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Normalized sensitivity 
of multi‑dimensional body 
composition biomarkers for risk 
change prediction
A. Criminisi  1,3*, N. Sorek2 & S. B. Heymsfield3,4

The limitations of BMI as a measure of adiposity and health risks have prompted the introduction 
of many alternative biomarkers. However, ranking diverse biomarkers from best to worse remains 
challenging. This study aimed to address this issue by introducing three new approaches: (1) a 
calculus-derived, normalized sensitivity score (NORSE) is used to compare the predictive power of 
diverse adiposity biomarkers; (2) multiple biomarkers are combined into multi-dimensional models, 
for increased sensitivity and risk discrimination; and (3) new visualizations are introduced that 
convey complex statistical trends in a compact and intuitive manner. Our approach was evaluated 
on 23 popular biomarkers and 6 common medical conditions using a large database (National Health 
and Nutrition Survey, NHANES, N ~ 100,000). Our analysis established novel findings: (1) regional 
composition biomarkers were more predictive of risk than global ones; (2) fat-derived biomarkers 
had stronger predictive power than weight-related ones; (3) waist and hip are always elements of the 
strongest risk predictors; (4) our new, multi-dimensional biomarker models yield higher sensitivity, 
personalization, and separation of the negative effects of fat from the positive effects of lean mass. 
Our approach provides a new way to evaluate adiposity biomarkers, brings forth new important 
clinical insights and sets a path for future biomarker research.

Body composition is associated with cardiorespiratory fitness and longitudinal health outcomes1,2. Excess adipos-
ity impairs functional performance, is a major risk factor for developing chronic diseases, and is often accompa-
nied by poor self-esteem3–7. The increased risk of chronic diseases that accompany excessive fat accumulation 
is the leading cause of death globally and contributes to an estimated $210 billion in medical costs in the US 
annually8,9.

In clinical practice, health risk levels are defined using body mass index (BMI), where adults with BMI ≥ 25 
and ≥ 30 kg/m2 are classified as overweight and obese, respectively10–12. However, BMI cannot discern the fat 
component of body mass from lean tissues, which often leads to risk level misclassification13,14.

Alternative biomarkers are being designed that focus on global or regional body fat and lean mass, rather than 
weight. Some of these biomarkers use raw measurements such as waist circumference (WC)15. Others combine 
measurements together into ratios or more complex formulae, as for example Percentage Body Fat (PBF)16, 
Waist-to-Hip Ratio (WHR)3, fat-free mass index (FFMI)17, A Body Shape Index (ABSI)18 and Relative Fat Mass 
(RFM)19. However, the important question remains which biomarker or combination of biomarkers is best at 
predicting health risks, and for which condition.

This paper presents a new, simple and effective technique to assess existing biomarkers and their combina-
tions, in terms of their risk predictive power.

Popular techniques to assess biomarkers use a simple disease classifier/detector obtained by thresholding a 
biomarker value, and measurements extracted from the associated confusion matrix (aka contingency table)20. 
Specificity, sensitivity and area under the ROC curve (also called c-statistics) are some of the most common such 
measurements21–25. Those approaches try to design or assess biomarkers that work well for detecting disease. In 
such prior work, the focus is on answering the question “Does my patient have condition C or not?”.

In contrast, our study aimed to answer a different question: “What body composition biomarker should I 
change, and by how much to achieve the largest reduction in my health risks?”. This question is most naturally 
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answered by using differential calculus26. We introduce the Normalized Sensitivity score (NORSE), a new measure 
of risk change that is based on the established mathematical tool of sensitivity analysis27. Note that here the term 
“sensitivity” is intended as the rate of change of a dependent variable with respect to an independent one28,29 
and is different from sensitivity as the True Positive Rate of a classifier21. Because of its focus on risk changes, 
the NORSE tool may be used to help people to take up healthier lifestyles and behaviors.

Unlike existing detection-based approaches, NORSE is designed to measure the rate of change of a health 
risk (e.g., prevalence of hypertension) with respect to changes in an input biomarker (e.g., body fat mass). We 
do not propose new biomarkers, rather a new way of evaluating and ranking existing biomarkers based on their 
sensitivity of prevalence.

Traditionally, researchers have tried to create strong biomarkers by combining together simpler ones through 
various hand-designed formulae22,30,31; This is the case for ABSI18 and RFM19. In contrast, here we propose to 
combine multiple raw biomarkers together through joint, multi-dimensional statistical models. We discover that 
2D models (association of two biomarkers with one condition) yield higher discrimination and personalization 
than 1D models (association of one biomarker with one condition); and that they enable the separation of the 
negative effects of fat mass from the positive effects of muscle mass on people’s health risks.

Our results are validated on large datasets of participants (subsets of NHANES N ~ 100 K) and explained via 
new, compact, and intuitive visualizations.

Methods
Participants.  All analyses in this study were conducted using the NHANES dataset32, collected by the 
Center for Disease Control and Prevention (CDC) between the years 1999 and 2020. The dataset comprises a 
total of more than 100,000 unique participants with data related to: demographics, body composition, fitness 
habits, eating habits and medical conditions. Our analysis focuses on the adult population only (ages between 
20 and 110). The Supplementary Material available online presents a detailed accounting of the NHANES study 
design, participant selection, sample size and participants demographic characteristics.

Health conditions.  This study considers 6 common health conditions: hypertension, diabetes, high choles-
terol, arthritis, coronary heart disease and cancer (general malignancy). Being positive to a condition is assessed 
via participants’ own answers to questions like: “Has a doctor ever told you that you have diabetes?”, as defined 
in the NHANES protocol (see Supplementary Material). The lack of an official diagnosis likely adds noise to our 
results, but aggregating statistics over a relatively large number of participants mitigates that issue.

Body composition biomarkers.  This study analyzes the predictive power of 23 biomarkers, amongst 
which: BMI, WHR, ABSI, PBF and RFM. The full list of biomarkers and their description is in the Supplemen-
tary Material. We have organized all biomarkers into three groups: global body composition biomarkers (e.g., 
BMI, PBF, total body weight), composition biomarkers based on regional measurements (e.g., percent trunk 
fat, waist circumference, WHR), and biomarkers that are less strongly associated with body composition (e.g., 
standing height and leg length).

Statistical models for risk change prediction.  Here we present two different types of risk change pre-
diction models. 1D models are those where we study the association between one medical condition and one 
input biomarker. In 2D models, we have one medical condition and two input biomarkers. Multi-dimensional 
models combine multiple biomarkers using a joint statistical model, rather than trying to compress their infor-
mation into a single, scalar output. Examples of 1D and 2D biomarker models are illustrated in Fig. 1. Notice that 
in theory, it is possible to extend our models to a dimensionality higher than 2. However, the limited amount of 
data in NHANES and the so called “curse of dimensionality” would yield noisier results33.

Distribution and prevalence maps.  Our biomarker models are visualized via two types of visualizations: 
“population distribution maps” (aka d-maps) and “condition prevalence maps” (aka p-maps).

d‑map.  A distribution map reports the probability distribution of a population as a function of input biomark-
ers (Fig. 1A, C). Each cell in a d-map reports the total number of people with the biomarker B within a given 
range (e.g.,B ∈ [18.5, 25]), both in absolute terms (e.g., ncell = 5166 participants) and as a percentage of the total 
population (e.g., ncell

ntot
= 21.0% ). A d-map is visualized via a white-blue-purple colormap where white denotes 0% 

and purple denotes the maximum probability for that map.

p‑map.  A prevalence map reports the prevalence of a given medical condition C as a function of a biomarker 
B (Fig. 1B, D). We have ncell participants in a cell, out of which ncond are positive for the condition C . The cell 
reports the condition prevalence PC =

ncond
ncell

 as a percentage. A p-map is visualized via a grey-green-yellow–
red colormap, with green indicating low prevalence and vice-versa for red. In d-maps and p-maps cells with 
ncell < 40 or ncell

ntot
< 0.2% are left empty to reduce noise associated with small counts.

Sensitivity of prevalence with respect to input biomarkers.  In this study we explore associations 
between changes in biomarkers (the independent variable B ), and the corresponding change in condition preva-
lence (the dependent variable P ). For this, we use derivative-based sensitivity analysis34. Illustrative examples are 
presented in Fig. S2 of the Supplementary Material. For a given amount of change �B in the X axis, the corre-
sponding change �PC in Y  depends on the slope of the curve at that point (it is a local analysis). Sensitivity is 
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defined as the partial derivative SCB =
∂Pc
∂B

 (in the continuous domain). The higher the SCB value, the larger the 
influence of the input biomarker onto the condition prevalence. More generally, B ∈ Rn is an n-dimensional 
biomarker vector, and SCB is the associated gradient vector SCB =

[

∂Pc
∂B1

,
∂Pc
∂B2

, . . . ,
∂Pc
∂Bn

]

.
Derivatives and gradients capture only local sensitivity of functions with respect to independent variables. 

However, our experiments show a roughly linear relationship between disease prevalence and various biomark-
ers, thus justifying our approach (see examples in Fig. S3 of the Supplementary Material).

Normalized sensitivity to predict risk changes.  In general, different biomarkers have different meas-
urement units and vary in their value ranges. For example, for the standing height biomarker, we typically have 
B ∈ [140, 220] cm for adults, while for BMI we have B ∈ [10, 60] kg/m2 . To compare sensitivities of diverse 
biomarkers with one another we first need to map their values to a canonical range. We do so via a normalized 
sensitivity score (namely NORSE) which we define as follows. A biomarker B measured in our population has 
mean µB and standard deviation σB . Thus, its z-score35 is X =

B−µB

σB
 . The z-score of a measurement represents 

its distance (in terms of number of standard deviations) from the mean. By the chain rule, the sensitivity with 
respect to the z-score X (i.e., the NORSE measurement NCB ) is defined as NCB =

∂Pc
∂B

∂B

∂X
= σBSCB . The NORSE 

Figure 1.   1D and 2D biomarker models. (A) A 1D d-map for a given population. (B) The corresponding 1D 
p-map for a condition C of interest. (C) A 2D d-map for a given population. (D) The corresponding 2D p-map. 
NORSE scores are indicated at the end of each row and column.
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score is a unit-less number and can now be used to compare the risk predictive power of diverse biomarkers with 
respect to one another.

Normalized sensitivity in maps.  For consistency and to aid comparisons, the length of the sides of each cell in 
our visualization maps are set to 12σB (see Fig. 1). The blue and brown numbers on the side of a p-map are the 
NORSE scores computed for each row and column, respectively. Small NORSE values ( |NCB| < 2 ) are hidden to 
remove noise in the visualizations. Notice how in the example in Fig. 1D the NCB1 sensitivities (blue) are negative, 
while the NCB2 ones (brown) are positive. This important effect will be discussed in detail in the results section.

All methods were performed in accordance with the relevant guidelines and regulations.

Meeting presentation.  This work has not been published or presented elsewhere.

Results
Our modeling approach yielded five main new findings: (1) waist and hip circumferences used either in a ratio 
or within a 2D joint model yield the strongest predictive power; (2) fat-derived biomarkers have a stronger pre-
dictive power than weight-related ones such as BMI and total body weight; (3) regional body fat biomarkers are 
more predictive of health risks than global fat measurements; (4) 2D biomarker models produce smaller and more 
homogeneous cohorts than 1D ones which, in turn, leads to higher sensitivity, discrimination and personaliza-
tion of health risks; and (5) 2D biomarker models help us explain the “obesity paradox” as the effect of control-
ling separately for fat mass and lean mass. These observations are enumerated upon in the sections that follow.

Predicting health risk changes from individual biomarkers.  The NORSE scores for 23 biomarkers 
and 6 medical conditions for adult men and women are shown in Table 1. The last column reports NORSE scores 
averaged across conditions and genders. Such values are used to rank list all biomarkers.

According to these results, WHR is the strongest health predictor, in the sense that normalized changes to 
WHR are associated with the largest changes in condition prevalence. The waist-to-thigh ratio is second, ABSI 
is third and RFM is fourth. BMI is in the middle of the table and total body weight lower still. Standing height 

Table 1.   Ranking of 1D biometric models. Normalized sensitivities (NORSE) values calculated for 23 different 
biomarkers (in rows) and 6 different conditions (in columns), for adult men and women. Average NORSE 
values for each gender are in bold.

Biomarker 
ranking

Men Women Average 
NORSE 
across 
gendersBiomarker Hypertension Arthritis Diabetes

High 
cholesterol

Coron. 
heart dis Cancer

Average 
NORSE Biomarker Hypertension Arthritis Diabetes

High 
cholesterol

Coron. 
heart dis Cancer

Average 
NORSE

Regional composition biomarkers

1 WHR 14.3 10.8 11.5 12.4 3.3 2.7 9.2 WHR 13.4 9.6 7.9 10.6 1.2 3.2 7.7 8.4

2 WThR 12.6 11.6 8.3 7.6 4.6 5.1 8.3 WThR 10.6 9.3 9.4 8.7 1.3 2.4 7.0 7.6

3 ABSI 10.6 9.2 6.1 8.6 3.6 5.7 7.3 ABSI 7.5 7.6 4.9 7.2 1.4 2.8 5.2 6.3

4 RFM 11.9 7.8 7.0 9.0 2.1 1.6 6.6 RFM 12.6 9.2 7.5 5.7 0.6 1.0 6.1 6.3

5 WeThR 11.6 7.2 6.2 7.0 2.5 1.2 6.0 WeThR 12.5 8.3 8.2 3.5 0.7 1.0 5.7 5.8

6 WHtR 9.8 6.9 6.7 6.9 1.5 1.0 5.5 WHtR 11.3 8.2 7.3 3.6 0.4 1.1 5.3 5.4

7 BAI 9.7 6.1 6.6 6.2 2.1 1.6 5.4 BAI 9.8 9.1 5.0 3.9 0.9 0.9 4.9 5.2

8 PTF 10.5 6.4 4.8 9.2 2.0 1.7 5.8 PTF 9.5 7.4 4.1 5.4 0.6 1.0 4.7 5.2

9 Waist circ 9.8 6.4 6.6 6.5 0.9 0.7 5.2 Waist circ 11.3 7.5 6.5 3.0 0.5 0.4 4.9 5.0

10 Hip circ 10.8 7.4 4.9 6.6 0.6 1.5 5.3 Hip circ 9.0 8.9 5.1 1.6 0.3 0.1 4.2 4.7

Global composition biomarkers

11 PBF 8.7 6.0 4.3 6.2 1.4 1.6 4.7 PBF 9.6 7.5 2.7 5.2 0.3 0.9 4.4 4.5

12 FTL 8.4 5.8 4.0 6.4 1.4 1.8 4.6 FTL 9.6 7.6 2.8 4.9 0.3 0.9 4.4 4.5

13 FMI 7.4 3.2 4.6 4.7 0.7 0.4 3.5 FMI 9.7 6.7 3.7 2.9 0.0 0.4 3.9 3.7

14 PI 8.7 4.2 5.1 5.0 0.8 − 0.1 4.0 PI 8.4 6.8 5.2 0.9 0.2 − 0.4 3.5 3.7

15 BMI 7.9 4.6 5.3 4.4 0.7 − 0.3 3.8 BMI 8.4 5.3 5.4 0.1 0.0 − 0.7 3.1 3.4

16 Weight 6.8 4.1 4.5 2.9 0.2 − 0.7 3.0 Weight 6.3 3.8 4.1 − 0.2 − 0.3 − 0.8 2.2 2.6

17 FFMI 5.6 1.5 3.2 3.8 − 0.1 − 1.5 2.1 FFMI 8.1 3.9 4.9 − 0.1 − 0.2 − 0.5 2.7 2.4

Non compos. biomarkers

18
Upper arm 
len

5.5 3.7 2.0 2.3 0.8 1.8 2.7
Upper arm 
len

5.4 3.8 2.1 0.3 0.1 0.6 2.1 2.4

19 Bicep circ 4.9 1.7 3.0 1.8 − 0.6 − 1.7 1.5 Bicep circ 7.6 3.8 4.4 1.8 − 0.1 − 1.2 2.7 2.1

20
Max calf 
circ

2.6 − 0.1 0.8 1.4 − 1.1 − 2.4 0.2
Max calf 
circ

0.9 − 0.7 − 1.0 − 3.2 − 0.7 − 2.0 − 1.1 − 0.5

21 Thigh circ 1.8 − 1.8 − 0.7 0.0 − 1.9 − 2.7 − 0.9 Thigh circ 3.8 − 0.4 − 0.3 − 2.7 − 0.7 − 1.4 − 0.3 − 0.6

22 Height − 0.9 − 0.3 − 1.5 − 2.0 − 0.7 0.0 − 0.9 Height − 4.2 − 3.2 − 2.4 − 4.2 − 0.6 − 0.1 − 2.5 − 1.7

23 Leg length − 5.2 − 4.1 − 4.8 − 5.2 − 1.9 − 1.7 − 3.8 Leg length − 7.3 − 6.4 − 6.3 − 6.7 − 1.1 − 1.3 − 4.9 − 4.3

Avg NORSE 7.6 4.7 4.3 4.9 1.0 0.8
Avg 
NORSE

7.6 5.4 4.0 2.3 0.2 0.4
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and leg length have slightly negative NORSE scores, suggesting that tall people with long legs are statistically 
associated with lower health risks.

Interestingly, the top performing biomarkers are all regional ones; specifically, measurements associated with 
abdominal fat (e.g., WHR, ABSI, RFM, PTF). In the middle of the table we have global composition biomarkers 
(e.g. PBF, FMI, BMI); and at the bottom, biomarkers that do not correlate much with body composition (e.g., 
standing height, leg length). NORSE scores were able to cluster all biomarkers into these three groups automati-
cally. Note that PBF is the strongest of the global adiposity biomarkers.

The bottom row in the table reports column-wise average NORSE scores. Their value indicates which health 
conditions are “easier” to predict from individual biomarkers. In our results, hypertension shows the largest 
average NORSE, and cancer the lowest.

Age stratification analysis.  As an example, the tables in Fig. 2 show diabetes prevalence with respect to WHR, 
for men and women and for different age brackets. As age increases diabetes prevalence increases, on average. 
The NORSE values follow a curve; they are low for young and elderly people, and they are higher in the middle. 
Very young people tend to have low diabetes risk even for high WHR values, and older people tend to have high 
prevalence, independent of WHR. People in the middle are those where changing WHR may have the greatest 
influence on their diabetes risk.

Figure 2.   Age stratification of NORSE for C = diabetes in adult men (A) and women (B). (C) NORSE curve as a 
function of age.
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Predicting health risk changes from joint, 2D biomarker models.  A 2D model associates two dis-
tinct biomarkers with the prevalence of a given condition. The example in Fig. 3 shows d-maps and p-maps for 
X = weight, Y = waist, C = diabetes for adult men and women. Notice that when fixing the weight coordinate (e.g., 
66 < weight < 76 kg for men), diabetes prevalence increases considerably (from 0.5% to 25.3%) with increasing 
waist. Also, for a fixed waist (e.g., 100 cm < waist < 108 cm for men), prevalence decreases (from 25.3 to 3.8%) for 
increasing weight. This shows two things: (1) 2D biomarker models can discriminate different levels of risk bet-
ter than using only one biomarker at a time, and (2) There are cases where increases in body weight correspond 
to improvements in health risks. Notice how all x-sensitivities (in blue) are negative, and all y-sensitivities (in 
gold) are positive.

Separating the effects of abdominal fat and lean mass.  The effect of reduced health risks with (apparent) 
increased obesity goes under the name of the “obesity paradox”36,37. Here we explain the negative weight-risk 

Figure 3.   2D biometric models for X = weight, Y = waist circumference, C = diabetes for adult men (A, B) and 
women (C, D).
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correlation by separating the negative effects of fat from the positive effects of lean mass. In our 2D model, such 
separation happens naturally by controlling for waist circumference. All participants within the same row have 
a similar waist circumference. We hypothesize that for those people, residual weight increases are mostly due to 
increases in lean muscle tissue, which tends to be associated with better health38–40. With this interpretation the 
observed prevalence trends remain explained and there is no paradox.

Risk discrimination in 2D models.  Two biomarkers can be combined together by e.g. taking a ratio (as for 
WHR) or through a joint 2D statistical model. In the former approach, some information is lost. In fact, imagine 
two people, one has waist = 81 cm, hip = 90 cm and the other has waist = 108 cm, hip = 120 cm. They have the 
same WHR = 0.9 but very different risk levels (see Fig. S5 in Supplementary Material). Generally, Multi-dimen-
sional models yield higher risk discrimination than 1D ones, as shown next.

Ranking 2D biomarker models based on NORSE scores and NORSE separation.  Our 23 biomarkers combine 
into 253 valid pairs. Each pair defines a 2D model, for which we measure its NORSE scores, across two genders 
and 6 health conditions. NORSE scores are calculated for both biomarkers (both along the x and along the y 
dimensions). For many models, one of those scores tends to be strongly negative (increasing biomarker corre-
lates with reduced risks) and the other strongly positive (increasing biomarker correlates with increased risks). 
We hypothesize that their difference (namely NORSE separation) relates to the model’s ability to discriminate the 
negative effect of fat from the positive effect of lean mass.

Table 2 presents results for the 10 models with the largest NORSE separation. The right-most column reports 
average NORSE separations across conditions and genders. Those values are used to rank all biomarker pairs. 
Notice that for many 2D models, their average NORSE scores are higher than those of the 1D models (max avg 
NORSE is < 10 in Table 1, and > 19 in Table 2). In fact, keeping the input biomarkers separate (as opposed to 
fusing them together into a single output) allows us to subdivide the participants population into smaller and 
more homogeneous cohorts, for higher risk discrimination.

Table 2.   Ranking of 2D biometric models. NORSE values calculated for 10 different biomarker pairs (in rows) 
and 6 health conditions (in columns), for adult men and women. In average 2D models yield higher NORSE 
values than in 1D models. Average values for each gender are in bold.

Biomarker 
ranking

Men Women Average 
separation 
across 
gendersBiomarker Hypertension Arthritis Diabetes High chol.

Cor 
heart 
dis Cancer Averages Biomarker Hypertension Arthritis Diabetes High chol.

Cor 
heart 
dis Cancer Averages

1

X hip − 15.1 − 12.1 − 19.5 − 25.1 − 5.2 − 6.4 − 13.9 X hip − 15.1 − 9.8 − 10.6 − 16.1 − 1.3 − 1.1 − 9.0

28.4Y waist 26.4 20.5 23.6 29.7 8.0 7.6 19.3 Y waist 25.3 20.5 14.0 19.5 3.5 4.0 14.5

NORSE sep 41.5 32.7 43.1 54.8 13.2 14.1 33.2 NORSE sep 40.4 30.2 24.7 35.6 4.8 5.1 23.5

2

X thigh − 19.6 − 16.7 − 13.7 − 10.7 − 8.3 − 9.1 − 13.0 X thigh − 16.2 − 14.3 − 9.7 − 17.6 − 3.2 − 6.7 − 11.3

25.6Y BMI 21.0 17.9 11.3 16.5 7.0 5.3 13.2 Y BMI 22.7 20.2 16.0 18.0 3.4 1.6 13.7

NORSE sep 40.7 34.6 25.0 27.2 15.3 14.4 26.2 NORSE sep 38.9 34.5 25.7 35.6 6.6 8.4 25.0

3

X weight − 12.2 − 12 − 9.4 − 14 − 7 − 7.3 − 10.3 X weight − 12.2 − 12 − 10.3 − 13.1 − 3.2 − 5.2 − 9.3

24.8Y waist 23.1 18.7 18.1 19.8 9.1 8.9 16.3 Y waist 22.7 18.3 16.3 17.3 2.7 5 13.7

NORSE sep 35.3 30.6 27.5 33.7 16.1 16.3 26.6 NORSE sep 34.9 30.3 26.6 30.4 5.9 10.1 23.0

4

X weight − 21.6 − 19.1 − 10.6 − 8.3 − 8.3 − 8.7 − 12.8 X weight − 13.7 − 15.2 − 13.4 − 11.1 − 1.4 − 4.7 − 9.9

24.4Y thigh 20.4 19.1 10.5 13.3 7.0 9.1 13.2 Y thigh 19.9 19.1 13.4 16.9 2.2 5.7 12.9

NORSE sep 42.0 38.2 21.1 21.7 15.3 17.8 26.0 NORSE sep 33.7 34.4 26.8 28.0 3.7 10.3 22.8

5

X PI − 11.8 − 16.3 − 7 − 11.6 − 6.6 − 10.4 − 10.6 X PI − 7.3 − 5.2 − 9.3 − 13.2 − 2.8 − 4.6 − 7.1

23.3Y WHtR 24.7 22.7 15.3 17.3 7.5 10.6 16.4 Y WHtR 18.1 15.9 15.1 14.8 3.3 7.6 12.5

NORSE sep 36.5 39.0 22.4 28.9 14.1 21.0 27.0 NORSE sep 25.3 21.1 24.4 28.1 6.1 12.2 19.5

6

X BAI − 11.6 − 13.5 − 6.9 − 15.7 − 3.2 − 6.5 − 9.6 X BAI − 6 − 1.8 − 9.8 − 10.8 − 1.6 − 0.5 − 5.1

22.7Y WHtR 23.9 19.2 15.1 26.9 6.1 6.5 16.3 Y WHtR 25.9 19.5 13.1 19.2 2.4 6.8 14.5

NORSE sep 35.5 32.7 21.9 42.6 9.2 13.0 25.8 NORSE sep 31.8 21.3 22.9 30.0 4.0 7.3 19.6

7

X PI − 10.1 − 13.4 − 7.1 − 7.9 − 4.8 − 8.6 − 8.7 X PI − 7.1 − 6.9 − 4.7 − 8.0 − 2.3 − 6.4 − 5.9

22.6Y RFM 26.7 25.4 19.5 18.6 8.8 10.1 18.2 Y RFM 18.1 17.3 15.4 16.0 2.2 6.1 12.5

NORSEsep 36.7 38.9 26.5 26.5 13.6 18.7 26.8 NORSE sep 25.3 24.1 20.1 24.0 4.5 12.5 18.4

8

X hip − 7.0 − 4.9 − 12.6 − 14.2 − 5.5 − 2.6 − 7.8 X hip − 11.8 − 12.7 − 10.6 − 15.7 − 1.3 − 1.5 − 8.9

22.5Y WHtR 16.0 12.5 20.8 25.0 7.7 4.6 14.4 Y WHtR 23.9 17.8 13.7 18.7 3.4 4.9 13.7

NORSE sep 23.0 17.4 33.4 39.2 13.2 7.2 22.2 NORSE sep 35.7 30.4 24.3 34.4 4.8 6.5 22.7

9

X BAI − 10.1 − 12.7 − 8.7 − 14.8 − 3.8 − 6.2 − 9.4 X BAI − 7.9 − 3.1 − 6.5 − 13.0 − 1.2 − 3.7 − 5.9

22.3Y RFM 22.5 16.9 18.0 21.5 5.5 6.9 15.2 Y RFM 25.2 17.0 16.6 18.2 2.7 4.5 14.0

NORSE sep 32.6 29.6 26.7 36.3 9.3 13.1 24.6 NORSE sep 33.1 20.1 23.1 31.2 3.9 8.2 19.9

10

X BMI − 11.7 − 15.4 − 9.4 − 7.8 − 7.1 − 8.4 − 10.0 X BMI − 7.5 − 8.7 − 6.8 − 12.1 − 2.9 − 6.2 − 7.4

22.2Y WHtR 19.5 19.8 15.0 12.9 7.8 9.7 14.1 Y WHtR 18.4 17.6 14.4 17.3 2.9 7.7 13.1

NORSE sep 31.2 35.2 24.4 20.6 14.9 18.0 24.1 NORSE sep 25.9 26.3 21.3 29.4 5.8 13.9 20.4
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For both men and women, the largest NORSE separation is achieved by the hip–waist joint model. This 
confirms the power of using waist and hip circumferences for risk prediction (see Table 1).

The weight‑waist 2D model.  The NHANES dataset does not contain many measurements of hip circumferences 
(n = 2402 for men, n = 2523 for women valid measurements when intersected with C = hypertension). The pair 
weight-waist is amongst the best in terms of NORSE separation, but with one order of magnitude more measure-
ments (n = 23,726 for men, n = 25,437 for women for C = hypertension). More data ensures lower measurement 
noise and more confident results. For that reason, our next example focuses on the weight-waist model.

Figure 4 shows p-maps for C = cancer (A, B) and C = hypertension (C, D) for adult men. In panel A, for a fixed 
weight the cancer prevalence increases with increasing waist circumference. When fixing the waist, the prevalence 
decreases with increasing weight. Panel B shows the same trends even after removing smokers from our analysis. 
Smokers here are detected through the SMQ020 NHANES code (“Smoked at least 100 cigarettes in life”). Similar 
results apply to hypertension (panel C, D), and same trends have been observed for the other four conditions, 
with or without smokers in the analysis. Age stratification results are presented in the Supplementary Material.

Figure 4.   Prevalence maps and average NORSE scores for X = Weight, Y = Waist, C = cancer, for adult men. (A) 
including smokers. (B) excluding smokers. (C, D) Same as above but for hypertension.
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Discussion
This study introduces a new way of assessing the strength of biomarkers as predictors of health risk changes. In 
contrast to AUC-ROC type techniques, here we estimate how much changes in input biomarkers affect changes 
in health risks. We achieve that through a new normalized sensitivity score.

The results in this paper show that when used in isolation, WHR is the biomarker with the strongest “effect” 
(in a sensitivity sense) on the risks of common health conditions. However, a high sensitivity also means that a 
small error in the input measurement is likely to have a large, detrimental effect on the accuracy of the output 
health risk.

For example, imagine that someone has waist = 85 cm and hip = 100 cm (thus WHR = 0.85), but those quanti-
ties are measured as waist = 87.5 cm, hip = 97.5 cm. Therefore, the WHR is erroneously measured as WHR = 0.9. 
A 2.5 cm error on the input biomarkers translates into a 0.05 error on the output WHR, which for adult men 
(Fig. 2A) translates into a large, 9% error on hypertension risk. These observations, exposed by the analyses 
reported herein, lead us to argue that to benefit from the increased sensitivity of our models, it is necessary to 
use state-of-the-art digital anthropometrics technology to increase input accuracy and thus the accuracy of risk 
predictions. Much literature discusses errors of measurements obtained using a measuring tape for example41–43. 
Recent progress in computer vision and photogrammetry offers accurate and inexpensive tools for measuring 
body composition and anthropometrics through optical scanners or even conventional smartphones44–50.

Limitations.  Limitations of the analysis presented here include: examination of cross-sectional data only, 
no longitudinal studies; establishing statistical associations rather than mechanistic understanding of cause and 
effect; lack of an official diagnosis for health conditions with reliance only on participants self-reported answers 
to a questionnaire; limited population size; treating diabetes as a single condition without distinction between 
type I and type II (by far the most common); and use of disease prevalence as a proxy for health risks.

Conclusions
This study advances a new way of estimating the power of different body composition biomarkers when predict-
ing health risk changes. Our results indicate that waist and hip circumferences, either used in a ratio or in a joint 
2D model, hold the strongest predictive power. In general, regional body composition biomarkers produce the 
best results. We also show how joint biomarker models provide further resolution, prediction accuracy and the 
possibility to separate the negative effects of body fat from the positive effects of muscle mass. Our joint models 
help explain the “obesity paradox” via conventional statistical analysis.

We believe that our findings will lead to a better understanding of obesity, its causes and its effects on people’s 
health. Also, focusing on sensitivity measures may help individuals understand what behavior changes affect 
their health the most, and embrace healthier habits. Finally, combining our findings with emerging technol-
ogy for body scanning and anthropometrics measurements promises to advance the way we assess obesity and 
associated health risks for everyone.

Data availability
The data used in this study can be downloaded from the Center for Disease Control and Prevention website at 
https://​www.​cdc.​gov/​nchs/​nhanes/​index.​htm.
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