichment fac-
tor (EF), and goodness of hit (GH) were calculated for each 
pharmacophore (Eqs. (3), (4), and (5)). The mentioned met-
rics were calculated using the following formulas [31, 35]:

(1)Sensitivity(true positive rate) =
Ha

A
× 100

(2)

Specif icity(true negative rate) =
true negatives

decoys
× 100

(3)YA(recall) =
Ha

Ht
× 100

(4)EF =
YA

A∕D

(5)GH = (
Ha(3A + Ht)

4HtA
)(1 −

Ht − Ha

D − A
)
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Figure 1 describes all the parameters used in these equa-
tions. YA (recall) is the percentage of true positives (Ha) in 
total hits (Ht). GH (goodness of hit) score is between 0 and 
1, where better models have values close to 1. EF (enrich-
ment factor) relates total hits (Ht) to the composition of the 
screening database. Higher EF indicates a better model [36].

The best validated pharmacophore model (pharm_A) was 
saved as.json format in Pharmit and was used to screen “ZINC 
Natural Products” in ZINCPharmer. “ZINC Natural Products” 
is a library of 224,205 secondary metabolites found in bacte-
ria, fungi, or plants. Compounds identified by pharmacophore 
virtual screening were prepared in structure data file (SDF) 
format to be used for Molecular docking study.

Drug‑likeness Prediction

A set of basic molecular properties like molecular weight, 
number of hydrogen bond donors and acceptors, and octanol/
water partition coefficient (A log P) are determinant factors 
for a compound to make it a likely orally active drug in 
humans. There are some computational procedures for the 
prediction of these properties. In this study, SwissADME 
was used for calculation of these properties in the hit com-
pounds [37]. SwissADME is a useful website that computes 
ADME parameters (absorption, distribution, metabolism, 
and excretion) as well as physicochemical properties and 
other descriptors of drug-like molecules. Lipinski’s rule of 
five was used to filter compounds. According to this rule, 
an orally active drug usually has no more than one violation 
of the following criteria: molecular weight (MW) ≤ 500 Da, 
number of hydrogen bond donors (HBDs) ≤ 5, number of 
H bond acceptors (HBAs) ≤ 10, and octanol/water partition 

coefficient (A log P) ≤ 5 [38]. These criteria were calcu-
lated in SwissADME and used for the filtration of the hit 
compounds.

ADMET calculation

Beside efficacy against the therapeutic target is of funda-
mental importance a good drug candidate compound should 
also have proper ADME properties including absorption, 
distribution, metabolism, and excretion [39]. Estimating 
ADME properties of compounds is of great importance in 
the process of hit identification and optimization. Therefore, 
the hits were investigated about their ADME properties by 
using swissADME [37]. Another important part of the drug 
discovery process is predicting the toxicity of compounds. 
ProTox-II was used to this end [40]. To further explain, Pro-
Tox-II is a virtual lab that enables prediction of several mod-
els of toxicities including, hepatotoxicity, carcinogenicity, 
immunotoxicity, mutagenicity, cytotoxicity, stress response 
pathways, and nuclear receptor signaling pathways.

Molecular docking study

Finding the best pose of each ligand in the binding site of the 
receptor and accurate calculation of its binding free energy 
is of great importance in the process of drug discovery. 
Therefore, the hit compounds selected from the previous 
steps were each docked separately into the binding site of 
 Mpro by using SwissDock server. SwissDock uses docking 
software EADock DSS, whose algorithm for local docking is 
described as follow: At first, many binding modes are gener-
ated in a desired box determent by the user. Simultaneously, 

Fig. 1  Overall process and 
the result of pharmacophore 
validation

Page 3 of 15    279Journal of Molecular Modeling (2022) 28: 279



1 3

their CHARMM energies are estimated on a grid, and the 
binding modes with the most favorable energies are evalu-
ated and clustered [32, 33]. Energy minimization of ligands 
was performed before docking by using Avogadro version 
1.2.0 to remove clashes among atoms of the ligand and to 
develop a reasonable starting pose [41]. Universal force 
field (UFF) with steepest descent algorithm was used for 
minimization. Those compounds with appropriate binding 
free energy and orientation in the binding site were used 
for next rounds of docking. In this step, molecular dynamic 
simulation was performed on  Mpro for 50 ns, and 3 differ-
ent conformations from the trajectory were used to re-dock 
each compound to the binding site of  Mpro. In the next step, 
a 100 ns molecular dynamic simulation was performed on 
all complexes resulting from docking to prove their stable 
binding to  Mpro. Discovery studio visualizer 2016 (Accelrys 
Inc., San Diego, CA, USA) and UCSF Chimera 1.14 [42] 
were used for visualizing and interpreting ligand-receptor 
interactions.

Molecular dynamic simulation study

Molecular dynamic simulation of the selected protein–ligand 
complexes was done using Groningen machine for chemi-
cal simulations (GROMACS) 5.1.2 computational package 
which was installed in Ubuntu 18.04.5 LTS [43]. Swiss-
Param server [44] was used for making topology files and 
other force field parameters for the selected compounds. To 
explain more, SwissParam is a server that can make topol-
ogy and parameters for small organic molecules compat-
ible with the CHARMM all atoms force field, for use with 
CHARMM and GROMACS. Protein topology file was made 
by using the pdb2gmx command and CHARMM27 all-atom 
force field (CHARM22 plus CMAP for proteins). “Gromacs 
format” (.gro) of ligand and protein was combined in Note-
pad +  + , and topology file (.top) of the protein was edited, 
and “include topology” (.itp) parameters of ligand obtained 
from SwissParam were introduced to it. The protein–ligand 
complex (in.gro format) was centered in a cubic box, 1.0 nm 
from the box edge. The complex was solvated using water 
molecules represented using a simple point charge (SPC216) 
model. Four water molecules were replaced by Na + ions to 
neutralize the net negative charge of the protein and ensure 
the overall charge neutrality of the simulated system. Steep-
est descent minimization algorithm was used for the mini-
mization of the system in a maximum number of 50,000 
steps until the maximum force became less than 10.0 kJ/mol. 
For NVT, equilibration the v-rescale algorithm was used in 
300 K with a coupling constant of 0.1 ps and time duration 
of 500 ps. The last phase in preparation of the system was 
NPT equilibration. In this step, Berenson pressure coupling 
algorithm with a coupling constant of 5.0 ps was applied 
for 1000 ps of NPT simulation. Particle-mesh Ewald (PME) 

algorithm was used for long-range electrostatics and cut-
off method for van der Waals interactions. Cut off distances 
were set at 1.0 nm for the calculation of the electrostatic 
and 1.2 nm for van der Waals interactions. Finally, the com-
pounds were subjected to three replica molecular dynamic 
simulations run of 100 ns per system.

Free binding energy calculations

After successful completion of molecular dynamic simula-
tion, the protein–ligand complex was re-centered in the box, 
and analysis including calculation of root mean square devi-
ation (RMSD), radius of gyration (Rg), number of hydro-
gen bonds in protein and between ligand and protein during 
the time of simulation, and root mean square fluctuations 
(RMSF) of protein and ligands was performed. Binding free 
energy calculation of protein–ligand complex was performed 
by using the g_mmpdsa program that was developed to cal-
culate components of binding free energy using the molecu-
lar mechanic/Poisson-Boltzmann surface area (MM/PBSA) 
method. This program calculates components of binding 
energy of protein–ligand complex which can be described as

Two hundred snapshots were taken at an interval of 
100 ps during the last 20 ns period of MD trajectory, and 
then binding energy calculations were performed.

Results and discussions

Structure bases pharmacophore modeling 
and virtual screening

Non-bond interactions of telaprevir in the active site of 
 Mpro are shown in Fig. 2. Telaprevir makes hydrogen bonds 
with both residues of the catalytic dyad including one 
hydrogen bond with Cys145 and one hydrogen bond with 
His41. Moreover, telaprevir makes two hydrogen bonds 
with Glu166 and one hydrogen bond with Gln189, Gly143, 
and His164. Hydrophobic interactions include one amide-Pi 
stacked with Thr190 and one Pi-alkyl with Ala191.

Free binding energy = molecular mechanics interaction energy (MMIE)

+ solvation energy (SE)

MMIE = vanderWaalsenergy + Electrostaticenergy

SE = polar solvation energy (PSE)

+ nonpolar solvation energy (SASA energy)

PSE = PSEcomplex − (PSEprotein + PSEligand)

SASAenergy = SASAcomplex − (SASAprotein + SASAligand)
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Twenty six active inhibitors of  Mpro were collected, 
by advanced literature search and UniProt (https:// www. 
unipr ot. org/). These compounds were docked to the  Mpro 
active site by using SwissDock. Binding energy ranged 
between − 6.9 kcal/mol (shikonin) to − 10.26 kcal/mol (rito-
navir) (Fig. 3). Crystal structure of  Mpro in complex with 
active inhibitors and the corresponding binding energies has 
been provided in Fig. S1. To develop pharmacophores, the 
 Mpro-telaprevir complex was analyzed in Pharmit. Twenty 
pharmacophoric features were recognized at the first step. 
In the next step, 10 pharmacophore models were made with 
4 to 6 features in each model. To select the best model, 
actives and decoys libraries were screened by these models. 
Among the 10 pharmacophore models, the model with the 
best score (Pharm_A) was used for screening the “ZINC 
natural products.” The characteristics of Pharm_A including 
x, y, z coordinates are illustrated in Fig. 4. Five of the six 
hydrogen bonds and one of the four hydrophobic interac-
tions between  Mpro and telaprevir were used in Pharm_A 
development. These non-bond interactions can be listed as 
follows: one hydrogen bond between N39 and Arg74, N32 
and Gly34, O31 and Ser76; two hydrogen bonds between 

N22 and Asp38, Gly227; and one hydrophobic interaction 
between C28, C29 and Leu223, Ile304.

Pharm_A model was used for virtual screening of the 
“ZINC natural products” databases by using ZINCPharmer. 
Based on Pharm_A features, 288 compounds were screened 
out from the “ZINC natural products.” Subsequently, the 
screened compounds were investigated using Lipinski’s rule 
of five, and 68 compounds exhibited satisfied drug-likeness 
properties according to this rule.

ADMET study

Besides specific binding to its target, a drug-like compound 
should have appropriate absorption, distribution, metabo-
lism, excretion, and toxicity, i.e., ADMET properties. 
Therefore, estimating ADMET properties of compounds 
is of great importance in the process of drug discovery. In 
this study, multiple ADMET properties were estimated and 
analyzed using SwissADME and ProTox-II webserver. By 
using SwissADME, the key physicochemical descriptors, 
ADME parameters, pharmacokinetic, and drug-like proper-
ties were investigated. Moreover, hepatotoxicity, carcino-
genicity, mutagenicity, and cytotoxicity were investigated 
by using ProTox-II. In this step, 15 compounds with better 
results were selected for more investigation (Fig. 5). Molecu-
lar properties and ADME results for the 4 selected com-
pounds after the docking study can be found in Tables 1 and 
2. The toxicity prediction of these compounds is presented 
in Table 3.

Molecular docking study

For further analysis of the binding modes of the selected 
compounds in the active site of  Mpro, molecular docking 
studies were done. At the first step, to validate the docking 
procedure, telaprevir was docked into the active site of  Mpro. 
The top-ranked pose was compared with crystallographic 
pose, and the calculated RMSD was found to be 1.17 Å that 
indicates a good prediction of the ligand’s pose on the  Mpro 
active site by SwissDock server. Moreover, comparative 
analysis of the non-bond interaction of docked and crys-
tallographic poses indicated the accuracy of the docking 
procedure. After validation of the docking procedure, the 
15 compounds with the best ADMET results were docked 
into the active site of  Mpro one by one to analyze their ori-
entation, interactions, and free binding energy. Only those 
compounds were selected that besides good docking score 
had the most number of non-bond interactions, especially 
hydrogen bonds in  Mpro binding site. Accordingly, four 
compounds including ZINC61991204, ZINC67910260, 
ZINC61991203, and ZINC08790293 with ∆Gbind (kcal/mol) 
of − 8.23, − 9.11, − 8.38, and − 8.37 were selected (Fig. 5).

Fig. 2  Orientation of telaprevir in complex with  Mpro. His41 and 
Cys145, residues of the catalytic dyad, are depicted as green and yel-
low, respectively (A). Non-bond interactions of telaprevir in binding 
site of  Mpro. Green, hydrogen bond; pink, amide-Pi stacked; light 
pink, Pi-alkyl; blue halo, solvent accessible surface (B)
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Orientation and non-bond interactions of the lead com-
pounds in the active site of  Mpro are depicted in Figs. 6, 7 
and Table 4. In ZINC61991204, there are 7 hydrogen bonds 
including two hydrogen bonds between cys145 and N-H23 

and C = O23, Glu166 and N-H21 and C = O25, hydrogen 
bond between Thr190 and O = H26, Gln189 and N-H24, 
Gly143:C = O23. There is also one hydrophobic interac-
tion with Pro168. ZINC67910260 has ten hydrogen bonds 

Fig. 3  List of 27 known active inhibitors of  Mpro and their binding energy towards  Mpro obtained by molecular docking method. The number in 
parenthesis shows the estimated binding energy (kcal/mol)

279   Page 6 of 15 Journal of Molecular Modeling (2022) 28: 279
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including four hydrogen bonds between Glu166 and O-H44, 
C = O38, O-H46 and C-H15; four hydrogen bonds between 
Gln189 and C = O36, C = O37, O-H45 and C-H16; and 
one hydrogen bond between Ser144 and O-H28, Cys145 
and O-H28. Met165, Leu167, Pro168 contribute to the Pi-
Alkyl interactions. ZINC61991203 makes six hydrogen 
bonds with  Mpro including three hydrogen bonds between 
C = O29 and Gly143, Ser144 and Cys145 and three hydro-
gen bonds between Glu166 and C = O30, N-H28 and 
N-H25. Leu167 and Pro168 contribute to Pi-Alkyl interac-
tion; Met165, Cys145 contribute to Pi-Sulfur interaction. 
In ZINC08790293, there are five hydrogen bonds including 
one hydrogen bond between Thr25 and C = O23, Gly143 and 
C = O31, Glu146 and C = O32, Glu146 and N-H38, Gln189 
and C = O34. Cys145, Leu167, Met165 contribute to the Pi-
Alkyl interactions.

The analysis of the docking poses indicates that six resi-
dues have great impact in non-bond interactions and main-
taining the conformation of the selected compounds in the 
active site of  Mpro. These residues include Ser84, Gly227 
and catalytic Asp38 and Asp225 that make hydrogen bonds 
with ligands and Leu223 and Ile304 that contribute to hydro-
phobic interactions. Five of these seven residues including 
Ser84, Gly38, Gly227, Leu223, and Ile304 contributed to 
Pharm_A features.

Molecular dynamic simulation study

Receptor-ligand interaction is a dynamic event and one of the 
best ways to grasp the stability and flexibility of a receptor-
ligand complex and binding energy of ligand to receptor 
and is analyzing the behavior and motion of the complex in 
a simulated environment very similar to a natural environ-
ment that includes water and ions [45]. Herein, the complexes 
docking file of selected four natural compounds includ-
ing ZINC61991204, ZINC67910260, ZINC61991203, and 
ZINC08790293 and one reference ligand bind with  Mpro were 

Fig. 4  The structure of 
Pharm_A. HBA. hydrogen 
acceptor; HBD, hydrogen 
donor; HYD, hydrophobic. Pro-
tein  (Mpro) is depicted as yellow 
ribbon. Molecule description: 
blue, carbon; purple, nitrogen; 
red, oxygen. Numbers in paren-
theses show x, y, z coordinates 
of the pharmacophoric feature

Fig. 5  Compounds with the best binding energies including 
ZINC61991204 (yellow), ZINC67910260 (purple), ZINC61991203 
(red), and ZINC08790293 (green) in  Mpro active site. Protein is 
depicted as cyan
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simulated in an explicit hydration environment to evaluate the 
stability, flexibility, and intermolecular interactions between 
protein and compounds during the simulation time. Therefore 
a short, 10 ns simulation was performed for all the complexes, 
and it was observed that ZINC61991203 and ZINC08790293 
were unstable in the active site of  Mpro and began to dissociate 
from the active site after about 7 ns of simulation. However, 
ZINC61991204 and ZINC67910260 were stable in the active 
site. So these two compounds were selected for further analysis. 
In this step, molecular dynamic simulation was performed on 
 Mpro for 50 ns, and 3 different conformations from the trajec-
tory were used to re-dock ZINC61991204, ZINC67910260, and 
telaprevir to the binding site of  Mpro (Fig. S2). Then, a 100 ns 
molecular dynamic simulation was performed on all complexes 
resulting from docking to prove their stable binding to  Mpro. In 
the next steps, simulation trajectory of these compounds was 
further analyzed by several tools.

RMSD and radius of gyration (Rg) were calculated 
for all the saved structures during the MD simulation, 
and changes in the amount of these factors during the 

simulation time were used for evaluation of the stabil-
ity of the complexes. RMSF of the backbone atoms was 
also calculated for assessment of residual flexibility dur-
ing the time of simulation. The results of these calcula-
tions are shown in Figs. 8, 9, 10, 11, and 12. As it could 
be seen in Fig. 8, the RMSD value of  Mpro gets stable 
after 10 ns of simulation and remains stable and less than 
3 Å for the rest of simulation time. The average RMSD 
value of  Mpro in complex of  Mpro with ZINC61991204, 
ZINC67910260, and telaprevir was 0.163 Å, 0.234 Å, and 
0.239 Å, respectively. RMSD of lead compounds and tel-
aprevir in complex with  Mpro was less than 3 Å during the 
simulation time; however, it became stable only after 30 ns 
(Fig. 9). The average RMSD value of ZINC61991204, 
ZINC67910260, and telaprevir in complexes with  Mpro 
was 0.199 Å, 0.209 Å, and 0.210 Å, respectively. All these 
results indicate the stability of the ligands in the active 
site of  Mpro especially during the last 20 ns of simulation.

Figure 10 shows that RMSF of the Cα atoms of  Mpro 
in complexes with ZINC61991204, ZINC67910260, and 

Table 1  Molecular properties of 
the selected compounds

a Number of hydrogen bond acceptor
b Number of hydrogen bond donor

Compound Formula iLogP TPSA nHeavyAtoms MW nHBAa nHBDb nRotb

ZINC61991204 C18H26N4O6 2.23 159.85 28 394.42 7 5 13
ZINC67910260 C31H48N4O6 2.95 148.07 41 572.74 6 5 11
ZINC61991203 C24H30N4O6 2.43 159.85 34 470.52 7 5 15
ZINC08790293 C26H38N3O6S 3.60 161.96 36 520.66 6 3 16

Table 2  ADME properties 
of the selected compounds 
predicted by SwissADME

a Gastrointestinal absorption
b Blood-brain barrier permanent

Compound GIAa BBBPb CYP1A2 
inhibitor

CYP2C19 
inhibitor

CYP2C9 
inhibitor

CYP2D6 
inhibitor

CYP3A4 
inhibitor

Lipinski Log S

ZINC61991204 Low No No No No No No Yes  − 3.20
ZINC67910260 Low No No No No No Yes Yes  − 6.58
ZINC61991203 Low No No No No No No Yes  − 5.66
ZINC08790293 Low No No No No No Yes Yes  − 5.54

Table 3  Toxicity risk of the selected compounds predicted by ProTox-II. The numbers in parentheses show probability

a  “Predicted toxicity class” is a number from 1 to 6 that higher numbers indicate lower toxicity

Compound Hepatotoxicity Carcinogenicity Mutagenicity Cytotoxicity Predicted LD50 Predicted 
toxicity 
 Classa

ZINC61991204 Inactive (0.92) Inactive (0.72) Inactive (0.77) Inactive (0.65) 5,300 mg/kg 6
ZINC67910260 Inactive (0.77) Inactive (0.65) Inactive (0.78) Inactive (0.79) 2,287 mg.kg 5
ZINC61991203 Inactive (0.88) Inactive (0.72) Inactive (0.76) Inactive (0.66) 5,300 mg/kg 6
ZINC08790293 Inactive (0.89) Inactive (0.62) Inactive (0.73) Inactive (0.63) 1,000 mg/kg 4
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Fig. 6  The best binding pose 
of the selected compounds in 
the active site of  Mpro resulting 
from the docking studies. His41 
and Cys145, residues of the 
catalytic dyad, are depicted as 
green and yellow, respectively

Fig. 7  Non-bond interactions of the selected compounds in the active site of  Mpro. Green, hydrogen bond; pink, amide-Pi stacked; light pink, Pi-alkyl; 
orange, Pi-sulfur
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telaprevir was very similar. As it could be seen,  Mpro is not 
a very flexible protein. In all complexes, except the first 
two residues in  Mpro-telaprevir complex, residues had low 

RMSF values of less than 0.3 Å. In fact, residues involved in 
non-bond interactions with ligands had little fluctuation like 
other residues during the simulation time. The little fluctua-
tion of these residues could demonstrate their capability in 
making stable non-bond interaction with lead compounds 
and telaprevir. RMSF of heavy atoms of ligands were cal-
culated (Fig. 11). All atoms had a very low RMSF value of 
less than 2 Å. In ZINC67910260, the least fluctuation was 
related to a ring consisting of 12 heavy atoms including 4 
repeats of N–H, C = O, C. Therefore, in this ring, hydrogen 
bond donor, i.e., N–H, and hydrogen bond acceptor, i.e., 
C = O, are repeated 4 times. Being in a ring led to lower 
fluctuation and subsequently to more stable hydrogen bonds 
of N–H and C = O with enzyme. On the other hand, more 
stable hydrogen bonds contribute to lower fluctuation of the 
ring’s atoms. In fact, this part of the ligand had the most 
number of hydrogen bonds with  Mpro. In ZINC61991204, 
parts of the ligand involved in hydrogen bond with  Mpro had 
the lowest fluctuation. Highest fluctuation was related to 
part of the ligand that had only one carbon hydrogen bond 
with the enzyme.

Table 4  Non-bond interactions of the selected compounds and telaprevir in the active site of  Mpro

Compound Hydrogen bonds Pi-alkyl Pi-sulfur

ZINC61991204 Thr190:O = H26, Gln189:N-H24, Glu166:N-H21, Glu166:C = O25, Cys145:N-
H23, Cys145:C = O23, Gly143:C = O26

Pro168 -

ZINC67910260 Ser144:O-H28, Cys145:O-H28, Glu166:O-H44, Glu166:C = O38, Glu166:O-
H46, Glu166:C-H15, Gln189:C = O36, Gln189:C = O37, Gln189:O-H45, 
Gln189:C-H16

Met165, Leu167, Pro168 -

ZINC61991203 Gly143:C = O29, Ser144:C = O29, Cys145:C = O29, Glu166:C = O30, Glu166:N-
H28, Glu166:N-H25

Leu167, Pro168 Met165, Cys145

ZINC08790293 Thr25:C = O23, Gly143:C = O31, Glu146:C = O32, Glu146:N-H38, 
Gln189:C = O34

Cys145, Leu167, Met165 -

Fig. 8  Superimposed RMSD of the  Cα atoms of  Mpro in complex with 
ZINC61991204 (green), ZINC67910260 (orange), and telaprevir 
(blue)

Fig. 9  Superimposed RMSD of ZINC61991204 (green), 
ZINC67910260 (orange), and telaprevir (blue) in complex with  Mpro

Fig. 10  RMSF graph of the Cα atoms of  Mpro in complex with 
ZINC61991204 (green), ZINC67910260 (orange), and telaprevir 
(blue)
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Radius of gyration (Rg) of  Mpro was calculated to evalu-
ate the compactness of protein during the period of simula-
tion (Fig. 12). Rg value of  Mpro in complex with the lead 
compounds as well as telaprevir remained between narrow 
ranges of 2.175 to 2.285 nm and did not show a signifi-
cant upward or downward trend during the simulation time. 
The average Rg of  Mpro was 2.209, 2.244, and 2.204 in the 
complex of  Mpro with ZINC61991204, ZINC67910260, and 
telaprevir, respectively.

The number of hydrogen bonds between ligands and 
 Mpro during the MD simulation was calculated by analyz-
ing the MD trajectories (Fig. 13). Accordingly, the num-
ber of hydrogen bonds changes mostly between 2 and 4 for 
both complexes. These numbers are less than the number 
of hydrogen bonds predicted by docking studies (Fig. 7). 
This is not unexpected in dynamic simulation studies as the 

Fig. 11  RMSF graph of the heavy atoms of ZINC61991204 and ZINC67910260 in complex with  Mpro. Structure of these compounds and parts 
of these molecules with highest and lowest fluctuations are illustrated

Fig. 12  Time dependence of the radius of gyration (Rg) graph of  Mpro 
in complex with ZINC61991204 (green), ZINC67910260 (orange), 
and telaprevir (blue)
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conformation of both ligand and the receptor fluctuates dur-
ing the simulation time, and therefore, a wide variety of 
interactions arise [46]. However, binding energy analysis in 
the next step demonstrated that the overall impact of these 
interactions was in favor of ligand binding to the receptor.

Binding free energy analysis

The MM/PBSA is a commonly used method for estimating 
binding energy of ligands to a protein receptor. It can reveal 
the nature of the dominant interactions in a ligand-recep-
tor complex. In molecular docking, there is only a single 
snapshot of a structure, and therefore, binding free analysis 
may not be very accurate. But by simulation of molecular 
dynamics in a period of time and getting several snapshots 
of the ligand–protein complex, the binding energy estima-
tion would be much more accurate. The result of free bind-
ing energy analysis is presented in Table 5. In this study, 
the lead compounds and telaprevir revealed average nega-
tive binding energies. The average MM/PBSA free bind-
ing energy of the known co-crystal inhibitor (telaprevir) 
with  Mpro was − 109.49 kJ/mol, while ZINC61991204 and 
ZINC67910260 exhibited − -79.32 and − 77.96  kJ/mol 
binding free energies, respectively. Diagram of binding 
energy changes during the last 20 ns of simulation time is 

presented in Fig. 14. In all these complexes, binding energy 
fluctuates in a narrow negative range, and the complex is 
stable during all the simulation time. ZINC61991204 and 
ZINC67910260 had lower binding energies regarding the 
co-crystal inhibitor, i.e., telaprevir; however, they were 
completely stable in the active site of  Mpro. In fact, bind-
ing energy of − 79.32 and − 77.96 kJ/mol was sufficient for 

Fig. 13  Numbers of hydrogen bonds formed between  Mpro and ZINC61991204 (green) and ZINC67910260 (orange)

Table 5  Binding free energy (KJ/mol) for two selected compounds and telaprevir

a Solvent accessible surface area

Complex van der Waals energy Electrostatic energy Polar solva-
tion energy

SASA a energy Binding 
energy

ZINC61991204  − 151.62  − 52.31 160.87  − 19.03  − 62.09
ZINC67910260  − 184.76  − 56.45 189.52  − 22.90  − 74.59
Telaprevir  − 212.35  − 14.69 138.60  − 24.78  − 113.22

Fig. 14  Diagram of binding energy changes during the last 20  ns 
of simulation time.  Mpro in complex with ZINC61991204 (green), 
ZINC67910260 (orange), and telaprevir (blue)
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making a stable complex between a small molecule like 
ZINC61991204 or ZINC67910260 and  Mpro active site. Free 

energy components of the complexes were further inspected 
for evaluating types of energy in making complexes by the 
g_mmpbsa method. It was revealed that molecular mechan-
ics interaction energy was favorable and solvation energy 
(the sum of polar solvation energy and SASA energy) was 
unfavorable regarding formation of  Mpro-ligand complex. In 
fact van der Waals and electrostatic energies were negative, 
and solvation energy was positive in all  Mpro-ligand com-
plexes. The value of van der Waals energy was higher than 
that of the electrostatic energy.

By g_mmpbsa contribution of all residues of the protein 
to the binding energy was calculated. Most of the residues 
that were found to be important in ligand-receptor inter-
action based on docking studies had negative values in 
dynamic simulation study too, while a few of these residues 
showed little or almost no contribution. Beside these resi-
dues, some new residues were found to have a high contri-
bution to the binding energy. Because of dynamic behavior 
of macromolecules and their ligands, it is quite expected to 
see new intermolecular interactions between receptor and 
ligand during dynamic simulations studies that were not 
noticed in docking studies. Accordingly in this study, new 
residues were found in dynamic simulation study that based 
on docking studies, their role in ligand-receptor interaction 
was not identified. Four residues including His41, Met49, 
Cys145, and Glu166 had large contribution to the binding 
energy in all complexes. In  Mpro-ZINC61991204 complex, 
The25, His41, and Glu166 had the most negative contribu-
tion, and Met49, Cys145, Met165, and Asp187 had the most 
positive effect to the binding energy. In  Mpro-ZINC67910260 
complex, Arg40, Asn142, Glu166, and His172 had the most 
negative contribution, and Met49, Leu141, Cys145, Met165, 
and Asp176 had the most positive effect to the binding 
energy (Figs. 15 and 16).

Fig. 15  Contribution of  Mpro residues to the binding energy (KJ/mol). 
 Mpro-ZINC61991204 complex (A) and  Mpro-ZINC67910260 complex 
(B)

Fig. 16  Residues with the larg-
est and smallest contribution to 
the binding energy (KJ/mol) of 
 Mpro-ZINC61991204 complex 
(A) and  Mpro- ZINC67910260 
complex (B)
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Conclusion

Mpro-telaprevir complex was used for developing a structure-
based pharmacophore model by using pharmit. “ZINC Natu-
ral Products” was screened, and 288 compounds were filtered 
according to pharmacophore features. After applying Lipinski’s 
rule of five, this number reduced to 68. In the next step, physico-
chemical descriptors were computed to predict ADME param-
eters, and then the selected compounds were screened accord-
ing to their predicted toxicity which resulted in 15 compounds. 
These compounds were docked to the active site of  Mpro, and 
those with the highest binding scores and better interaction 
were selected. Accordingly ZINC61991204, ZINC67910260, 
ZINC61991203, and ZINC08790293 were selected for further 
analysis to evaluate their dynamic behavior in complex with 
 Mpro. The result of dynamic studies showed that ZINC61991203 
and ZINC08790293 dissociated from  Mpro active site after 7 ns; 
however, ZINC426421106 and ZINC5481346 were stable. So 
the simulation time was extended for another 90 ns to better 
understand the behavior of these compounds in the active site 
of  Mpro. These compounds were stable in extended simulation 
time too. In the next steps, RMSD, RMSF, Rg, and number of 
hydrogen bonds were calculated, and MM/PBSA analysis was 
done. The result of all the analysis indicated that ZINC61991204 
and ZINC67910260 are drug-like and nontoxic and have a high 
potential for inhibiting  Mpro. In our ongoing investigation, we 
are going to experimentally evaluate  Mpro inhibitory activity of 
these two proposed compounds hoping these compounds could 
serve as appropriate hit molecules for the development of  Mpro 
inhibitors as anti-SARS-CoV-2 agents.
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