
ORIGINAL RESEARCH
published: 08 September 2017
doi: 10.3389/fnins.2017.00459

Frontiers in Neuroscience | www.frontiersin.org 1 September 2017 | Volume 11 | Article 459

Edited by:

Bharat B. Biswal,

University of Medicine and Dentistry of

New Jersey, United States

Reviewed by:

Xu Lei,

Southwest University, China

Rui Li,

Institute of Psychology (CAS), China

*Correspondence:

Gopikrishna Deshpande

gopi@auburn.edu

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 01 January 2017

Accepted: 31 July 2017

Published: 08 September 2017

Citation:

Syed MA, Yang Z, Hu XP and

Deshpande G (2017) Investigating

Brain Connectomic Alterations in

Autism Using the Reproducibility of

Independent Components Derived

from Resting State Functional MRI

Data. Front. Neurosci. 11:459.

doi: 10.3389/fnins.2017.00459

Investigating Brain Connectomic
Alterations in Autism Using the
Reproducibility of Independent
Components Derived from Resting
State Functional MRI Data
Mohammed A. Syed 1, Zhi Yang 2, 3, Xiaoping P. Hu 4 and Gopikrishna Deshpande 5, 6, 7*

1Computer Science and Software Engineering Department, Auburn University, Auburn, AL, United States, 2 Shanghai Key

Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine,

Shanghai, China, 3 Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China, 4 The

Department of Bioengineering, University of California, Riverside, Riverside, CA, United States, 5 The Department of Electrical

and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States, 6 The Department of

Psychology, Auburn University, Auburn, AL, United States, 7 The Alabama Advanced Imaging Consortium at Auburn

University, University of Alabama Birmingham, Auburn, AL, United States

Significance: Autism is a developmental disorder that is currently diagnosed using

behavioral tests which can be subjective. Consequently, objective non-invasive imaging

biomarkers of Autism are being actively researched. The common theme emerging

from previous functional magnetic resonance imaging (fMRI) studies is that Autism

is characterized by alterations of fMRI-derived functional connections in certain brain

networks which may provide a biomarker for objective diagnosis. However, identification

of individuals with Autism solely based on these measures has not been reliable,

especially when larger sample sizes are taken into consideration.

Objective: We surmise that metrics derived from Autism subjects may not be highly

reproducible within this group leading to poor generalizability. We hypothesize that

functional brain networks that are most reproducible within Autism and healthy Control

groups separately, but not when the two groups are merged, may possess the ability to

distinguish effectively between the groups.

Methods: In this study, we propose a “discover-confirm” scheme based upon the

assessment of reproducibility of independent components obtained from resting state

fMRI (discover) followed by a clustering analysis of these components to evaluate their

ability to discriminate between groups in an unsupervised way (confirm).

Results: We obtained cluster purity ranging from 0.695 to 0.971 in a data set of 799

subjects acquired frommultiple sites, depending on how reproducible the corresponding

components were in each group.

Conclusion: The proposed method was able to characterize reproducibility of brain

networks in Autism and could potentially be deployed in other mental disorders as well.
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INTRODUCTION

Autism Spectrum Disorder (ASD) is characterized as a
developmental disability leading to significant social,
communication and behavioral challenges (American Psychiatric
Association, 2013). In 2010, an estimate from the Autism and
Developmental Disabilities Monitoring (ADDM) Network
involving 11 sites revealed that 14.7 per 1,000 or 1 in 68 children
aged 8 years were affected by this disorder (Wingate et al., 2012;
Baio, 2014). In addition, this study discovered that one in 54
males and one in 252 females in the ADDM communities had
Autism. These disorders have been found to be very heritable
(Muhle et al., 2004). In addition, approximately 18.7% of infants
with at least one older sibling with Autism developed this
disorder (Ozonoff et al., 2011). Given the societal implications of
Autism, early diagnosis and intervention has become paramount.
However, Autism is currently diagnosed using behavioral tests
which can be subjective. Consequently, objective non-invasive
biomarkers of Autism are being actively researched.

In order to find objective biomarkers of Autism, studies
have used information from brain imaging techniques such
as structural Magnetic Resonance Imaging (MRI). Ecker et al.
(2010) used a multiparameter classification approach involving
a support vector machine (SVM) to characterize the structural
pattern of gray matter anatomy in adults with ASD and
examined a set of five morphological parameters such as
volumetric and geometric features at each spatial location on
the cortical surface to discriminate between people with ASD
and controls. Jiao et al. (2010) built diagnostic models for
ASD based upon regional thickness measurements extracted
from surface-based morphometry (SBM) and compared these
models to diagnostic models based on volumetric morphometry
using fourmachine learning techniques: support vectormachines
(SVM), multilayer perceptrons (MLPs), functional trees (FTs),
and logistic model trees (LMTs). Voxel-based morphometry
along with a multivariate pattern analysis approach was used
by Uddin et al. (2011) to determine multiple brain regions
showing atypical structural organization in children with Autism.
Calderoni et al. (2012) examined whole brain volumes of
female subjects with ASD using mass-univariate and pattern
classification approaches. Sato et al. (2013) extracted individual
subject features from inter-regional thickness correlations based
on structural MRI which were later used in a machine learning
framework to obtain subject level prediction of severity scores
based upon neurobiological criteria rather than behavioral
information. Libero et al. (2015) examined multiple brain
imaging modalities to investigate the neural architecture in the
same set of subjects using techniques such as decision tree
classification analysis. Functional (as opposed to structural)
MRI has been used in several studies on Autism as well. The
feasibility of a functional MRI connectivity diagnostic assay for
Autism was investigated by Anderson et al. (2011) after obtaining
pairwise functional connectivity measurements from a lattice
of 7,266 regions of interest covering the entire gray matter

and using a single resting state blood oxygen level-dependent

scan of 8min for classification in each subject. Coutanche

et al. (2011) used data from an fMRI study of the neural

basis for face processing in subjects with ASD to illustrate that
multi-voxel pattern analysis (MVPA) may provide a sensitive
functional biomarker of clinical symptom severity. Wang et al.
(2012) used a multi-scale clustering methodology known as
"data cloud geometry" to extract functional connectivity patterns
from fMRI for the recognition of ASD subjects by applying
it to correlation matrices of 106 regions of interest (ROIs) in
subjects with ASD and controls. Deshpande et al. (2013) used
supervised machine learning and fMRI to show alterations in
causal connectivity in the brain could serve as a potential non-
invasive neuroimaging signature for Autism. Nielsen et al. (2013)
also used pairwise functional connectivity measurements from
a lattice of 7,266 regions of interest covering the gray matter
for 964 subjects to conclude that multisite classification based
on functional connectivity derived from resting state fMRI of
Autism performed better than chance using a simple leave-one-
out classifier. Maximo et al. (2013) used regional homogeneity
and local density approaches at different spatial scales and
examined local connectivity in ASD, while Supekar et al. (2013)
showed hyper-connectivity in a sample of relatively younger
Autistic kids using resting state fMRI. The common theme
emerging from the studies mentioned above is that Autism is
characterized by altered functional connectivity in certain brain
networks and that characterizing this appropriately using MRI-
based methods may provide a biomarker for objective diagnosis.

Independent Component Analysis (ICA) is a blind source
separation technique which is commonly employed for
extracting brain networks involving spatially distributed regions
with similar/correlated temporal activity (Bell and Sejnowski,
1995), especially in the baseline resting state. Consequently,
it has been applied to investigate altered brain networks in
Autism using fMRI. Specifically, Von von dem et al. (2013)
employed ICA to demonstrate that individuals with Autism
had reduced functional connectivity within the Default Mode
Network (DMN), an important resting state brain network
(Greicius et al., 2003). Assaf et al. (2010) studied the role of
altered functional connectivity of the default mode sub-networks
in ASDs using short resting fMRI scans and ICA. In spite of
these studies showing reduced connectivity in certain brain
networks in Autism, identification of individuals with Autism
solely based on these measures has not been reliable, especially
in samples of large sizes (Nielsen et al., 2013). We surmise that
one major factor contributing to this state of affairs may be that
metrics derived from Autism and/or Control subjects may not be
highly reproducible within their respective group. Consequently,
such metrics have poor generalizability, leading to lower cluster
purities. Therefore, in this paper, we hypothesize that functional
brain networks which are most reproducible separately within
Autism and healthy Control groups, but not reproducible when
both groups are merged, may possess the ability to effectively
discriminate between the groups. The basis for this hypothesis
is illustrated in Figure 1 which shows an imagined feature space
where we want to discriminate between the two groups (Autism
and healthy Control). Please note that Figure 1 has not been
drawn to scale and is an illustrative schematic.

Scenario-1 corresponds to the situation wherein the two
groups have significantly different means (say, x) in the feature
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FIGURE 1 | Imaginary feature space showing three different scenarios while discriminating between two groups (indicated by two colors orange and blue): Autism

and Healthy Control. Scenario 1: Significant group difference in means, say, x. Scenario 2: Non-significant difference in group means. Scenario 3: Significant mean

difference comparable to x in scenario 1.

space. However, within each group, the features have poor
reproducibility (i.e., they are more scattered in the feature space),
likely due to the heterogeneity of the disorder. Therefore, even
if the group means are statistically separated, such features will
give poor cluster purity. Scenario-2 is a situation where there
is no significant difference between means, but the features are
reproducible in the combined group (i.e., Autism + Control
group), i.e., they are less scattered in the feature space even
when both groups are combined. These two scenarios indicate
that features which are highly reproducible separately in each
group but are not reproducible in the combined (Autism
+ Control) group are likely to provide purer clusters while
discriminating between the Autism and Control groups.
In the third scenario, the features are not only statistically
separated between the groups (with the difference between
the group means comparable to “x” in Scenario-1), but also
reproducible within each group, i.e., less scattered in feature
space within each group. In order to test our hypothesis,
traditional ICA-based characterization of the functional brain
needs to be modified such that reproducibility information
is considered while choosing independent components.
Therefore, we propose a methodology involving assessment
of reproducibility of independent components, followed by
clustering analysis of such components for evaluating their
discriminability between groups in an unsupervised way.
Accordingly, we applied a recently introduced algorithm,
“generalized Ranking and Averaging Independent Component
Analysis by Reproducibility” (gRAICAR, https://github.com/
yangzhi-psy/gRAICAR) (Yang et al., 2012), which can provide
independent components that are highly reproducible within
a given group of subjects. This technique is an extension of
a framework previously developed for single subject analysis
called Ranking and averaging independent component analysis
by reproducibility—RAICAR (Yang et al., 2008) and has been
successfully used in a number of applications (Yang et al.,
2014a,b). In this work, gRAICAR was applied to Autism Brain
Imaging Data Exchange (ABIDE) data (Di Martino et al.,
2014) to estimate the independent components which are most

reproducible, in Autism and Control groups, respectively, but
not reproducible in the combined group. We input the spatial
maps of such independent components into a k-means clustering
algorithm and determined the purity of each cluster with respect
to the a priori clinical diagnosis received by subjects.

MATERIALS AND METHODS

Composition of the Subject Sample
We utilized resting-state functional magnetic resonance imaging
(R-fMRI) data from 799 individuals provided by Autism Brain
Imaging Data Exchange (ABIDE). The data we used had 392
individuals with Autism spectrum disorders and 407 age- and
sex-matched typical controls (TCs). These data came from 13
different imaging sites and included 700 male and 99 female
subjects (Table 1) between 7 and 64 years of age. Data were
fully anonymized wherein all 18 HIPAA (Health Insurance
Portability and Accountability)-protected health information
identifiers were removed. Data contributions were based on
studies approved by the local Institutional Review Boards.
Detailed information regarding the imaging data sets and
associated phenotypic protocols can be found at http://fcon_
1000.projects.nitrc.org/indi/abide. Data acquisition parameters
and individual site details are also available on this web site.

Pre-processing
We first converted the data downloaded from ABIDE database,
which was in DICOM format, to Neuroimaging Informatics
Technology Initiative (NIfTI) format. In order to complete the
first step, we used dcm2nii software which is freely available at
http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.
html.

In the next step, we used a combination of Data Processing
Assistant for Resting-State fMRI (Yan and Zang, 2010; DPARSF,
http://www.restfmri.net), which is a plug-in software based on
Statistical ParametricMapping or SPM (http://www.fil.ion.ucl.ac.
uk/spm), and uses functionality from Resting-State fMRI Data
Analysis Toolkit (REST 1.7) (Song et al., 2011), both of which
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TABLE 1 | Institute names used in our study from ABIDE data and subject

distribution by diagnosis code, Autism and Control.

ID Institute name Autism Control

1 California Institute of Technology 19 19

2 Kennedy Krieger Institute 22 33

3 University of Leuven 29 35

4 Ludwig Maximilians University Munich 24 33

5 Oregon Health and Science University 12 14

6 University of Pittsburgh 30 27

7 Social Brain Lab UMC Groningen NIN 15 15

8 San Diego State University 14 21

9 Stanford University 17 18

10 Trinity College Dublin 24 25

11 University of California Los Angeles 62 47

12 University of Michigan 68 77

13 University of Utah 56 43

run on MATLAB. DPARSF was used to perform realignment of
3D brain volumes at each instant relative to the initial volume
using 6-parameter rigid body registration, normalization to
MNI (Montreal Neurological Institute) template using nonlinear
warping, spatial smoothing using a Gaussian kernel with full
width at half maximum of 4mm × 4mm × 4mm, de-trending
using linear polynomial and temporal band-pass filtering using
the frequency range of 0.01–0.1Hz.

Four Dimensional NIfTI-1 format images (http://nifti.nimh.
nih.gov/nifti-1) from the pre-processing described above were
then used in FMRIB Software Library v5.0 (Woolrich et al.,
2009; Jenkinson et al., 2012) (FSL by Analysis Group, FMRIB,
Oxford, UK) to obtain a set of independent components for
each subject using Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC)
algorithm (Beckman and Smith, 2004; Beckman et al., 2005).
FSL provides analysis tools for fMRI, MRI and DTI brain
imaging data, including ICA for decomposing single or multiple
4D data sets into linearly independent spatial components.
More information on MELODIC is available at http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/MELODIC. We used the MELODIC
analysis tool to perform standard 2D spatial ICA on each
subject resulting in time courses (one per component) in the
mixing matrix and spatial maps (one per component). The
number of components for each subject was determined by
MELODIC through automatic dimensionality estimation. We
saved MELODIC results for each subject and used them in
the algorithm we describe in the following section, for finding
reproducible independent components.

gRAICAR Algorithm
The dataset from subject s (s=1,2,. . . ,n) can be represented as
a ts × vs matrix, Mt , where ts represents the number of time
points and vs the number of voxels. The data matrix, Ms, can
be decomposed into cS independent components (ICs) in spatial
domain ss(cs × vs matrix, Mc) and their corresponding mixing
time courses as(ts × cs matrix,Ma).

Here, we provide a brief overview of gRAICAR and the readers
are referred to the original paper by Yang et al. (2012) for a
more comprehensive description. The algorithm contains four

FIGURE 2 | (A) Steps used in our pre-processing methodology have been

summarized. Step 1 involved obtaining raw multi-site data for each subject in

.nii.gz format. Step 2 involved converting raw data to NIfTI format which

resulted in pairs of header and image files (hdr/.img) for each subject, using

dcm2nii software. Step 3 involved processing data for each subject using a

combination of MATLAB, DPARSF, SPM and REST to obtain a 4D .nii file for

each subject based upon the input .hdr/.img files. Step 4 included the

processing of 4D files obtained from step 3 in FSL—MELODIC using group

ICA for each site leading to independent components or ICs to be used in our

algorithm. Step 4 was the last step in our pre-processing methodology.

(B) Schematic illustrating the 4 steps (5–8) of the gRAICAR algorithm once the

pre-processing is complete. (C) Workflow of our analysis.

stages of processing as summarized in Figure 2. (1) The first step
involved performing ICA decomposition d times for each subject
using random initial values leading to d × n realizations where
n is the number of subjects. We refer to these realizations as
REs. In our study, REij refers to the ICs from jth realization of
subject i. (2) In its second step, a full similarity matrix (FSM)
that had relational measures between all REs was constructed.
Similarity between two REs in this algorithm was quantified
by using normalized mutual information or NMI. (3) In the
third step, REs that were found to be highly reproducible across
subjects and ICA realizations were extracted and aligned. Two
related REs were considered as individual-level components
with the same underlying group-level component or an aligned
component (AC). For each AC, the algorithm generated a dn ×

dn reproducibility matrix, MR, within which NMIs between all
pairs of REs pertaining to the AC were collected. (4) In the fourth
step, we aligned ACs to obtain group-level component maps
and examined the inter-subject consistency. While Figure 2B

illustrates the algorithm in general terms, we demonstrate the
specific implementation of this algorithm for an example of three
subjects in Figure 3.
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FIGURE 3 | This illustrates the implementation of gRAICAR algorithm using 3 subjects with 3 subject-level components each as an example. Step 1 involves multiple

ICA realizations for each subject. Step 2 is used to create a full similarity matrix (FSM). In step 3, ICs are aligned based upon similarity metrics. In step 4, ICs are

averaged based upon reproducibility matrices.

We applied the gRAICAR algorithm separately to Autism,
Control and Combined groups. The first step involved
performing ICA decomposition d (∼5,000 for this study)
times for each subject using random initial values leading to d
× n realizations where n is the number of subjects. Specifically,
d × n or d × 392 realizations of ICs for Autism group, d ×

407 realizations in the TC group and d × 799 realizations in
the combined group were obtained. These ICA realizations are
named REs and REij is used to denote the set of ICs from the jth
realization of the ith subject.

In the second stage of gRAICAR, we constructed a full
similarity matrix (FSM). This matrix has relational measures
between all REs. Block structure of the FSM represents subject
blocks (SBs) that in turn represent subject-wise relationships.
Elements within these blocks can determine similarity between
REs from the same subject or pairs of REs from different subjects
depending on the location of the block. In these SBs, there are d×
d realization blocks (RBs) providing pair-wise similarity between
REs from different ICA realizations. This similarity between two
RBs was quantified by using normalized mutual information or
NMI (Pluim et al., 2003).NMI is one if two variables are identical
and zero if they are statistically independent, revealing higher
order statistical similarity as opposed to second order similarity
expressed by correlation or covariance (Maes et al., 1997). NMI
between each IC pair were computed using mutual information
using the algorithm proposed by Kraskov et al. (2004).NMIswere
further standardized within an RB, resulting in standardizedNMI
(SNMI). In order to demonstrate the technical underpinnings
and rationale for this stage, Figure 4 presents the block structure
of FSM with 3 artificial subjects and two ICA realizations each
(i.e., d= 2, n= 3).

Blocks marked with solid lines are called Subject blocks or SBs.
Off diagonal SBs indicate the similarity between pairs of REs from
different subjects while the ones on the diagonal reflect that from
the same subject. The RB is represented as a ci × cm matrix,MRB,

with Rij−mk reflecting the similarity between REij and REmk (i, m:
1,2,... n, j,k: 1,2,... d). NMI as mentioned above for two REs can
now be calculated as:

Rij−mk

[

y, z
]

= NMI
(

REy ∈ REij , REz ∈ REmk

)

=
H

(

REy
)

+H(REz)

H(REy, REz)
− 1 (1)

where H
(

REy
)

, H (REz) ,H(REy, REz) represent entropies of
random variables, REy, and REz , and the mutual entropy between
them (1≤ y≤Ci, 1≤ z≤Cm). TheNMIswere further normalized
in the alignment procedure using,

Rij−mk[y, z]

=
Rij−mk

[

y, z
]

−mean (Rij−mk

[

y, ∗
]

∪ Rij−mk [∗, z])

std (Rij−mk

[

y, .
]

∪ Rij−mk [., z])
,

(2)

In Equation (2), ∗ represents all NMI values in row y or column
z of the RB. This standardized NMI or SNMI can be used to
calculate the specificity of individual similarity values associated
with a given RE within the RB. The diagonal RBs are normally set
to zero since they represent identity matrices and are therefore
not of interest.

We then extracted highly reproducible REs across subjects
and ICA realizations and aligned them in the third stage of the
gRAICAR algorithm. In order to do so, the algorithm searched
all SNMI entries within SBs reflecting the similarity between pairs
of REs from different subjects to determine a global maximum.
Two REs that were found to be related were seen as individual-
level components but with the same underlying group-level
component, also known as an aligned component (AC). These
RBs were then searched to locate the local maxima within them
as they indicate possible locations of the aligned component
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FIGURE 4 | Block structure of full similarity matrix (FSM) based upon our example with 3 subjects and 2 sets of subject-level components (RE, a set of ICs produced

after two ICA decompositions). In this example, each block shows similarity between 2 pairs of REs from the same subject or two different subjects. Also, RE 11-31

indicates inter-subject similarity between RE 1 of subject 1 and RE 1 of subject 3. The first digit in 11 is an index to the subject whereas the second is an index to the

RE. Solid colored, on the diagonal blocks indicate similarity within the components of a subject or intra-subject similarity whereas off diagonal ones indicate that

between the components of two different subjects.

in different ICA realizations and subjects. Rows and columns
containing these maxima were eliminated from the FSM when
all RCs associated with the aligned component were located. This
procedure was repeated until cmax = max(c 1 ≤ f ≤ n) ACs had
been discovered, where c is the number of ICs and f (≤ n) is the
number of subjects.

A dn× dn reproducibility matrix,Mrep, for each AC was then
generated by collecting NMIs between all pairs of REs related
to the AC. NMIs were used to provide a more straightforward
interpretation of similarity. A maximum of one RC was selected
per AC in each ICA realization to form its reproducibility matrix.
Information contained within the reproducibility matrix was
then divided into two metrics: inter-subject consistency and
intra-subject reliability. Inter-subject consistency in this case was
defined as the mean of all NMIs within inter-subject blocks. For
a given AC, its consistency between subjects i and m can be
calculated as:

∝im = mean(Ri′−m′ )

=

∑D
j=1

∑D
k=1 Rij−mk[y

(

i, j
)

, z
(

m, k
)

]

K2
,

1 ≤ i,m ≤ N, i 6= m (3)

Equation (3) is representative of the mean NMI within the inter-
subject block “i–m” in the reproducibility matrix, as it averages
all the NMI values located at the intersection between realization
j of subject i and realization k of subjectm.

Figure 5, which is a continuation of Figure 4, provides a
demonstration of the third stage summarizing higher level stage

description earlier using the same scenario as in the previous
figure. The large circle mark represents a global maximum
which is calculated by searching all SNMIs within the off-
diagonal SBs. This enables compatibility with larger variations
across subjects than within subjects. In this case, the global
maximum was located at Rij−mk

[

y, z
]

which represents the
yth row and the zth column of the RB. The two related REs,
REy(i,j) and REz(m,k), are treated as individual-level components
with the same underlying group-level component or AC. REy(i,j)
represents the yth component of the jth realization of the ith
subject.

Figure 6 demonstrates the next step which is to locate local
maxima within these RBs by searching the yth rows of RBs Rij−..

or all RBs containing REy(i,j), and the zth columns of RBs R..−mk

or all RBs containing REz(m,k)· This leads to the identification of
the aligned component in different ICA realizations and subjects,
[y, v1] or RE 21–11 in this example and [u1, z] or RE 11–31
where u1 and v1 are the relevant RE positions in individual
RBs reflecting the largest similarity with REy(i,j) and REz(m,k)

respectively. In this case, u1 = v1 means [y, v1] and [u1, z] pick
up the same RE and the resulting component is thought of as
pertaining to the aligned component determined by REy(i,j) and
REz(m,k). If u1 and v1 are not equal, either u1 or v1 is picked based
upon a voting procedure to determine the proximity of one or the
other to more of those REs probed as the u1 = v1 case.

In the fourth and final stage of gRAICAR, we estimated
AC maps and corresponding mixing time courses by using
weighted averages of their related REs. To compute the weighted
average of the REs, the first step is to define a subject load
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FIGURE 5 | Determine global maximum. In this figure, the global maximum has a circle around it with highlighting.

FIGURE 6 | Determine block-wise maxima with highlighting in each block. Global maximum in this figure has a circle around it in addition and has been shown in an

earlier figure as well.

on inter-subject consistency representing the contribution or
inter-subject centrality of a given subject to a given AC as follows:

τi =
1

N − 1

∑N

m=1, m 6=i
∝im , 1 ≤ i ≤ N (4)

In (4), ∝im refers to inter-subject consistency metric between
subjects i and m. This equation can also be phrased as the inter-
subject centrality of a subject in a given AC is the mean of the
inter-subject consistency metrics between this subject and all
others. The spatial maps and mixing time courses of an AC can

be computed by combining this subject load on inter-subject
consistency and the intra-subject reliability, as follows:

gICn =

∑N
i=1[βi τi

∑D
j=1 REp(i,j,n)]

K
∑N

i=1 βi τi
, 1 ≤ n ≤ cmax (5)

REp(i,j,n) represents the RE or the spatial map of the IC as
identified in the jth realization of the ith subject. p indexes the
location of the REs and can vary with different realizations and
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subjects. The weights are different for each AC, computed by the
AC specific reproducibility matrix.

ACs that were consistent across subjects were then statistically

detected. The significance of cross-subject consistency of the
resulting AC was explored using a two-step methodology. A

non-parametric test was applied to select the AC consistent

across all subjects. One RE from each ICA realization in
the FSM was randomly sampled with replacement and the

mean of inter-subject consistency metrics was computed after
a non-participating subject was artificially generated. The
aforementioned approach was very similar to the enhancement
to the original RAICAR algorithm proposed by Yang et al. (2008).
The aforementioned procedure was repeated 500 times. Resultant
means of the inter-subject consistency metrics were combined
to produce a null-distribution of inter-subject consistency. The
95th percentile, corresponding to a significance of p = 0.05,
of the null distribution provided a threshold at this point.
ACs with mean inter-subject consistency metrics greater than
the aforementioned threshold value were regarded as common
ACs across subjects. Null distributions of the subject loads on
inter-subject consistency and intra-subject reliability for each
one of the aforementioned ACs were generated by randomly
assigning REs with replacement in the reproducibility matrix to
artificially generated subjects. Corresponding to a significance
value of p = 0.05, thresholds for the aforementioned metrics
were then determined at 95th percentile of the corresponding
null distributions. At this point, subjects above both of these
threshold levels were considered to be representative of the
AC under consideration. The main tasks pertaining to the
fourth stage of gRAICAR algorithm were to estimate AC
maps and corresponding time courses after weighted averaging
their related REs, statistically detect ACs that were consistent
across all subjects, and construct a graph for each AC for the
characterization of relationships among subjects from an inter-
subject consistency perspective.

Clustering Analysis
K-means algorithm has been previously used in fMRI analysis
in several studies (Liu et al., 2012; Zhang and Li, 2012; Allen
et al., 2014). We used this algorithm to examine the level of
separation between Autism and TC groups for the ICs which
were reproducible within each group, but not reproducible in the
combined group. Clustering was unsupervised without using a
priori subject groupings.We determined cluster purity per cluster
as shown below:

Purity =
1

N

∑k

i=1
maxj | ci ∩ tj | (6)

In (6), N represents the number of data points or subjects, k
the number of clusters, ci the cluster in our analysis, and tj the
classification with maximum count for cluster ci .

Equation (7) shows our approach to determine sensitivity
values where SEN represents sensitivity, TP true positive, and FN
true negative.

SEN =
TP

TP + FN
(7)

Equation (8) shows our approach to determine specificity values
where SPC represents specificity, TN true negative, and FP false
positive.

SPC =
TN

TN + FP
(8)

Analysis Workflow
This section presents our implementation and workflow. For
technical details and the rationale behind every step, we have
included a technical discussion in earlier sections of this paper.
We applied the gRAICAR algorithm thrice: first on the Autism
group, second on the Control group, and then on the combined
group. For the Autism and Control groups, we had 54 and 49
group-level components, respectively. For the combined (Autism
+ Control) group, we had 54 group-level components. We then
examined these group-level components using criteria presented
above describing the steps of gRAICAR algorithm and inter-
subject consistency in (3). These criteria gave us 11 group-level
components in the Autism group and 3 in the Control group.
For all subjects, we accessed post-MELODIC analysis results and
retrieved spatial maps associated with the ICs corresponding to
each selected group-level component. MELODIC analysis was a
part of data pre-processing and described earlier in this paper.
We then processed these spatial maps in MATLAB wherein the
spatial map associated with the IC index of the current subject
was retrieved and singleton dimensions were removed. The
resulting array was reshaped using MATLAB’s reshape function
(http://wwwmathworks.com/help/matlab/ref/reshape.html).
thus giving us an m × n matrix where m is 1 for the current
subject and n is 61 × 73 × 61 (=271,633) which was the size of
each spatial map associated with the current IC index. After all
subjects were processed, we had a 392 × 271,633 matrix for the
Autism group and 407 × 271,633 matrix for the Control group.
Suppose the resulting matrix for Autism is A while that for TC is
C. We then combined A and C giving us a 799× 271,633 matrix.
We applied the k-means algorithm using this matrix to examine
how subjects were clustered based on their spatial maps without
a priori groupings. The aforementioned process was repeated
for all permutations of group-level components selected based
on pairing a component from the Autism group with one from
the Control group resulting in 33 k-means clustering analysis
(Autism Group: 11 × Control Group: 3). We had set up the
algorithm to partition the data set into two clusters since we
had two subject groups, Autism and Control. For each of these
clustering permutations, the purity of clusters was identified
based on how many subjects were correctly (or wrongly)
clustered along with other subjects with the same diagnosis.

From the above analysis, the pair with maximum cluster
purity was identified. Let the corresponding components be
Ax and Cx in Autism and Control groups, respectively. The
component in Controls with maximum spatial correlation with
Ax (say, Cx

a) and the component in Autism with the maximum
spatial correlation with Cx (say, Ax

c ), were identified using the
following approach:

λ = max
∑k

i=1
cov(ω,ωi) (9)
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FIGURE 7 | (A) Step I: gRAICAR Analysis on Combined (Autism + Control) Group producing group level components x, y, and z. (B) Step II: gRAICAR Analysis on

Autism Group Only, producing group-level components, x and x1. x is discarded since it was produced in step I. (C) Step III: gRAICAR Analysis on Control Group

Only, producing group-level components, y and y1. y is discarded since it was produced in step I. (D) Step IV: Group level components from Steps II and III were

combined by retrieving spatial maps corresponding to ICs these group-level components represented for each subject within each group as shown in the figure.

Group level components reproducible in the combined group also found in individual analysis (steps II and III) were excluded.
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λ represents maximum covariance in (9), between group level
component, ω, from the group being analyzed and ωi, that from
the opposite group with k being the total number of group level
components in the opposite group.

Two more k-means clustering analysis were performed by
pairing Ax with Cx

a, and Cx with Ax
c . This analysis was carried

out to ascertain whether the reproducible components in each
group, when paired with the corresponding component with
similar spatial distribution in the other group, can effectively
discriminate between the groups. The entire analysis pipeline is
illustrated in Figures 7A–D.

Steps I-IV presented in Figure 7 illustrate the concepts and
summarize the processing by gRAICAR algorithm and k-means
clustering analysis. For demonstration purposes, 6 artificial
subjects, 3 from the Autism group (denoted by A) and the other
3 from Control group (denoted by C) are shown. Each example
subject is assigned 4 ICs as shown. This is an arbitrary number
illustrating the concept and the number of ICs was not constant
in actual processing. In actual processing, 799 subjects were used
with a variable number of ICs. (I) This step shows gRAICAR
processing on all subjects in the combined group (Autism +

Control groups) and the resulting list of group-level components,
3 in this case: x, y, and z. (II) This step shows gRAICAR analysis
on Autism group only from the example and the list of group-
level components obtained as in step I. Component x was found
in step I as well and is discarded after visual examination. (II)
This step shows gRAICAR analysis on Control group only and
the list of group-level components obtained as in steps I and
II. Component y was found in step I hence discarded. (IV) In
this step, we completed multiple tasks. We combined the group-
level components x1 and y1 by mapping these to individual ICs
for each subject. We then retrieved spatial maps for each IC
representing a subject under the group-level component and
linearly combined them using MATLAB creating a matrix we
called “M.” Finally, we used k-means clustering algorithm in
MATLAB using M to investigate the separation of components
between groups.

Once the clustering was complete, we constructed an inter-
subject Euclidean distance matrix within both Autism and
Control groups using spatial maps associated with each subject
for component pairings (Cx, Ax), (Ax

c , C
x), and (Cx

a, A
x). A self-

organizing map or SOM analyzes input vectors in the input
space and learns, in an unsupervised manner, to classify them
accordingly (Kohonen, 1988, 2001). The result includes a low-
dimensional (one- or two-) discretized representation of the
input space of the training samples referred to as a map.

Neighboring neurons in SOMs learn recognizing neighboring
sections of the input space which leads them to not only learn the
distribution but the topology of the training vectors used as input.
These neurons are arranged in physical positions based upon
a topology function and distances between them are calculated
using a distance function.

Adjacent neurons in the topology generally are close in the
input space as well. In our study, we used SOMs to visualize the
reproducibility and separation of the subjects in feature-space
in additional to the numerical values given by k-means. High
dimensionality in k-means was scaled using SOMs for optimal
visualization. We obtained individual spatial maps for Ax and Cx

and stacked them into amatrix.We then used this matrix as input
to a 5× 5 SOM for visualization as described earlier. This process
was repeated for (Ax, Cx

a) and (Ax
c , C

x).

RESULTS

Let us first examine the most reproducible group-level
components within each group. We found 54 group-level
components within the Autism group and 49 such components
within the Control group. By combining selected components as
described earlier, the range of cluster purity was 0.69–0.97 using
unsupervised k-means clustering over all permutations of 11
group-level components from Autism and 3 from Controls. The
average purity value was 0.89 with a standard deviation of 0.06.

Figures 8, 9 show the spatial maps of Ax and Cx, respectively.
The highest cluster purity value was 0.97 obtained by combining
these two group-level components. Figure 10 presents a map of
pie charts based on a 5 × 5 SOM to visualize the reproducibility
and separation of the two groups using Ax and Cx as described
earlier. Each pie chart represents the number of subjects from a
given group, Autism or Control. As an example, a solid red chart
represents all subjects from the Autism group whereas a solid
blue all from the Control group.

In the next step, we ascertained which group-level
components in the opposite group had the highest spatial
correlation to Ax and Cx, using all 54 components from Autism
and 49 from Control groups depending upon the comparison
being carried out. Ax was found to have the highest spatial
correlation value of 0.29 (p < 0.001) with Cx

a in the Control
group while Cx had the highest spatial correlation value of 0.63
(p < 0.001) with Ax

c in the Autism group. We then combined
Cx with Ax

c and subjected them to k-means clustering analysis.
This produced cluster purity of 0.895 with a sensitivity of 0.893
and a specificity of 0.897. Similarly, we combined Ax with Cx

a

as described earlier and completed k–means clustering analysis.
This resulted in a cluster purity of 0.607 with a sensitivity of 0.43
and specificity of 0.77. Figures 11, 12 show the spatial profiles of
Ax
c and Cx

a, respectively.
We also used pie charts to visualize the reproducibility and

separation of subjects using 5 × 5 SOMs for these combinations:
Ax + Cx

a and Cx + Ax
c . These visualizations are presented

in Figures 13, 14. In both cases, a dotted line represents
the approximate separation observed between the two groups.
Numbers on each pie chart represent the neuron in the SOM.
It can be observed that the purity of individual pie charts drops
when using spatial equivalents (Figures 13, 14) as compared to
the most reproducible components in each group (Figure 10).
This is a reflection of higher purity and separation in Figure 10

(97.1%) to lower purity values and hence lower separation in
Figures 13, 14 (0.607 and 0.895 respectively).

DISCUSSION

We used a discover-confirm scheme wherein during the
“discover” phase, we used gRAICAR to retrieve reproducible
components in each group and during the “confirm” phase,
we used unsupervised clustering to determine the separation
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FIGURE 8 | The group-level component, Ax , from Autism group that produced the highest cluster purity value of 0.971 when combined with another group-level

component from the Control group, Cx .

FIGURE 9 | The group-level component, Cx , from Control group that produced the highest cluster purity value of 0.971 when combined with another group-level

component, Ax , from the Autism group. These regions represent the default mode network (DMN).

between groups based on the reproducible components in
each group. Further, the separation was visualized using self-
organizing maps or SOMs. This is a novel methodological
framework for investigating discriminative features between
diagnostic groups as opposed to performing group-wise
statistical tests or supervised classification.

Even though multiple studies have shown altered fMRI-based
connectivity in certain brain networks in Autism using machine
learning techniques, identifying individuals with Autism based

on these measures has not been reliable especially in larger
sized samples (Anderson et al., 2011; Plitt et al., 2015). We
hypothesized that functional brain networks which are most
reproducible separately within Autism and Control groups,
but not reproducible when analyzing both groups as merged,
may lead to effective discrimination between the groups. We
tested the above hypothesis by finding the most reproducible
ICA components (which represent brain networks) first in the
merged and then in separate Autism and Control groups. Our
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FIGURE 10 | Pie chart visualizations based on a 5 × 5 SOM for Ax and Cx showing Autism and Control groups by neuron. Each pie chart corresponds to a neuron,

represented by the number on each chart, in the SOM map for these components. This map indicates group separation approximately in the middle with Autism

group populating the upper while Control the lower half of the SOM, represented by the dotted blue line.

FIGURE 11 | This figure represents the spatial map for Axc, the group-level component in the Autism group with the highest spatial correlation with Cx . These regions

represent the default mode network (DMN).

results, shown in the previous section, indeed support the
above hypothesis. SOM visualizations provided along with spatial
maps of the group-level components give further insight into
the reproducibility of certain brain networks as well as their
differences between groups based on our proposition.

The overall cluster purity we obtained from our multisite
fMRI data set, obtained by averaging the results obtained from
the three scenarios was 0.824 with a sensitivity of 0.77 and
specificity of 0.87. Previous studies using the same data set,
but supervised classification methods instead of unsupervised
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FIGURE 12 | This figure represents the spatial map for Cxa, the group-level component in the Control group with the highest spatial correlation with Ax .

FIGURE 13 | Pie chart visualizations based on a 5 × 5 SOM for Ax and Cxa showing Autism and Control groups by neuron where the number on each chart

corresponds to a neuron in the SOM. The dotted line represents approximate separation between the two groups.

clustering methods, have reported classification accuracies
between 0.6 and 0.8 depending on whether they used a larger or
smaller sub-sample of the ABIDE database (Anderson et al., 2011;
Nielsen et al., 2013). Given the fact that themethods used here are

different from the previous studies mentioned above, it would
not be fair to directly compare our cluster purity with theirs.
Instead, we would like to make the point that characterizing
reproducibility of brain networks in different groups as well as the
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FIGURE 14 | Pie chart visualizations based on a 5 × 5 SOM for Axc and Cx showing Autism and Control groups by neuron where the number on each chart

corresponds to a neuron in the SOM. The dotted line represents approximate separation between the two groups.

merged sample is a novel idea whichmay hold promise, especially
in the context of disorders such as Autism. This is because the
most discriminative features identified via the proposed method
are more likely to be generalizable to a larger sample given the
reproducibility constraint.

Cx and Ax
c , which provided highest discriminability between

the groups, represent the default mode network (DMN) in
Control and Autism groups, respectively. The DMN in Autism
appears less prominent and incohesive. Decreased functional
connectivity in default mode subnetworks contributes to core
deficits observed in ASD patients (Assaf et al., 2010) whereas
activity was reduced in the autism group in the ventral medial
prefrontal cortex/ventral anterior cingulate cortex (Kennedy and
Courchesne, 2008). Visuospatial working memory deficiency
within the DMN was discovered in adolescents with ASD (Chien
et al., 2016) and the regions of DMN functional connectivity
in the bilateral inferior parietal lobule and posterior cingulate
cortex were found to be smaller in ASD patients (Yasuhiro
et al., 2016). On the other hand, Ax and Cx

a represent regions of
the motor network, mid cingulate cortex and temporal-parietal
junction. Even though these regions have been implicated in
autism (Chiu et al., 2008; Chantiluke et al., 2014; Kestemont et al.,
2014; Nebel et al., 2014), it was not as discriminatory as the
DMN. To summarize, our methodology first discovered highly
reproducible components separately in Autism and Control
groups pointing to functional networks described in this section.
These components or functional networks they pointed to

from both groups, when combined and analyzed in clustering
analysis as described, provided high cluster purities, hence
the ability to distinguish between the two groups. Functional
networks discovered by applying our methodology separately in
groups confirm earlier findings on alterations involving these
networks in Autism. Results obtained from analyzing these
networks support our hypothesis that functional networks highly
reproducible separately in groups lead to higher cluster purities
and discriminability.

Limitations and Future Directions
Despite the fact that the ABIDE database provides invaluable
means to analyze multisite resting state fMRI data sets
with significant statistical power, there are certain inherent
limitations to this data set. Site to site variability in acquisition
parameters, subject populations, scanner performance, and
research protocols may all be cofounding factors when it comes
to the sensitivity for detecting abnormalities (Nielsen et al., 2013).
It could be argued that the analysis of individual site data sets
separately may provide a higher cluster purity. However, such
results may be less easily translatable to the clinic because inter-
site variability is something any potential clinical method will
have to cope with. Both groups in ABIDE, Autism and healthy
Control, appeared to have subjects with average to above-average
range of IQ in addition to variation in diagnostic subtypes
(Asperger’s and PDD-NOS) across sites. A broader range of IQ
levels need to be included in further studies since R-fMRI studies
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allow the inclusion of individuals with lower IQ than task based
studies. In addition, not all sites spanned childhood to middle
adulthood but further studies can include a deeper examination
of the development of brain providing insight into developmental
dynamics of Autism (Di Martino et al., 2014).

We used a novel analysis framework involving gRAICAR
as described earlier (Yang et al., 2012). Despite its robustness,
there are several limitations including computational and
physical memory costs. We were able to mitigate computational
and physical memory concerns by using parallel processing
and cloud computing. gRAICAR further provides the ability
to parallelize one of the processing stages hence reducing
the computational time and increasing efficiency. We had
used gRAICAR code in a UNIX/MATLAB environment. Also
in the absence of a threshold in gRAICAR to determine
the existence of a relationship, the RCs are forced to
align with a group-level component even if there is low
similarity with other RCs. In future studies, it would be
interesting to investigate how gRAICAR performs in site-
level analytics within Autism and ABIDE data sets. Our
methodology can also be expanded to other neurological
disorders to determine the utility of this algorithm in future
studies.
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