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Conformal properties 
of hyperinvariant tensor networks
Matthew Steinberg1,2* & Javier Prior3,4

Hyperinvariant tensor networks (hyMERA) were introduced as a way to combine the successes of 
perfect tensor networks (HaPPY) and the multiscale entanglement renormalization ansatz (MERA) 
in simulations of the AdS/CFT correspondence. Although this new class of tensor network shows 
much potential for simulating conformal field theories arising from hyperbolic bulk manifolds with 
quasiperiodic boundaries, many issues are unresolved. In this manuscript we analyze the challenges 
related to optimizing tensors in a hyMERA with respect to some quasiperiodic critical spin chain, 
and compare with standard approaches in MERA. Additionally, we show two new sets of tensor 
decompositions which exhibit different properties from the original construction, implying that 
the multitensor constraints are neither unique, nor difficult to find, and that a generalization of the 
analytical tensor forms used up until now may exist. Lastly, we perform randomized trials using a 
descending superoperator with several of the investigated tensor decompositions, and find that the 
constraints imposed on the spectra of local descending superoperators in hyMERA are compatible 
with the operator spectra of several minimial model CFTs.

Tensor networks have proven to be excellent theoretical tools for investigating different aspects of many-body 
quantum entanglement at low energies for local Hamiltonians. Due to their success, tensor networks have found 
applications in many different fields, some of which may not be obvious from the original motivation of tensor-
network theory1–4. Although many different models have emerged over the years (with such notable examples 
as MPS, PEPS, and TTN) proving to be very useful for the parameterization of local, gapped Hamiltonians5,6), 
tensor networks such as the multiscale entanglement renormalization ansatz (or MERA) have also proven to be 
useful in the simulation of quantum critical lattice models7; such work also concerns the study of conformal field 
theory (or CFT)7–13 and the AdS/CFT correspondence14–16.

Although many of the details of these tensor networks are quite distinct, the fundamentals remain the same: 
a tensor network is an efficient parameterization of certain classes of states, determined in turn by the geometry 
evoked in the network, which takes the form of a diagrammatic representation of the entanglement degrees of 
freedom for a quantum state. The actual network consists of a series of tensors that are related via interconnected 
contractions and open indices. The open indices of the tensor network are attributed to the physical degrees of 
freedom of the system in question. Contractions between these tensors in a tensor-network geometry help to 
define the particular auxiliary degrees of freedom of a quantum system in the form of quantum entanglement. 
It is using this method that very large Hilbert spaces can be broken down into parameterizations for only very 
specific parts of this large Hilbert space. Such quantum states generally obey an area law, in which the entan-
glement entropy of a subsystem scales with its associated boundary area, and not like its volume. However, it 
is well-known that quantum critical systems violate the area law of entanglement entropy1,17 by way of intro-
ducing a logarithmic correction term; the MERA has been used to great effect in this area of active theoretical 
research2,7–12,18. A brief review of MERA is given in Appendix 1, with examples shown in Fig. 8.

It was first noted in19,20 that MERA exhibits some similarities with the AdS/CFT correspondence14–16, as it 
was already used successfully for extracting conformal data from a quantum critical lattice system. However, it 
has been shown by the work of21–25 that MERA exhibits preferred directionality due to requirements imposed 
on isometric and unitary tensors in the tensor network; these arguments rely on the fact that the tensor network 
can be viewed as a toy-model analog to a hyperbolic-bulk discretization of AdS space. Preferred directionality 
is generally not a feature of uniform bulk AdS space. Additionally, other research works have suggested that 
tensor-network analogs that exhibit a holographic duality can be better studied in systems with impurities or 
disorder23,25–27.
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A few years later, following the work of Harlow et al.28, a new proposal for a toy model of holography was 
published29, as shown in Fig. 9 of Appendix 2. Perfect tensor networks were developed in part due to observations 
that bulk-local operators act on particular subspaces of the boundary CFT, much in the same way that a quantum 
error correction code utilizes local-logical operators to project and encode onto subspaces of a quantum system. 
Perfect tensor networks realize many aspects of the AdS/CFT correspondence, such as an exact, discretized 
version of the Ryu–Takayanagi formula30–32. However, perfect tensor networks inscribed on periodic bounda-
ries become problematic when calculating n-point correlation functions. Due in part to the ease of describing 
stabilizer states in a perfect tensor network, any 2-point correlation function will result in a trivial phase. This 
behavior is not typically seen in a CFT-groundstate, which generally exhibits long-range quantum entanglement. 
The existence of algebraically decaying correlation functions33 are a necesary condition for simulation of CFT-
groundstates. Jahn et al. found that quasiperiodic boundaries of regular hyperbolic tilings can, on average, give 
rise to correlation function decays and average entanglement entropy scaling that are similar to those observed 
in CFTs. As a result of their efforts, perfect tensor networks can be associated to the so-called Majorana dimer 
states in the bulk, giving rise to strongly-disordered critical spin chains on the boundary23,34–36.

In spite of the successes of both of the MERA and perfect tensor networks, one may ask whether a class of 
tensor-network ansätze exists which generalizes the desired properties of both models nontrivially. An answer 
was given with hyperinvariant tensor networks (or hyMERA)37, which proposed relaxed constraints on the bulk 
tensors of MERA; such conditions come in the form of the multitensor constraints. hyMERA networks possess 
an interesting array of features in their own right: algebraically decaying correlation functions; nontrivial entan-
glement spectra; bulk uniform-symmetry characteristics; analytical descriptions of constituent bulk isometries 
and unitaries; and the preservation of local, real-space renormalization-group steps via unitary and isometric 
tensors (as in MERA). Although a hyMERA network seems to capture many of the novel characteristics of a tes-
sellated slice of AdS spacetime in principle, there are still many technical questions to be answered that impede 
its utilization as a practical tensor-network ansatz for simulating CFTs in the setting of holography.

In this paper, we address some of these questions. Firstly, we discuss why any hyMERA tensor network is 
not currently optimizable using a local-Hamiltonian variational groundstate optimization, and discuss possible 
resolutions to this issue. Secondly, we introduce several new tensors (which we name S and T) that do not exhibit 
the same properties of the original tensors from37; indeed, these tensors are not even unitary. Using these new 
tensors, we show that many different possible solutions to the multitensor constraints can be found using only the 
original tensor-decomposition structure. These findings indicate that solutions to the multitensor constraints are 
not unique, and that a tensor generalization of the strict analytical forms for Y, Q, R, S and T may exist. Lastly, we 
perform a randomized simulation of a descending superoperator used in hyMERA with several of these tensor 
decompositions, and show that the resulting bounds on scaling dimensions encapsulate several minimal model 
CFTs. Our work shows that if both a suitable optimization scheme and tensor generalization can be developed, 
then hyMERA can be employed as a numerical tool for investigating CFTs arising from quasiperiodic critical 
spin chains.

The structure of the article is as follows: “Hyperinvariant tensor networks” provides an introduction to the 
structure of hyperinvariant tensor networks and the originally-proposed tensor decompositions. Section “Qua-
siperiodic boundaries and variational optimization” explains the difficulties associated with quasiperiodicity 
on the hyMERA boundary. In “New analytical tensor forms and bounds on CFT spectra”, we propose two new 
example tensor decompositions, and provide numerical evidence that the multitensor constraints allow for the 
scaling dimensions of several minimal model CFTs to be reproduced. In “Discussion”, we discuss these results 
and propose future research directions.

Hyperinvariant tensor networks
Hyperinvariant tensor networks (or hyMERA) have been proposed as a way to combine the most desired char-
acteristics of MERA and perfect tensor networks, with the goal of modeling the symmetry and entanglement 
characteristics of a timeslice of AdS spacetime in a discretized, toy-model setting.

A hyMERA network is constructed from a hyperbolic tessellation; examples of these tessellations can be seen 
in Fig. 1. Each hyperbolic tessellation is defined by a Schläfli number {p, q} in the bulk manifold (p represents 
the number of edges per polygon in the bulk manifold, and q is the number of edges meeting at each vertex), 

Figure 1.   The {5, 4} and {7, 3} tilings of a hyMERA network, respectively. Every hyMERA network is comprised 
of a Schläfli number {p, q} tiling that describes the geometric relationship of the bulk to its boundary.
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with the requirement that 1p + 1
q < 1

2 for hyperbolic manifolds. Each of these {p, q}-structured manifolds we 
will call parameterizations of hyMERA. The network can be arranged into concentric layers of tensors with 
which one can perform entanglement renormalization. Every concentric layer L of the hyMERA network’s 
bulk can be described as realizing a step in the scale-invariant, realspace RG-flow of a typical MERA network; 
in the thermodynamic limit, the scale factors s of the network differ significantly from MERA, depending on 
the parameterization employed. For example, {7, 3}-hyMERA and {5, 4}-hyMERA both exhibit irrational scale 
factors s = 2.618 and 3.732 , respectively.

Figure 2 describes how to build a parameterization of hyMERA, using a set of example unitaries and iso-
metries {U(A,B),W(A,B)} , which are needed in order to realize entanglement renormalization on the {p, q}
-manifold.

Every vertex and edge in a hyMERA nework consists of a set of tensors which we shall call {A,B} , where 
A corresponds to tensors with q indices, and B represents rank-2 tensors on every edge of the tessellation. 
How to decompose the set {A,B} depends on the particular tensor decomposition that is chosen; at present, the 
best-known tensor decomposition has been introduced in37. For our work, we implemented the same tensor 
decomposition in the {7, 3} and {5, 4} versions of hyMERA, which are described in detail in Fig. 2. In the solution 
provided, tensors {A,B} are constructed from a set of smaller tensors {Y ,Q,R} for the {7, 3} parameterization and 
from the set {Q,R} for the {5, 4}-parameterization. These constituent tensors take the explicit forms

(1)Yabcd =







cos θ1 0 0 i sin θ1
0 sin θ1 i cos θ1 0
0 i cos θ1 sin θ1 0

i sin θ1 0 0 cos θ1






,

Figure 2.   Subfigure (a) shows the example particular tensor decomposition solution applied to the set {A,B} 
for each of the two parameterizations of hyMERA considered in this article. The requisite relations that the set 
{Y ,Q,R} for multitensor-constraint adherence in a hyMERA network are displayed; We additionally require that 
the finite set of reduced-density matrices ρ(Rn) must also exhibit nontrivial entanglement spectra. Subfigure 
(b) shows the construction of the sets of tensors {A,B} and {U ,W} from consituent tensors {Y ,Q,R} in the {7, 3} 
parameterization. Finally, subfigure (c) displays the construction of the sets of tensors {A,B} and {U ,W} from 
consituent tensors {Q,R} in the {5, 4} version.
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The set of tensors {Y ,Q,R} are governed by five free parameters {θi}5i=1 ; moreover, the bond dimension of each 
hyMERA parameterization can be broken down into smaller constituent indices, each with a bond dimension 
that recombines in such a way so as to recover the original bond dimension seen in the tessellation37. The solu-
tion to the multitensor constraints that we used takes this form due to the fact that the set {Y ,Q,R} must adhere 
to what are known as the multitensor constraints, which are intended to provide more symmetry in the bulk of a 
hyMERA network, but at the same time to be compatible with notions of entanglement renormalization. Every 
solution to the multitensor constraints must satisfy certain general properties: 

1.	 The multitensor constraints must be parameterized by some set of so-called free-parameters {θi}ni=1.
2.	 These free parameters {θi}ni=1 must increase as the bond dimension χ of the network increases.
3.	 Finally, networks must be generated which have nontrivial entanglement spectra and correlation func-

tions. More succinctly, the entanglement spectra must depend on the free parameters, and for some n-site 
reduced-density matrix, the spectra must not be proportional to the (n× n) identity matrix In . Similarly, the 
correlation-function scaling must be algebraically-decaying.

In our tensor decomposition solution, tensors Y and R are restricted to being doubly-unitary; that is, they are 
unitary with respect to both vertical and horizontal contractions of each tensor and their Hermitian adjoint. Q, 
on the other hand, is restricted to being only unitary in nature; these relations can be explicitly written in the form

for the vertically-contracted Y tensors,

for the horizontally-contracted Y tensors,

for the vertically-contracted R tensors,

for our horizontally-contracted R tensors, and

for the only possible unitary contraction of the Q tensors. These tensor-diagrammatic relations can be visual-
ized as follows in Fig. 2. In addition, we demand that any reduced-density matrix that is defined in the bulk of 
a hyMERA network to have a nontrivial entanglement spectrum; in other words, the eigenvalues of a reduced-
density matrix must not be proportional to the identity matrix In for some causal cone C(Rn) . This extra condi-
tion ensures the polynomial-like decay of correlations functions in a hyMERA network parameterization; more 
information on hyMERA can be found in37.

Contraction and calculation of scaling superoperators in hyMERA is simpler than in MERA, due mainly in 
part to the unique holographic causal cone properties of the network37. Some of the descending superoperators 
in the {5, 4}-version of hyMERA have been shown in Fig. 3.

Many of the standard procedures applied to the study of MERA-style tensor networks cannot be used cur-
rently in the context of a hyMERA network; the reasons for this difficulty lie in three different and related com-
plications: (1) a suitable boundary lattice (with a Hamiltonian comprised of localized, nearest-neighbor terms, as 
in MERA) that can be fed into the scale-invariant portion of the hyMERA network has not been introduced, and 
(2) no efficient methods currently exist for relating a given tensor decomposition (in given {p, q} parameteriza-
tion) to the primaries and descendants of an RCFT.

(2)Refgh =







cos θ2 0 0 i sin θ2
0 cos θ2 i sin θ2 0
0 i sin θ2 cos θ2 0

i sin θ2 0 0 cos θ2






,

(3)Qijkl =







cos θ3 0 0 (sin θ3)e
iθ4

0 cos θ5 i sin θ5 0
0 i sin θ5 cos θ5 0

(sin θ3)e
iθ4 0 0 − (cos θ3)e

2iθ4






.

(4)
∑

cd

YacbdY
†
cdgh = δagδbh

(5)
∑

bd

YacbdY
†
bdeh = δaeδch,

(6)
∑

kl

RikljR
†
kpql = δipδjq

(7)
∑

jl

RikljR
†
jlqn = δinδkq

(8)
∑

su

QrtusQ
†
suvw = δrwδtv ,
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Quasiperiodic boundaries and variational optimization
The Poincaré disk model is a 2D model, inscribed in the hyperbolic plane H2 , in which all points inside the 
boundary are inside the unit disk and circular arcs inside of the plane lead to orthogonal intersections at the 
boundary38. Like with the Euclidean plane, it is possible to embed regular polygons into the Poincaré disk model, 
covering all of the 2D hyperbolic plane. As noted in  “Hyperinvariant tensor networks”, a Poincaré disk can be 
parameterized with Schläfli symbols {p, q} and fulfills the relation 1p + 1

q < 1
2 . As such, a tessellated Poincaré-

disk model exhibits several differences from the non-tessellated version; perhaps the most interesting of which 
is that the boundary of such a tessellated space does not exhibit periodic boundary conditions26 , provided that 
the tilings themselves are regular. The Poincaré disk model also features the Möbius transformations, which are 
formed from the Möbius group PSL(2,C) and leave the manifold invariant.

Figure 3.   Contraction of the descending superoperators in hyMERA are not as computationally costly as in 
MERA, due in large part to the holographic causal cone structure of hyMERA. More details can be found in37. 
Some of the descending superoperators in the {5, 4}-version of hyMERA are shown above.
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In the AdS3/CFT2 correspondence with global AdS coordinates, a timeslice of AdS space can be projected 
onto a Poincaré disk, with metric39:

Here, α is the AdS radius, and the coordinates on the Poincaré disk take the form ρ ∈ [0, 1] . φ is an angle that 
is related to the transformations under which a field theory defined on the disk is invariant. A transformation of 
complex coordinate z = eiφ of the form z  → z′ = eiθ z+w

w∗z+1 effectively defines the Möbius transformations. This 
subgroup of the Möbius group finds utility in defining the global conformal transformations for 2D CFTs40–44, 
restricted to a timeslice.

Just as in the original Poincaré disk model, one can tessellate a timeslice of AdS3 spacetime; the resulting 
fractal pattern in the bulk of AdS3 breaks the continuous symmetries of the global conformal group23,34–36 on the 
boundary. In45, it was shown that the holographic dictionary survives the truncation associated with approximat-
ing a continuous Poincaré disk model of AdS3 with a regular tessellation; moreover, as described in26, a tensor-
network realization that imitates a tessellated Poincaré disk can be described using tensors at every vertex of the 
bulk. Conversely, edge tensors can be added to a tensor-network manifold that mimics the tessellated Poincaré 
disk, as in hyMERA.

In the paradigm of scale-invariant MERA-family tensor networks, preservation of translational invariance is a 
useful simplification that can aid in the creation of computationally-scalable numerical optimization algorithms 
in tensor networks, as in general, the cost of representing a local operator grows exponentially with the size of 
its support8,18. The use of translation-invariant Hamiltonians is exemplified in a MERA-style tensor network, 
where a Hamiltonian is usually of the form

where h(i, i + 1) = h is taken to be a nearest-neighbor, local term9; such a Hamiltonian exhibit periodic bound-
ary conditions, and an effective Hamiltonian H ′ of the same general form should be located in the same localized 
region after the application of a realspace RG step10. The expectation value �ψ |H|ψ� is then calculated by numeri-
cally descending a reduced-density matrix ρ down through the MERA network, with sequential optimization of 
the tensor environment within the causal cone10–12. Please note here that although the Hamiltonian defined on 
a layer of the scale-invariant MERA network may be comprised of only localized nearest-neighbor terms as in 
the form above (and is hence translation invariant), this does not imply that the actual MERA network exhibits 
exact translation-invariant symmetry as well. Indeed, it is still an open problem for MERA tensor networks as 
to whether or not exact translational invariance can be reproduced11. However, it is known that scale-invariant 
MERA tensor networks exhibit near translational invariance, in that they approximately preserve the symmetry. 
As hyMERA exhibits a highly symmetric bulk and a quasiperiodic structure on the boundary, an appropriately 
optimized hyMERA would yield emergent translation invariance, but only for a disordered critical Hamiltonian, 
and not for a periodic critical spin chain, like in the case of MERA.

In a hyMERA, the regular tiling of the Poincaré disk manifold enforces the loss of translational invariance and 
periodicity on the boundary of the network. One may still be able to implement variational optimization using 
a scheme such as the one that we describe below, which uses conformal quasicrystals to represent scale steps in 
the realspace RG transformation. Starting from one of the central pentagons in the {5, 4} version of hyMERA 
(shown in Fig. 4), we utilize the vertex inflation technique introduced in23,26,35,36 to iteratively “grow” a regular 
tessellation on the Poincaré disk. The inflation rules for a {5, 4}-regular tessellation are

We begin by labeling the lower-right central pentagon, and label all of the vertices “A”, which possess four 
neighbors each; these are shown in blue-lettered vertices in Fig. 4. The inflation rules are subsequently applied 
to the following layer surrounding the original pentagon; the vertices are labeled accordingly, as depicted by the 
green layer of vertex inflation. Finally, the magenta-lettered vertices are assigned letters; this procedure can be 
carried on until a network of the desired size is constructed.

Let us now examine the calculation of an expectation value of the Hamiltonian shown below; namely, an 
expectation value of a Hamiltonian composed of only local, nearest-neighbor terms. Select a string sequence of 
vertices for a Hamiltonian of the form

where Ji cycles through different coupling constants Jb > Ja > 0 , depending on the vertex designation; the con-
stants themselves can vary widely in value, as is expected for strongly-disordered systems46,47. This Hamiltonian 
is defined for some layer L′ . We can define an effective local Hamiltonian as a substring for a layer L of the net-
work; such a Hamiltonian is composed of a finite sequence of nearest-neighbor pairs, as in the upper-righthand 
portion of Fig. 4. Upon application of an RG step, the new effective local Hamiltonian that we find inside the 
causal cone will be renormalized to new effective couplings {Ja′ , Jb′ } , which correspond to effective lattice points 
A′,B′ , respectively. The new effective Hamiltonian would be written down as

(9)ds2 = 4α2 dρ
2 + ρ2dφ2

(1− ρ2)2
.

(10)H =
∑

i

h(i, i + 1),

(11)
{

a  → abaab,
b  → ab.

(12)H =
∑

i

Jih(i, i + 1),
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where i′ represents the distance between two nearest neighbors on the layer L′ . In this way, it may be possible to 
implement a realspace RG flow similar to the one in typical MERA-style tensor networks as

where the boundary-layer Hamiltonian Heff(a, b) is renormalized into the sequential effective lattice with a new 
Hamiltonian H′

eff(a
′, b′) ; as described above, the tricky part for such an implementation would be to correctly 

match renormalization steps to the vertex-inflation rules in the RG step sequence. One may be able to directly 
implement such a strategy similar to the general outline above, as in10,12; however, it is unclear whether further 
complications may arise. These issues are not insurmountable, as it is in general easier to compute expectation 
values in hyMERA than in a standard MERA tensor network (this simplification is due to the multitensor con-
straints); however, specific methods have not yet been explored in detail for the context of hierarchical tensor 
networks built from regular tessellations of bulk hyperbolic manifolds. In addition to the complication described 
above, there are a few more issues with local Hamiltonian-based variational approaches in hyMERA that also 
require attention.

Firstly, renormalizing a lattice with an appropriate Hamiltonian defined on it may be complicated to imple-
ment in a hyMERA network. A typical scale-invariant MERA tensor network requires in practice several transi-
tional layers before incorporating the renormalized lattice into the scale-invariant portion of the network. These 
layers consist of a small set M of {(U0,W0) . . . (UM−1,WM−1)} tensors which are chosen to be different, in a 
unique and independent characterization of each layer11. The purpose of these layers is twofold: first, we wish to 
decouple the bond dimension χ of the network from the local Hilbert-space dimension d of sites related to the 
original lattice on which our Hamiltonian is defined; furthermore, we wish to minimize the effect of irrelevant 
operators in the RG flow once the original lattice has been renormalized into the scale-invariant version of the 
MERA network. An important question arises, though: given the restricted analytical forms of the tensors in 
a hyMERA network, how can one devise non-scale-invariant layers of varying bond dimension, in order to 
study the relevant RG operators in the holographic bulk? This initial step is beneficial in MERA for describing 
a quantum system by using only the relevant RG operators from its pertinent universality class, and it is unclear 
how such a procedure would be realized in a hyMERA tensor network.

(13)H ′ =
∑

i

Ji′h
′(i′, i′ + 1),

(14)Heff(a, b)  → H
′
eff(a

′, b′)  → H
′′
eff(a

′′, b′′)  → . . . ,

Figure 4.   A vertex inflation of a {5, 4} hyperbolic bulk tessellation, which shows how to “grow” a regular 
tessellation on a hyperbolic manifold in 2D. Blue As represent the first layer of vertex inflation, as shown in the 
starting pentagon’s vertices. Subsequent layers are tiled around the central polygon by applying the necessary 
inflation rules, as depicted in the green- and magenta-lettered layers of the resulting bulk tessellation. This 
procedure is described in more detail by23,26,34–36. We add tensors to the vertices and edges to the entire bullk 
of the resultant hyMERA network. If we trace the deflation steps from the boundary toward the center, a string 
sequence of the form {ABABAAB . . . } is observed to renormalize into effective couplings {B′A′ . . . } as we scale 
up the network. This effect can be verified by inscribing a causal cone, as the red-dotted lines in the upper-right 
quadrant show. Subfigures (a–d) show the successive tiling of the Poincaré disk by applying the inflation rules in 
a {5, 4} regular hyperbolic tiling; subfigure (a) begins with the first layering, and subsequent layerings are added 
as the thermodynamic limit is reached.
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Secondly, although it may be possible to realize a variational-optimization method in the same vein as in11,12, 
it is known that local subsections of quasiperiodic lattices do not encapsulate the global properties of the entire 
system. This observation further complicates the case for utilizing a local Hamiltonian-based variational scheme, 
as only the tensors related to the localized boundary region and the causal cone of the hyMERA tensor network 
will be directly optimized, and the groundstate minimization obtained may not pertain to the entire lattice. We 
subsequently do not expect non-local quantities such as n-point correlation functions to yield the expected 
results, since at least one of the observables in the n-point function would lie on a subregion of the bound-
ary layer where a differing subsequence of coupling constants is present. For example, consider the problem 
of calculating a 2-point correlation function in hyMERA after optimizing for some local Hamiltonian Hlocal ; 
performing a localized groundstate optimization as discussed before will not ensure that other portions of 
the boundary will be optimized for the groundstate of a similar Hamiltonian. In fact, if we try to calculate the 
2-point function between two non-local points which are associated to local Hamiltonians Hlocal and H ′

local , we 
find immediately that it is not clear whether or not the calculated 2-point function results will be associated with 
either Hamiltonian, as the localized optimization did not encompass a sufficiently large area for the correlator in 
question. If we attempt to compensate for this by increasing the size the local Hamiltonian, the computational 
complexity of optimizing such a region will increase exponentially with the bond dimension10–12. In any case, 
such a calculation is irrelevant, because two critical local Hamiltonians with differing quasiperiodic coupling 
constants cannot share the same n-point correlation structure, as this would imply that the same CFT would arise 
in the continuum limit of both models48. A diagram of this issue is shown in Fig. 5. A solution may be possible 

Figure 5.   Subfigure (b) displays the causal-cone setup that one would use in order to minimize for the 
groundstate expectation value of a local Hamiltonian Hlocal ; tensors inside of the causal cone can be iteratively 
optimized by applying the vertex-inflation strategy as described above. However, the same sequence of coupling 
constants that appear in the local Hamiltonian used for the iterative-optimization procedure is not guaranteed 
to be found on another subregion of the hyMERA boundary; therefore, one can expect widely varying 
subsequences of couplings constants (and thus varying local Hamiltonians). As shown in subfigure (c), One may 
attribute the optimized portion of the network with containing a local Hamiltonian Hlocal , as in subfigure (b). 
As such, n-point function calculations may not yield the expected results pertaining to the localized groundstate 
optimization, since at least one of the observables in the calculation may be located in a subsection of the 
boundary with a non-matching local Hamiltonian H ′

local . This different local Hamiltonian is comprised of a 
different subsequence of coupling constants, and thus may not exhibit the same groundstate characteristics as 
the original boundary subregion.
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by incorporating techniques from the strongly disordered renormalization group literature49,50, although this will 
need to be investigated in more detail.

New analytical tensor forms and bounds on CFT spectra
In37, only one possible example set of tensors was utilized in order to present hyMERA. In reality, many such 
solutions can be obtained, demonstrating that solutions to the multitensor constraints themselves are not unique. 
Two examples of distinct tensor decompositions are shown in Eqs. (15) and (16) ; the usual forms of {Q,Y} are 
kept as those shown in “Hyperinvariant tensor networks”, but the tensors T and S now are antisymmetric (the 
original R were symmetric and doubly-unitary), and lack free-parameters along the diagonal and anti-diagonal. 
The previous set {Y ,Q,R} contains tensors which are also each endowed with Z2 symmetry, whereas tensors T 
and S break with this trend. Tensor decomposition sets {Y ,Q,T} or {Y ,Q, S} adhere to the same set of multitensor 
constraints as described before (up to a normalizable constant); moreover, the resulting correlation functions, 
entanglement spectra of reduced-density matrices, and scaling dimensions of the descending superoperators 
yield nontrivial relations for both the {7, 3} and {5, 4} variants37, in agreement with the constraints needed. These 
tensor decompositions, as well as many others which were found, are depicted in Fig. 7. In addition, more free 
parameters have been included (i.e., T(θ6, θ7) , S(θ8, θ9) , whereas R(θ2) in “Hyperinvariant tensor networks”), 
showing that new tensor decompositions can be formed which are not necessarily linear transformations of ten-
sors from the original tensor set {Y ,Q,R} . This change brings the total number of free parameters in the {7, 3} 
version of hyMERA with sets {Y ,Q,T} , {Y ,Q, S} to six parameters, and five in the {5, 4} variant.

Figure 6 shows the spectra obtained for all three of the tensor decompositions of {5, 4}-hyMERA after 1000 
trials of randomized diagonalizations for the two-site descending superoperator from subfigure (a) in Fig. 3. We 
subsequently extracted the spectrum of scaling dimensions �i . By iterating random values of the free parameters 
{θi} , one can approximately sample the space of scaling dimensions �i as a function of the eigenvalues �i for the 
two-site descending superoperator D(R2) . The sampling was employed for the original tensor decomposition 
in37 (wherein the set {Y ,Q,R} is utilized). Minima and maxima for the first two nontrivial scaling dimensions 
in subfigures (a–c) in Fig. 6 demonstrate that the parameter space of possible scaling dimensions can be altered, 
depending on the decomposition set utilized in the multitensor constraints.

Analysis of the average scaling dimensions as a function of their eigenvalues for both tensor decomposi-
tion sets shows the scaling dimension values tend to level off, on average. the tensor decompositions {Y ,Q,R} , 
{Y ,Q,T} , and {Y ,Q, S} are shown diagrammatically in Fig. 7. Our results from individual trials show a consider-
ably larger difference between scaling dimensions, similar to the spectra reported in37. We note that, although it 
may not be possible to simultaneously extract all of the conformal data using the current tensor decompositions, 
the maximal and minimal values encapsulate the known primary values for the Ising CFT, as well as several 
other minimal model RCFTs48. This observation suggests that it is in principle possible that a generalized tensor 

(15)Tefgh =









0 − tan−1(θ6) − cos(θ7) 0
tan−1(θ6) 0 0 − cos(θ7)
cos(θ7) 0 0 tan−1(θ6)

0 cos(θ7) − tan−1(θ6) 0









,

(16)Sefgh =







0 − cosh(θ8) − cosh(θ9) 0
cosh(−θ8) 0 0 − cosh(θ9)
cosh(−θ9) 0 0 cosh(−θ8)

0 cosh(−θ9) − cosh(θ8) 0






.

Figure 6.   Scaling-dimension spectra {�i} obtained after 1000 trial runs of diagonalizing the average two-
site descending superoperator D̄(R2) in the {5, 4}-parameterization. We apply the relation �i = − logs(�i) 
for the tensor decompositions {Y ,Q,R} , {Y ,Q,T} , and {Y ,Q, S} , as shown in subfigures (a–c), respectively. 
These decompositions are described in “Hyperinvariant tensor networks”37. The results shown suggest that the 
multitensor constraints themselves do not seem to limit the space of possible scaling dimensions to such an 
extent that a minimal model CFT would not be simulable, and that proper selection of the tensors in the tensor 
decomposition set may yield the commensurate scaling dimensions.
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decomposition exists which may be able to be numerically optimized for an RCFT’s conformal data. Furthermore, 
we have shown that imposing the multitensor constraints themselves does not appear to limit the space of pos-
sible scaling-dimension values to the exclusion of certain minimal model CFTs, as was previously surmised37.

There are several open questions related to tensor decompositions in a hyMERA network: (a) what types 
of limitations exist for a given tensor decomposition {T1 . . .Tn} ∈ {A,B} ; (b) how to generalize the multitensor 
constraints; (c) what characteristics of tensor decompositions are amenable for simulating the entanglement 
properties of CFTs; and (d) how to characterize the quality of CFT simulations as a function of some tensor 
decomposition {A,B} , in comparison to another decomposition {A′,B′} . Answering these questions may help 
to understand better the relationship between the distinct physical properties of a CFT and a tensor network 
that simulates it.

Discussion
In this work, we have presented suitable critera for both a tensor generalization and variational optimization in 
hyMERA. We have accomplished this analysis as follows: firstly, we have examined the standard Hamiltonian-
based variational algorithms from MERA10–12, and have shown that modifications are required in order to account 
for the boundary quasiperiodicity inherent to regular tessellations of hyperbolic bulk manifolds. Additionally, 
we have addressed the issues associated with transitional layers in hyMERA, and have provided possible solu-
tions. Secondly, we have provided two new analytical forms of tensors, S and T, which adhere to the multitensor 
constraints, even without sharing many of the features of the original tensors Y, Q,  and R. We have demon-
strated that solutions to the multitensor constraints are neither unique (as was suggested in37), nor difficult to 
find, emphasizing that a generalization of the strict analytical forms used up until now in hyMERA likely exists. 
Lastly, we have performed a randomized analysis of one of the descending superoperators in hyMERA with 
various tensor decompositions, and have shown that the bounds on the scaling-dimension spectra change as 
we vary the constituent tensors in a given tensor decomposition. Futhermore, it was found that all of the tensor 
decompositions analyzed in this work exhibit bounds that encapsulate many of the known minimal model CFTs, 
such as the Ising, 3-state Potts, and the tricritical Ising CFT models. These foundational results illustrate that 
hyperinvariant tensor networks, if generalized properly, could be used as a numerical tool for analyzing CFTs 
arising from hyperbolic tessellations with quasiperiodic boundaries, rather than simply a unique, paradigmatic 

Figure 7.   (a) A diagrammatic representation of the two newly-introduced tensors, S and T. In (b–d), several 
variants of hyperinvariant tensor networks are displayed using these antisymmetric variants; in particular, 
variants (b,c) were subjected to numerical studies, as shown in Fig. 6. These variants show that construction 
of a hyMERA tensor decomposition need not even be composed of strictly unitary tensors, as was previously 
thought in37.
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example which combines aspects of HaPPY and MERA tensor networks for the purpose of simulating the AdS/
CFT correspondence.

Although we have shown evidence that other analytical tensor forms in hyMERA do exist, we do not know 
what physical interpretation our new proposed tensor sets exhibit in terms of CFT reproducibility, if any. We 
observed that the space of allowable scaling dimensions does change significantly upon permuting the various 
tensors into different sets; however, it is unclear how the strict analytical forms of a tensor-decomposition set 
relate to the spectra of minimal model CFTs. In fact, given a suitable generalization of the analytical forms used 
in hyMERA, one may be able to understand how to properly reproduce a CFT spectrum in hyMERA. We leave 
such an investigation for future work.

Of the still many open questions related to understanding hyperinvariant tensor networks, the interpreta-
tion of hyMERA as a holographic quantum error correction code is certainly intriguing. Some recent work51,52 
has suggested associating hyMERA to codes derived from perfect tensor networks, although a more precise 
formulation is needed in order to properly characterize hyMERA as an error-correcting code. An interesting 
avenue may be to examine multitensor-constraint generalizations (and implications for quantum error correc-
tion in hyMERA) using the tools from recent work connecting Majorana dimer fermions, AME states, and the 
holographic pentagon code (HyPec)29,34–36,53–57.

Finally, one may be able to leverage alternative methods from high-energy physics in order to realize and 
implement a variational optimization scheme in hyMERA, if a more general description of the analytical 
tensor forms described can be formulated. One such possibility could be seen in leveraging the conformal 
bootstrap42–44,58.

Appendix 1: MERA tensor networks
The multiscale entanglement renormalization ansatz (MERA) has attained much success as a tensor-network 
ansatz that implements real-space renormalization group techniques in order to facilitate the study of scale-
invariance and quantum criticality in the context of quantum lattice models. Several varieties of MERA-family 
tensor networks are shown in the Fig. 8 ; however, for the purposes of this article, we shall focus our attention on 
binary MERA and ternary MERA. The basic idea of these tensor networks is the same; a MERA tensor network 
consists of several types of tensors: 

(1) Top tensors:

where two indices are contracted, and each top tensor corresponds to a two-body unitary operator. The top 
tensor is normalized to one;

(2) Isometries:

if only 2 indices are contracted,

in the case of 1 index being contracted;
and (3) Disentanglers:

where the disentanglers are simply unitarity gates8,9.
These tensors are organized in a hierarchical fashion with the goal of implementing a local, real-space renor-

malization group transformation; in the scale-invariant version of MERA, all of the set of {U ,W} that comprise 
the network are defined to be exactly the same. This renormalization group flow can be described as

where L′ refers to the first effective lattice generated upon promoting an operator (such as the locally separable 
Hamiltonian Ĥ in the equation below) to a higher layer, inside of the bulk of the MERA network.

An important stipulation for realizing the RG flow in MERA comes from the restrictions on the Hamiltonian. 
In MERA, it is assumed that the Hamiltonian can be broken down into a sum of nearest-neighbor terms:

where h(s, s + 1) = h is a localized Hamiltonian term. Every portion of the lattice, then, can be viewed as com-
pletely characterizing Ĥ.

Renormalization of a local operator or reduced-density matrix can be realized in either form of MERA via 
ascending and descending superoperators, respectively. In a typical non-scale-invariant MERA, the ascending 
and descending superoperators are responsible for sequentially promoting/demoting an operator up/down the 
MERA:

(17)t = U |0�|0�, (t)µν = (U)αβµν |α,β=0,

(18)
∑

µν

Wµν
α Wα′

µν = δ
αα

′ ,

(19)
∑

α

Wµν
α Wα

µ′ν′ = P
µν

µ
′
ν
′ ,

(20)
∑

µν

(U∗)
µν
αβ (U)α

′
β
′

µν =
∑

µν

U
µν

α′β ′(U
∗)αβµν = δ

αα
′ δ
ββ

′ ,

(21)(L, Ĥ) → (L′, Ĥ ′) → (L′′, Ĥ ′′) → . . . ,

(22)Ĥ =
∑

s

h(s, s + 1),
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we see a similar expression for descending superoperators D:

 and we can conclude from the action of both of these superoperators that they are in fact dual to each other (in 
the Choi–Jamiolkowski representation of a quantum channel7,59,60):

or

However, for the purposes of this paper, we consider the scale-invariant regime; as such, every step in the 
renormalization group calculus now maps from fixed RG point to fixed RG point. The form of the descending 
and ascending superoperators simplifies to that of the scaling superoperators, which are described as:

which is given by

where φα is a scaling field operator, and �α are the eigenvalues after application of the superoperator. Addtion-
ally, we have that

where �α are the scaling dimensions of a CFT, and s is the scale factor, determined by number of sites renormal-
ized per layer. Additionally, the dual of the ascending superoperator A∗ , the descending superoperator D , is 
described in the scale-invariant regime as S∗(ρ(Rn)) . The scaling superoperators of a MERA can be diagonalized 
in order to estimate the scaling dimensions of a related CFT7,10–12.

The 2- and 3-point correlation functions in MERA can be calculated in order to find three-point structure 
constants, as well; this is done after first performing a variational optimization of the groundstate energy for a 
particular quantum critical model, such as the transverse-field Ising model11,12. Afterwards, the two- and three-
point functions are seen to have the general forms:

for the two-point function, and the three-point function as:

where �γ
αβ = �α +�β −�γ  , {φα} represent scaling operators from the relation S(φα) = �αφα , and 

|rxy| = |x − y| . Although these general forms were obtained for two- and three-point functions in MERA after 
groundstate-energy minimization, these relations are completely general for all 2D CFTs40,41,48,61.

In12 it was shown that the central charge of a (1+ 1)-dimensional CFT can be calculated using the Cardy 
formula for entanglement entropy62,63:

where n > m , and n,m ∈ Z+ . S(ρ(Rn)) is the n-site entanglement entropy, given by the von Neumann entropy 
S(ρ(Rn)) = −Tr

[

ρ(Rn) log(ρ(Rn))
]

.
The actual reduced-density matrices in MERA are associated with causal cones {C(Rn)} that depend on the 

size of the lattice that we are considering at an n-site boundary Rn.
It was Swingle19,20 who first realized that some features of the AdS/CFT correspondence are similar to what 

is proposed in MERA; among these include the emergence of a discretized timeslice of AdS space. However, 
MERA is not generally seen as an exact discrete analog of AdS space; work from21 pointed out that MERA actu-
ally may be more suitable as a discretized version of de Sitter space, rather than anti-de Sitter space. Additionally, 
Carroll et al.22 showed that MERA is only capable of describing states at length scales larger than the AdS radius, 
and, that the inherent directionality of MERA’s isometric and unitary tensors provide intractable bounds for 
reproducing any notion of the correspondence within the current version of MERA. Modifications of MERA, 
however, were not ruled out as potentially fulfilling some of the necessary requirements in order to accurately 
reproduce holographic state correspondences25,27,64–69, as MERA was also provided an interpretation pertaining 
to kinematic space discretizations24. Recently, a lightcone interpretation of MERA was introduced as well70–73.

O
A(O)
−−−→ O

′ A(O′)
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′′ A(O′′)
−−−−→ . . . ,

. . .
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∗
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[
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]
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.
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,
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Appendix 2: Perfect tensor networks
After the proposal of28, which stated that many features of holography can be reinterpreted in the language 
of quantum error correction, Harlow et al.29 proposed a new class of tensor network that is based on the con-
struction of a quantum error correction code in the tensor-network framework. The elementary building 
blocks of such a tensor network are perfect tensors, a special class of tensor that exhibits maximal entangle-
ment along any bipartition. More succinctly, perfect tensors are defined as specific types of isometric tensors 
(which are defined naturally as a map T  from one Hilbert space Ha to another Hb such that T : Ha �→ Hb , and 
dim(Ha) ≤ dim(Hb) ), where

where {|a�}, {|b�} are the complete orthonormal bases for {Ha,Hb} , respectively, and

and

and P is a projective operator. A perfect tensor, then, is defined as a tensor with 2n indices (where n is the number 
of qubits), and, for a bipartition of indices into sets:

the magnitudes of each set must sum up to the total z:

and T  must still be proportional to an isometric tensor, i.e.

where C is a constant, and

However, not all 2n-index states possess a perfect tensor state53–55.
The fact that these tensor networks are comprised of perfect tensors gives the bulk portion of the tensor 

network a high degree of symmetry; this idea is illustrated with the concept of bulk tensor pushing. More simply, 
an operator O acting on an input leg of an isometric tensor can be represented by an equal-norm operator O′ on 
the output leg. We see this property by the following (Fig. 9):

(29)T : |a� �→
∑

b

|b�Tba,

(30)
∑

b

T†
a′bTab = δaa′ ,

(31)
∑

b

TabT
†
a′b = P ,

(32)A| ≤ |Ac|,

(33)|A| + |Ac| = z,

(34)
∑

b

T
†
a′bTab = Cδaa′ ,

(35)
∑

b

TabT
†
a′b = CP .

Figure 8.   Subfigures (a) and (b) show the binary MERA and the ternary MERA implementations8–12. Top 
tensors are shown as tensors t in the figure, whereas the isometries and unitaries are identified by key.
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One can “push” operators through a network of perfect tensors by exploiting this characteristic. The extra 
symmetry of the perfect tensors in the bulk provides us with the isotropic symmetry that we seek in an actual 
timeslice of AdS space. This quality provides a unique advantage over MERA in terms of describing the bulk 
characteristics of holography. Additionally, the enhanced symmetry in the bulk allows one to define a stabilizer 
formalism for the purpose of encoding quantum information in the form of a quantum error correction code29.

It has been shown that when perfect tensor networks are assigned to a bulk tessellation, associated with a 
strongly-disordered boundary in the form of a conformal quasicrystal26, perfect tensor states can on average 
observe certain characteristics reminiscent of CFT-groundstates23,34,35. It was shown in several works that per-
fect tensor states can be related to Majorana dimer states34,35, while still retaining properties of exact quantum 
error correction. Indeed, such Majorana dimer-based models have been associated with critical Hamiltonians 
in the lattice limit23,35. However, entanglement relationships in these models are typically sparse; an averaging 
procedure is required in order to observe CFT-like behavior. This work advances the results found in29,33, where 
n-site correlation functions previously were shown to result in either zero or a phase, without any averaging 
treatment. Finally, a holographic analog to the Bacon-Shor quantum error correction code was proposed in78.
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