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Abstract

Despite theoretical models suggesting developmental changes in neural substrates of cognitive 

control in adolescence, empirical research has rarely examined intraindividual changes in 

cognitive control-related brain activation using multi-wave multivariate longitudinal data. We used 

longitudinal repeated measures of brain activation and behavioral performance during the multi-

source interference task (MSIT) from 167 adolescents (53% male) who were assessed annually 

over four years from ages 13 to 17 years. We applied latent growth modeling to delineate the 

pattern of brain activation changes over time and to examine longitudinal associations between 

brain activation and behavioral performance. We identified brain regions that showed differential 

change patterns: (1) the fronto-parietal regions that involved bilateral insula, bilateral middle 

frontal gyrus, left pre-supplementary motor area, left inferior parietal lobule, and right precuneus; 

and (2) the rostral anterior cingulate cortex (rACC) region. Longitudinal confirmatory factor 

analyses of the fronto-parietal regions revealed strong measurement invariance across time 

implying that multivariate functional magnetic resonance imaging data during cognitive control 

can be measured reliably over time. Latent basis growth models indicated that fronto-parietal 
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activation decreased over time, whereas rACC activation increased over time. In addition, 

behavioral performance data, age-related improvement was indicated by a decreasing trajectory of 

intraindividual variability in response time across four years. Testing longitudinal brain-behavior 

associations using multivariate growth models revealed that better behavioral cognitive control 

was associated with lower fronto-parietal activation, but the change in behavioral performance was 

not related to the change in brain activation. The current findings suggest that reduced effects of 

cognitive interference indicated by fronto-parietal recruitment may be a marker of a maturing 

brain that underlies better cognitive control performance during adolescence.
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1. Introduction

In developmental neuroscience research, it is necessary to examine relationships between 

brain function and behavior over time and across ages (Crone and Elzinga, 2015; 

(Madhyastha et al., 2018)Madhyastha et al., 2019). Only longitudinal research examining 

within-person temporal changes as trajectories (as opposed to a cross-sectional snapshot at a 

single time) is able to reveal developmental pathways of adaptive and maladaptive brain 

functioning. However, challenges arise with respect to the measurement reliability of 

neuroimaging data in longitudinal designs (Herting et al., 2018). The present study employs 

a latent variable modeling approach using structural equation modeling (SEM) to tackle 

measurement challenges while studying individual differences in within-person changes in 

brain activation and behavior during cognitive control. Most prior developmental 

neuroscience research on cognitive control has examined differences in the magnitude of 

brain activation across different age-cohorts, thus limiting inferences regarding true 

developmental changes on the individual-level. Here, we used longitudinal functional 

magnetic resonance imaging (fMRI) data to investigate developmental changes in brain 

activation during cognitive control across adolescence, and further examined longitudinal 

brain-behavior associations. The current approach attempts to shed light on within-person 

developmental trajectories of cognitive control-related brain function, while simultaneously 

considering age-related behavioral change, which may facilitate new conceptualizations of 

systematic brain development, and improve existing neural systems models of cognitive 

control.

Although there have been theoretical models regarding developmental changes in neural 

substrates of cognitive control in adolescence, empirical research has rarely examined 

intraindividual changes in cognitive control-related brain activation using multi-wave 

multivariate longitudinal data. In the present study, we focused on cognitive control 

development during adolescence, observed by brain activation and behavioral performance 

during the multi-source interference task (MSIT; Bush et al., 2003). The MSIT measures 

detection and response to conflict associated with both flanker conflict and motor spatial 

conflict, and it was developed by combining multiple dimensions of cognitive interference 
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(that are measured by Stroop-like tasks, Eriksen Flanker-type tasks, and Simon effect tasks) 

with decision making (Bush et al., 2003). Throughout adolescence, prefrontal cortex regions

—known to be critical in cognitive control—undergo maturation, including increased 

myelination, experience-dependent synaptogenesis and pruning, as well as strengthening of 

connections within prefrontal circuitry (Liston et al., 2006; Luna et al., 2015; Paus, 2005). 

Indeed, the remarkable development and specialization of prefrontal cortex regions that 

support higher-order cognition during adolescence marks adolescence as a neurobiological 

critical period (Larsen and Luna, 2018). The proposed rapid development of neurobiology 

related to cognitive control during this critical period can be best tested by examining 

within-person developmental trajectories.

Prior research has identified brain regions, particularly within the prefrontal cortex, that 

appear crucial for cognitive control during childhood and adolescence (Crone and Steinbeis, 

2017 for review). Yet, there remains a dearth of research as to how activation in different 

brain regions involved in cognitive control change across development (i.e., within-person 

change) and whether there are between-person differences in such within-person change. 

Currently, within cognitive control research, neuroimaging studies using longitudinal data 

measured at three or more time points are extremely rare, with one notable exception of a 

cohort-sequential longitudinal study of inhibitory control (Ordaz et al., 2013). Specifically, 

Ordaz et al. (2013) examined longitudinal trajectories of brain activation observed during an 

antisaccade task across ages 9 to 26 years (participants contributing between one to six time 

points). The results indicated no changes in motor response control regions (e.g., pre-

supplementary motor area), decreases in activation in executive control regions (e.g., 

dorsolateral prefrontal cortex), and increases in activation in error-processing regions (e.g., 

dorsal anterior cingulate cortex; dACC) with age. Among these regions, only error-

processing activation in the dACC was significantly predictive of behavioral performance. 

One of the significant contributions of this study is the demonstration of longitudinal 

trajectories of cognitive control-related brain activation which varied across different regions 

of the brain.

To understand differential developmental changes across brain regions engaged in cognitive 

control, we utilized latent growth modeling because of several methodological advantages 

that are germane to this approach. The latent growth model is well suited for delineating 

patterns of changes (e.g., linear versus non-linear), and it estimates not only within-person 

change, but also between-person differences in within-person change. In latent growth 

modeling, the measure should capture the same construct in the same metric across time so 

that scores obtained from the measure can be compared quantitatively to track 

intraindividual changes (see Kim-Spoon and Grimm, 2016 for review). For multivariate 

longitudinal data, measurement invariance (Meredith, 1993)—i.e., whether the same 

construct was measured in the same metric—can be statistically tested through longitudinal 

confirmatory factor analysis. After confirming that constructs are measured in a consistent 

way across measurement occasions (factorial invariance), those factors can be used in a 

second-order growth model. This model involves a theoretically error-free construct, instead 

of using error laden variables and composite scores, thereby improving measurement 

reliability and validity (Grimm et al., 2017; Hancock et al., 2001; McNeish & Wolf, 2020).
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Brain activation is often used to understand cognitive constructs or processes but such 

inferences are fraught with challenges (Poldrack, 2006). For example, researchers have 

raised concerns regarding the reliability of regions of interest (ROI)-based analyses for 

testing individual difference inferences in fMRI (Elliott et al., 2020; Fröhner et al., 2019; 

Kragel et al., 2020; Lebreton et al., 2019). We believe that latent variable modeling can be 

used to improve reliability of neuroimaging data, thereby improving between-subjects 

inferences. In theory and in practice, psychometric approaches have shown that aggregating 

covarying indicators (i.e., latent variables) produces scores that are more reliable and have 

better predictive validity compared to separate indicators when examined alone (Nunnally 

and Bernstein, 1994). Specifically, confirmatory factor analysis using latent variable 

modeling is a powerful data reduction technique, as it extracts a small number of latent 

variables based on the covariations among a set of observed variables. In neuroimaging 

studies, confirmatory factor analysis can be applied to test a construct validity hypothesis, 

evaluating whether the correlations among the observed variables—e.g., eigenvariate values 

of ROIs—can be patterned according to the mathematical expectations of a single latent 

construct. Nevertheless, there have been only a few functional neuroimaging studies using 

confirmatory factor analyses to consider latent constructs based on multiple brain regions 

(e.g., Bolt et al., 2018; Kim-Spoon et al., 2016; Moore et al., 2018; Nees et al., 2012).

As such, latent variable modeling offers several key advantages: First, it optimizes power 

and reduces type-1 error by reducing the number of statistical parameters that are estimated 

while maximizing sample size. Second, it improves reliability by enhancing effect size and 

predictive validity (Cooper et al., 2019; Kragel et al., 2020; Poldrack et al., 2017). Third, for 

repeated measures fMRI data, longitudinal confirmatory factor analysis can be used to 

ascertain reliability of measured constructs, because it allows a quantitative test of whether 

the construct/process is robustly and reliably associated with its manifest indicators (i.e., 

neural activation of multiple ROIs) over time. In developmental neuroscience research, there 

is a particular challenge to assessing reliability in longitudinal fMRI data from children and 

adolescents, because test-retest reliability (defined as the consistency in producing stable 

results at each instance; Khoo et al., 2006) of fMRI data with longer scan intervals is 

expected to reflect not only consistency of the fMRI measurement itself but also the 

meaningful changes due to age-related development (Herting et al., 2018). For example, 

researchers have interpreted lower reliability values (represented by intraclass correlation 

coefficient) as indicating greater developmental changes (Koolschijn et al., 2011). Unlike the 

intraclass correlation approach, testing measurement invariance in longitudinal confirmatory 

factor analysis offers an alternative and more rigorous way to determine whether fMRI data 

yield individual-level measures that are consistent in their construct validity across time 

(e.g., equivalent latent factor loadings and intercept means across time) while also allowing 

for estimation of developmental changes (e.g., latent factor means freely estimated) that are 

not due to unreliability of measurement.

The primary goal of the present study was to fill in gaps in the developmental neuroscience 

literature by investigating intraindividual changes in cognitive control related-brain 

activation specific to the developmental period of adolescence and examining how such 

changes are related to behavioral performance during cognitive control (brain-behavior 

associations). We applied latent variable modeling to multivariate repeated measures data of 
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brain activation (neural cognitive control) and behavioral performance (behavioral cognitive 

control) to investigate: 1) measurement models of brain activation patterns during cognitive 

control, using longitudinal confirmatory factor analyses; 2) patterns of and individual 

differences in developmental trajectories of brain activation and behavioral performance 

during cognitive control, using univariate growth models; and 3) longitudinal brain-behavior 

associations of cognitive control, using multivariate growth models. Specifically, with 

respect to brain-behavior associations, we examined how levels and changes in brain 

activation were related to levels and changes in behavioral performance across four yearly 

assessments.

2. Methods and materials

2.1. Participants

The sample included 167 adolescents (53% males) from a southeastern state in the United 

States, who participated in annual assessments across four years. Adolescents were 13 to 14 

years of age at Time 1 (M = 14.07, SD = 0.54 for Time 1, M = 15.05, SD = 0.54 for Time 2, 

M = 16.07, SD = 0.56 for Time 3, and M = 17.01, SD = 0.55 for Time 4). About 78% of 

adolescents identified as White, 14% Black or African-American, 6% as more than one race, 

1% as American Indian or Alaska Native, and 1% Asian. Median annual family income was 

in the $35,000-$50,000 range, with varying levels of family economic status (50% “poor/

near poor” and 50% “non-poor” according to income-to-needs ratio). Among the primary 

caregivers (137 mothers, 21 fathers, and 9 others), 34% had a high school degree or less, 

24% some college education, 24% bachelor’s degree, and 18% graduate degree. Inclusion 

criteria included being age 13 to 14 at Time 1 with vision corrected to be able to see the 

computer display clearly. Exclusion criteria were claustrophobia, history of head injury 

resulting in loss of consciousness for >10 min, orthodontia impairing image acquisition, 

severe psychopathology (e.g., psychosis), and other contraindications to magnetic resonance 

imaging (MRI).

At Time 1, 157 adolescents participated. At Time 2, 10 adolescents were added (to offset 

annual attrition) for a final sample of 167 (150 at Time 2, 147 at Time 3, and 150 at Time 4). 

Across all four years, 24 adolescents did not participate at all four time points for reasons 

including: ineligibility for tasks (n = 2), declined participation (n = 17), and lost contact (n = 

5) during the follow-up assessments. Rate of participation was not significantly predicted by 

income, sex, race or study variables (ps > 0.08). The only exception was the effect of 

behavioral cognitive control at Time 3, but the effect size was small (η 2 = 0.08).

2.2. Procedures

Data included in the present study were collected as part of a larger project. Adolescent 

participants and their primary caregivers were recruited via email announcements, 

newspaper advertisements, postcards, and flyers. Data collection was administered at 

university offices where participants completed self-report questionnaires, behavioral and 

neuroimaging tasks, and were interviewed by trained research assistants. The study duration 

was on average five hours long and participants were compensated monetarily for their time. 
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All procedures were approved by the institutional review board of the university and written 

informed consent or assent was received from all participants.

2.3. Task

We measured detection and response to conflict associated with both flanker and spatial 

interference using the MSIT (Bush et al., 2003) in an MRI scanner. In the MSIT, on each 

trial, the participant was presented with three digits and asked to identify the digit that was 

different from the others by pressing the button corresponding to the digit. For trials in the 

neutral condition, the target’s identity was congruent with the target’s relative position on 

the screen, but in the interference condition, the target’s identity did not match its relative 

position (see Fig. 1A). Four blocks of 24 interference trials and 4 blocks of 24 neutral trials 

were interleaved with an interstimulus interval of 1.75 s. To assess behavioral cognitive 

control, we used intraindividual variability in response time, indexed as intraindividual 

standard deviations (ISD; MacDonald et al., 2012) for correct responses in the interference 

condition. Lower ISD scores represented better cognitive control. Accordingly, we found a 

significant positive effect of MSIT interference on ISD response time scores, such that 

intraindividual variability in response time was higher for interference trials compared to 

neutral trials [t(153) = 14.66 at Time 1, t(148) = 9.92 at Time 2, t(142) = 9.75 at Time 3, and 

t(141) = 8.88 at Time 4, all ps < 0.001].

2.4. Pubertal development

Pubertal developmental status was assessed annually using adolescent self-reports on a five-

item scale (Petersen et al., 1988). Boys and girls answered the same three questions 

regarding growth spurt in height, pubic hair, and skin changes. Additionally, boys were 

asked about facial hair growth and voice change, and girls were asked about breast 

development and menarche. The mean scores across the five items were used to indicate 

stage-normative pubertal timing.

2.5. fMRI acquisition and preprocessing

Neuroimaging data were obtained on a 3T Siemens Tim Trio scanner using a 12-channel 

head matrix coil. Functional images were obtained with TR = 2 s, slice thickness = 4 mm, 34 

axial slices, FoV = 220 × 220 mm, TE = 30 ms, flip angel = 90°, voxel size = 3.4 × 3.4 × 4 

mm, 64 × 64 grid, and slices were hyperangulated at 30° from anterior-posterior 

commissure. Anatomical images with a 1mm3 isotropic voxel resolution were acquired 

using a rapid acquisition gradient echo sequence with repetition time (TR) = 1200 ms, field 

of view (FoV) = 245 × 245 mm, echo time (TE) = 2.66 ms and 192 slices. SPM8 (Wellcome 

Trust Neuroimaging Center) was used to preprocess the MRI data at all time-points. After 

correcting the functional scans for motion using a six-parameter rigid body transformation, 

the mean functional image was co-registered to the corresponding anatomical image using a 

rigid-body transformation estimated to maximize the normalized mutual information 

between the anatomical and mean functional image. Next the anatomical image was 

segmented to produce spatial normalization parameters which were then used to normalize 

the functional images to MNI-152 template. Normalization produced images resliced to an 

isotropic voxel size of 3 mm3. Finally, the normalized functional images were smoothed 

using a 6 mm full-width-half-maximum Gaussian kernel.
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A GLM was fit in SPM8 to the preprocessed imaging data acquired from each participant at 

each time point. The interference and neutral task conditions were modeled as alternating 

boxcars convolved with a canonical double-gamma haemodynamic response function (HRF) 

using SPM8′s default parametrization of the gamma functions. The six realignment 

parameters obtained during preprocessing were used to model the effect of head motion. 

Framewise displacement (FD) was obtained using the realignment parameters, with 

rotational displacement replaced with millimeter equivalents assuming displacement along 

the surface of a sphere with a 100 mm diameter (Power et al., 2012; Siegel et al., 2014). 

High motion volumes with FD greater than 0.9 mm were censored non-destructively by 

adding a regressor for each censored volume in the design matrix of the GLM. A high-pass 

filter with cutoff of 0.006 Hz was used to remove low-frequency noise. Finally, for each 

participant at each time point, a contrast map was constructed by subtracting the neutral 

condition beta map from the interference condition beta map.

Interference minus neutral contrast maps were entered into four second-level GLMs in 

SPM8, one for each longitudinal time-point, using root mean square frame displacement as a 

regressor of no interest. To assess how the interference effect on blood-oxygen-level 

dependent (BOLD) responses changed with time-point, the first-level interference contrasts 

across all four time points were entered into a longitudinal group-level model using the 

Sandwich Estimator Toolbox, version 2.1.0 (SwE; Guillaume et al., 2014), while controlling 

for age-correlated changes in in-scanner head motion using root mean square frame 

displacement as a no-interest regressor (Satterthwaite et al., 2012). This SwE method 

combines ordinary least squares estimates of parameters of interest with estimates of 

variance/covariance based on a sandwich estimator (Eicker, 1963) and thus accounts for 

within-subject correlations across time. It has been shown that this method is asymptotically 

robust against misspecification of the covariance model and does not depend on the SPM 

assumption of common longitudinal variance structure of the whole brain. We used the SwE 

whole brain map as a guide to select ROIs within each wave so that we could evaluate 

developmental changes in these ROIs over time.

At each time point, the SPM GLM showed a significant interference effect on BOLD 

responses, consistent with that observed in prior literature (see Fig. 1B; Kim-Spoon et al., 

2019). Our longitudinal model showed significant linear increases and decreases in the 

interference effect on BOLD responses in cognitive control regions identified by the MSIT. 

The SwE derived map of time-related changes in BOLD was used to identify nine clusters of 

interest for an ROI analysis, including bilateral insula, bilateral middle frontal gyrus (MFG), 

left pre-supplementary motor area (SMA), left rostral anterior cingulate cortex (rACC), left 

inferior parietal lobule (IPL), right precuneus, and left middle occipital gyrus (see Fig. 1C 

and Supplementary Table S1; for coordinates for peak regions within each time point, see 

Supplementary Tables S2-5). From each time point, the first eigenvariate values in the 

interference minus neutral contrast was obtained, after adjusting for an F-contrast of the 

effect of interest. Data and code are available upon request given a formal sharing 

agreement.
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2.6. Data analytic approaches and model fitting preparation

Prior to analysis, statistical outliers (n = 20 across all variables and all time points) were 

winsorized to the next value that was not an outlier (i.e., within 3.29 SD; Tabachnick and 

Fidell, 2001), resulting in all variables with acceptable skewness and kurtosis (< 3 and < 10, 

respectively). We performed multivariate GLM analyses to evaluate possible effects of 

demographic covariates on neural and behavioral measures of cognitive control (eight ROI 

variables and one behavioral performance scores) at each time point. Predictors included the 

main effects of age, pubertal development, sex, race, and family income, as well as the 

interaction effects of sex by age and sex by pubertal development (testing whether age or 

pubertal development effects on cognitive control may vary between boys and girls). Across 

all four time points, these demographic covariates were not significant predictors of 

cognitive control variables (p = .07 - 0.89) and thus were not included in the main analyses. 

Table 1 depicts descriptive statistics and correlations for the study variables.

Models were tested using Structural Equation Modeling (SEM) in Mplus statistical software 

version 8.4 (Muthén and Muthén, 1998–2018). Model fit was assessed by χ2 value, degrees 

of freedom, corresponding p-value, Root Mean Square Error of Approximation (RMSEA) 

and its 90% Confidence Intervals (CI), and Confirmatory Fit Index (CFI). RMSEA values 

less than 0.08 and CFI values greater than 0.90 were taken to reflect acceptable fits (Little, 

2013). For nested model comparisons, we used χ2 difference tests (Bollen, 1989). We 

ensured that fit values for all the models that we interpreted were acceptable and focused on 

nested model fit comparisons, as all of these fit indices have been shown to be more effective 

at identifying differences in misspecification based on a comparison of nested model, in 

contrast to decisions based on comparisons with a priori cutoff values (Marsh et al., 2004).

We used full information maximum likelihood (FIML) estimation to handle missing data 

(Arbuckle, 1996; Little and Rubin, 2003). The FIML method relies on the assumption that 

missing values are missing at random. Missing at random requires that missing data are 

either missing completely at random, or that the missing information depends on variables 

that are included in the model. In longitudinal models of repeated measures data, those 

variables are the previous measurements of the same variable (Ghisletta and Lindenberger, 

2005). Little’s MCAR test indicated that the missing data pattern for all neural cognitive 

control variables resembled a Completely at Random pattern (χ2 = 49.39, df = 54, p = .65), 

whereas the missing data pattern for all behavioral cognitive control variables did not (χ2 = 

49.92, df = 19, p < .001). Given the superiority of FIML estimation to those obtained with 

listwise deletion or other ad hoc methods (Schafer and Graham, 2002) and that all our 

longitudinal models involved repeated measures of data, thus satisfying at least missing at 

random, we used the FIML estimation procedure to address missing data.

We first performed longitudinal confirmatory factor analyses to examine whether the same 

construct was measured in the same metric at each time point. We compared two alternative 

models testing weak (metric) versus strong (scalar) invariance (Grimm et al., 2017). The 

model testing weak invariance constrained factor loadings to be equal over time, implying 

that the same ROIs contributed in the same way to the latent factor. The model testing strong 

invariance additionally constrained individual ROI intercepts to be equal over time, implying 
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that the scale of the factor does not change across time, which makes it possible to compare 

mean factor scores over time.

Next, we tested univariate growth models to examine developmental trajectories of neural 

and behavioral cognitive control. The growth models allowed us to appreciate (1) patterns of 

longitudinal changes (linear growth versus non-linear, latent basis growth), (2) statistical 

significance of the change rates (i.e., mean of the shape factor) as well as individual 

differences in the change rates (i.e., variance of the shape factor), and (3) statistical 

significance of the average level and individual differences of the initial levels (i.e., mean 

and variance of the intercept factor). Linear and nonlinear models were tested to fit the 

baseline model for the observed data patterns across the four time points. The first latent 

factor was the intercept, with all factor loadings fixed to one. The second latent factor was 

the shape, indicating growth of the function and change over time. The two growth factors 

were allowed to covary. Nested model comparisons were used to determine the shape of the 

trajectories. Two models were tested as nested models. First, in the linear growth model, a 

linear pattern of change was assumed and factor loadings for the linear slope factor were 

fixed to 0, 1, 2, and 3. Next, the latent basis growth model allowed the data to estimate the 

shape of growth by fixing the factor loadings to the first and last time points to 0 and 1, 

respectively, and freely estimating the second and third time points.

Finally, we tested multivariate growth models examining longitudinal brain-behavior 

associations of cognitive control to determine whether changes in brain activation were 

associated with changes in behavioral performance during cognitive control. The latent 

growth factors of brain activation and behavioral performance were estimated along with the 

covariances among the intercept and shape factors both within and across brain and 

behavior.

3. Results

3.1. Longitudinal confirmatory factor analysis of neural cognitive control

Prior to examining developmental changes in neural cognitive control, we examined whether 

the same construct was measured consistently at each time point by testing longitudinal 

measurement invariance using longitudinal confirmatory factor analyses. We first considered 

eight ROIs while excluding the left middle occipital gyrus given that it is generally involved 

in performing tasks that require visual processing, rather than directly engaged in cognitive 

control functioning per se. In this model, the left rACC was not significantly loaded on the 

common latent factor as the other seven ROIs, thus it was not included in the longitudinal 

confirmatory factor analyses. Additionally, modification indices suggested correlating the 

residual of right insula with the residual of left insula within each time point, thus these 

residual correlations were included. As suggested by Grimm et al. (2017), these longitudinal 

confirmatory factor analyses models included correlations between residuals for the same 

variable measured at different time points.

Constraining individual ROI intercepts to be equal across time in addition to factor loadings 

did not result in a significant deterioration in model fit (Δχ2 = 10.031, Δdf = 18, p = .931). 

Thus, the model comparison result indicated that the model with strong invariance was more 
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parsimonious version of the model (χ2 = 534.303, df = 334, p < .001, RMSEA = 0.061, 90% 

CI [.051, 0.071], CFI = 0.924), compared to the model with weak invariance (χ2 = 524.272, 

df = 316, p < .001, RMSEA = 0.064, 90% CI [.054, 0.074], CFI = 0.921). As reported in 

Fig. 2, in the strong invariance model, the seven factor loadings were all substantial, 

statistically significant, and the range was relatively narrow (standardized λ = 0.526 - 0.861, 

all ps < 0.05). Factor means decreased over time and all factor variances were significant. 

The strong invariance finding provides evidence of construct comparability suggesting that 

any observed changes in the construct can be seen as true construct differences rather than 

due to measurement artifacts.

Following construct validation through longitudinal confirmatory factor analysis of neural 

cognitive control variables, we labeled the common latent factor that encompasses seven 

ROI indicators (left and right insula, left and right MFG, left pSMA, left IPL, and right 

precuneus) as “fronto-parietal” because those seven ROIs were located in the fronto-parietal 

network previously identified as involved in cognitive control (Dosenbach et al., 2008; 

Sebastian et al., 2013). We clarify that this was a label for the regions that load onto a 

common latent factor, but there was no evidence of functional connectivity or this activity 

actually reflecting FPN. Further analyses involving neural cognitive control were conducted 

separately for the fronto-parietal regions and for the left rACC which was not significantly 

loaded on the same latent factor as the other seven ROIs.

3.2. Developmental trajectories of neural and behavioral cognitive control: univariate 
growth models

To examine developmental trajectories of cognitive control, we tested univariate growth 

models separately for fronto-parietal activation, rACC activation, and ISD response time 

scores. As shown in Table 2, for the fronto-parietal regions, second-order growth modeling 

was used. In these second-order growth models, the factors for the measurement model (as 

in longitudinal confirmatory factor analysis models) were first-order factors and the growth 

factors were second-order factors, so that the second-order growth factors (i.e., intercept and 

shape) accounted for the developmental changes of the first-order factors (i.e., the fronto-

parietal regions) across time. For the fronto-parietal regions, the latent basis growth model 

provided the better fit to the data compared to the linear growth model (see Table 2). The 

results from the fronto-parietal second-order latent basis growth model are reported in Table 

3. The mean of the shape factor was significant but the variance was not. This result 

indicated significant decreases in fronto-parietal activation over time with non-significant 

individual differences in change rates. There were significant individual differences in initial 

levels while the mean of the intercept factor was fixed at zero for identification (Grimm et 

al., 2017). The intercept and shape factors did not significantly covary with each other. The 

mean growth curve trajectory (based on estimated means) is presented along with the 

longitudinal plot of fronto-parietal activation factor scores across the four times in Fig. 4-a.

For rACC, the latent basis growth model provided a better fit to the data compared to the 

linear growth model (see Table 2). The results from the latent basis growth model for rACC 

are reported in Table 3. The mean and the variance of the shape factor were significant, 

indicating significant increases in rACC activation over time with significant individual 
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differences in change rates. The mean of the intercept factor was significantly different from 

zero, and there were significant individual differences in initial levels. The intercept and 

shape factors significantly covaried with each other, indicating that higher initial levels were 

associated with smaller increases in change rates. The mean growth curve trajectory (based 

on estimated means) is presented along with the longitudinal plot of rACC activation raw 

scores across the four times in Fig. 4-b.

For behavioral performance data (ISD scores), the latent basis growth model provided a 

better fit to the data compared to the linear growth model (see Table 2). The results from the 

latent basis growth model for behavioral cognitive control are reported in Table 3. The mean 

of the shape factor was significant but the variance was not. The result indicated significant 

decreases in intraindividual variability in response time with non-significant individual 

differences in change rates. The mean of the intercept factor was significantly different from 

zero, and there were significant individual differences in initial levels. The intercept and 

shape factors did not significantly covary with each other. The mean growth curve trajectory 

(based on estimated means) is presented along with the longitudinal plot of ISD raw scores 

across the four times in Fig. 4-c.

3.3. Longitudinal brain-behavior associations: bivariate growth models of brain activation 
and behavioral performance

To examine longitudinal brain-behavior associations of cognitive control, we used bivariate 

growth models to estimate dynamic associations among growth factors (intercept and shape 

factors) of brain activation and behavioral performance (see Fig. 3). For fronto-parietal 

activation, the overall fit of the bivariate growth model was acceptable (χ2 = 688.279, df = 

451, p < .001, RMSEA = 0.056, 90% CI [.048, 0.065], CFI = 0.917). As reported in Table 4, 

the initial level of behavioral performance was significantly related to the initial level of 

fronto-parietal activation, indicating that better behavioral performance (i.e., lower ISD 

scores) was related to lower fronto-parietal activation at Time 1 when adolescents were 13–

14 years. In order to examine whether the significant association between the level of neural 

activation and the level of behavioral performance persisted over time, we reran the bivariate 

growth model with the intercept rescaled at Time 4 (i.e., intercept factor loadings fixed to −1 

at Time 1 and 0 at Time 4 with Times 2 and 3 freely estimated). The result revealed that 

better behavioral performance was significantly associated with lower fronto-parietal 

activation at Time 4 when adolescents were 16–17 years (Est. = 0.002, SE. = 0.001, p 
= .036). Changes in fronto-parietal activation were not associated with changes in behavioral 

performance. The level of fronto-parietal activation (at Time 4) was not related to changes in 

behavioral performance, and the level of behavioral performance (at Time 4) was not related 

to changes in fronto-parietal activation.

For rACC, the overall fit of the bivariate growth model was acceptable (χ2 = 16.909, df = 

24, p = .853, RMSEA = 0.000, 90% CI [.000, 0.036], CFI = 1.000). As reported in Table 4, 

the association between the initial level of behavioral performance and the initial level of 

rACC activation indicated a trend towards poor performance (i.e., higher ISD scores) among 

adolescents with lower rACC activation (p = .062). Similar to fronto-parietal activation, 

changes in rACC activation were not associated with changes in behavioral performance. 
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The initial level of rACC activation was not related to changes in behavioral performance, 

and the initial level of behavioral performance was not related to changes in rACC 

activation.

4. Discussion

We aimed to examine intraindividual changes in brain activation during cognitive control 

and further examine how changes in brain activation may be associated with changes in 

behaviors using multivariate repeated measures data of adolescents. The current study is the 

first study using longitudinal data from a large sample in a single cohort assessed annually 

over four years from 13 years to 17 years; it is also the first to estimate these 

neurodevelopmental trajectory patterns within adolescence, a developmental period critical 

to establishing adult-level stability of cognitive control processing (Luna et al., 2015). Our 

univariate growth modeling results suggested nonlinear patterns of developmental changes 

in neural activation implicated in cognitive control. Specifically, we found a decreasing 

trajectory with non-significant variation in fronto-parietal regions and an increasing 

trajectory with significant variation in rACC. In addition, our bivariate growth modeling 

results suggested that lower activation in fronto-parietal regions was related to better 

cognitive control behavioral performance.

In processing our longitudinal fMRI data measured repeatedly over four years, we identified 

brain regions activated for the interference minus neutral contrast that showed recognizable 

changes over time using the SwE method (Guillaume et al., 2014). The multiple ROIs that 

we identified were consistent with prior findings regarding brain regions generally involved 

in cognitive control (Sebastian et al., 2013; Spielberg et al., 2015). In particular, a meta-

analysis of fMRI studies using MSIT reported two reliable activation clusters including the 

dACC/medial prefrontal cortex/SMA cluster and the right insula/right IFG/right putamen 

cluster (Deng et al., 2018). Our longitudinal confirmatory factor analysis model with strong 

factorial invariance revealed that multiple fronto-parietal regions (including seven ROIs of 

bilateral insula, bilateral MFG, left pSMA, left IPL, right precuneus) were consistently 

loaded on the same latent factor and activated in a concerted pattern across four years. Those 

ROIs in the fronto-parietal regions are known to be involved in attention to salience (insula), 

motor control (MFG and pSMA), and spatial attention and visuomotor processing (IPL and 

precuneus) (Sebastian et al., 2013; Spielberg et al., 2015). In contrast, the left rACC was not 

loaded on the same latent factor as the fronto-parietal regions. The peak of this region fell in 

Brodmann area 11 (BA 11) which is known to engage in decision making that involves 

conflict processing (Taylor et al., 2006; Rogers et al., 1999; Sebastian et al., 2013).

As has been shown in many fMRI studies, a single region can be involved in a broad range 

of tasks (Kanai and Rees, 2011). Furthermore, brains regions do not function in isolation, 

but rather as parts of larger collections of interacting brain regions (Bullmore and Sporns, 

2009; Fox et al., 2005). Therefore, the use of latent factor modeling in analyzing multiple 

ROIs that are related to a particular function during a behavioral task is a promising way to 

address correlations between ROIs that reflect neural substrates of a common latent 

construct. Indeed, our findings of longitudinal confirmatory factor analysis based on 

multiple fronto-parietal regions illustrate that latent variable modeling using SEM is a 
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feasible way of representing associations of functionally related brain regions, which 

complements other functional approaches used in the field to assess brain systems and 

networks (e.g., Woo et al., 2017). Furthermore, testing for longitudinal measurement 

invariance enabled us to use the repeated measures fMRI data to be compared quantitatively, 

so that reliable variance in intraindividual changes can be examined.

The longitudinal trajectory of decreasing fronto-parietal activation indicated that positive 

interference effects (i.e., interference > neutral) became smaller across adolescence. We 

found no significant variance in change rates for fronto-parietal activation, suggesting 

relatively homogeneous decreasing trajectories. The observed decreases in the fronto-

parietal activation are consistent with prior research demonstrating age-related decreases in 

brain activation during cognitive control, reflecting more refined and more efficient neural 

functioning with development (Crone and Steinbeis, 2017; Luna et al., 2010; Tamm et al., 

2002). We note that our longitudinal data revealed significant intraindividual changes in 

fronto-parietal activation to task-specific interference processing, whereas a cross-sectional 

study of 8- to 19-year-olds who performed the MSIT found no age differences in brain 

activation to interference processing (i.e., interference versus neutral conditions) (Liu et al., 

2016). Instead, Liu et al. (2016) found that older youths showed lower pre-SMA activation 

to overall task processing (i.e., interference plus neutral conditions against implicit baseline). 

As such, the discrepancy in the findings highlight the importance of examining within-

person changes over time, as opposed to comparing individuals of different ages.

The decreasing trajectory of fronto-parietal activation across adolescence observed in the 

current study appears to be inconsistent with the findings from a longitudinal study by Ordaz 

et al. (2013), who reported no significant changes in growth curves with regard to activation 

in motor response control regions including pre-SMA, bilateral posterior parietal cortex, and 

putamen. One possibility for the inconsistent findings may be differences in specific 

neuroimaging paradigms, such as the use of cognitive interference (in our study) versus 

response inhibition (in Ordaz et al.). Another possibility for the discrepancy in the findings 

may be the age range of the samples. Our single-cohort sample had a narrow age range 

within each time point and the whole sample was assessed annually over four years within 

the developmental period of adolescence, ages 13 through 17 years. In contrast, the sample 

used by Ordaz et al. included participants aged 9 years to 26 years, with participants 

contributing between one to six time points across yearly assessments. Given such sample 

differences, it is plausible that the current study could capture the adolescence-specific 

changes more sensitively than the study by Ordaz et al. Further replications are needed for 

clarifying potentially differential developmental trajectory patterns of task-specific neural 

activation (e.g., cognitive interference versus response inhibition) during adolescence.

The longitudinal trajectory of increasing rACC activation indicated that in general negative 

interference effects (i.e., neutral > interference) became smaller across adolescence. In 

addition, there was significant variation in change rates for the rACC growth trajectories. 

The negative interference effects shown in rACC activation is consistent with prior research 

using the MSIT that showed decreased rACC activation with demanding cognitive activity 

(i.e., task-induced deactivation; Bush et al., 2000). Prior research also suggested that rACC 

activation may play a critical role in dynamic regulation of cognitive control via 
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performance optimization and error evaluation (Braver et al., 2001; Polli et al., 2005). Our 

finding of increasing rACC activation across adolescence, implying decreases in reduced 

rACC recruitment during the interference condition compared to the neutral condition, 

aligns with the prior finding by Ordaz et al. (2013), who reported age-related increases in 

dACC activation for error monitoring during the corrected error trials compared to the 

fixation baseline. Taken together, the findings corroborate the theorized ACC involvement in 

cognitive control (Botvinick et al., 2001) by clarifying that increases in ACC recruitment 

with development may reflect the maturation of neural cognitive control, particularly in 

conflict and error processing.

Turning to behavioral performance data, age-related improvement was indicated by a 

decreasing trajectory of intraindividual variability in response time across four years. The 

current finding presents the first evidence of within-person developmental changes in 

cognitive control performance based on the MSIT, and the result is in line with prior cross-

sectional research reporting larger reaction time differences between the neutral versus the 

interference condition among adolescents compared to adults during the MSIT (Fitzgerald et 

al., 2010).

Overall, we found differential change patterns and individual differences in the 

developmental trajectories of neural activation and behavioral performance during MSIT. In 

our examination of developmental trajectories of fronto-parietal activation, rACC activation, 

and MSIT behavioral performance, rACC activation was the only construct that showed 

significant variance in change across four years. This finding suggested greater individual 

differences in the developmental trajectory of rACC in contrast to the trajectories of fronto-

parietal activation and behavioral performance. With respect to the pattern of the 

developmental trajectory, all three constructs (i.e., fronto-parietal, rACC, and behavioral) fit 

non-linear patterns of growth better than a linear pattern. For fronto-parietal activation and 

behavioral performance, the largest change (decrease) occurred between Time 1 and Time 2, 

suggesting most rapid change in early adolescence. For rACC activation, the developmental 

trajectory showed a peak around Time 3, with the largest change (increase) occurring 

between Time 2 and Time 3 and thus suggesting most rapid change during middle 

adolescence.

Within the neuroscience literature, correlations between neural and behavioral indicators 

have been frequently used to evaluate brain-behavior associations. However, correlations can 

have problems, especially when the goal is to examine longitudinal changes in brain-

behavior associations (Cooper et al., 2019; Rousselet and Pernet, 2012). For example, 

Pearson correlations are affected by many factors that are likely to vary across repeated 

measurements, including the slope around which points are clustered, the magnitude of the 

residuals, restriction of range, heteroscedasticity, and sensitivity to outliers (Wilcox, 2012). 

Instead of using the conventional approach with correlations, we evaluated longitudinal 

brain-behavior associations by testing bivariate growth models to estimate joint development 

between neural and behavioral cognitive control processes to better understand the way their 

changes are related over time. We found a significant association between the level of 

behavioral performance and the level of fronto-parietal activation, indicating that adolescents 

with lower fronto-parietal activation showed better cognitive control performance. Thus, 
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greater cognitive interference demands placed on fronto-parietal regions in developing 

adolescent brains may be related to poor behavioral performance. The association between 

the level of behavioral performance and the level of rACC activation was weaker and not 

statistically significant, suggesting that individual differences in behavioral performance 

were better accounted for by the magnitude of fronto-parietal activation than rACC 

activation. Finally, the individual differences in changes in fronto-parietal and rACC 

activation were not significantly associated with the individual differences in changes in ISD 

scores, indicating that the changes in neural activation and the changes in behavioral 

performance are not dynamically linked across adolescence. However, the non-significant 

associations between brain changes and behavior changes are likely due in part to the non-

significant variance in change rates shown in behavioral cognitive control as well as fronto-

parietal activation.

Recent concerns have been raised about the temporal reliability of individual differences in 

brain activation, especially because reliability is important for examining brain activation as 

a biomarker of health risk or endophenotypes of clinical outcomes (Elliott et al., 2020; 

Kragel et al., 2020). In the present study, longitudinal confirmatory factor analyses revealed 

robust measurement models of neural cognitive control based on multiple ROIs in the 

fronto-parietal regions (insula, MFG, pSMA, IPL, and precuneus) across four years during 

adolescence. Thus, our findings demonstrated that multiple ROI indicators during the MSIT 

task could be reliably measured across time as shown by longitudinal measurement 

invariance. Longitudinal confirmatory factor analysis has a clear advantage over intraclass 

correlation coefficients to measure reliability of fMRI data due to the ability to formally test 

temporal equivalence in the measurement structure. With measurement equivalence tested 

and supported, it is then feasible to more directly interpret longitudinal changes in factor 

means as real developmental change that is not attributable to developmental changes in 

reliability of measurement.

Limitations of the current study suggest directions for future research. First, longitudinal 

neuroimaging research that uncovers developmental changes in the connections between the 

rACC and the fronto-parietal regions (such as functional or structural connectivity) is needed 

to advance our understanding of how those brain regions work together to contribute to 

intraindividual changes in cognitive control development. Second, we used a latent basis 

growth model to discover the best-fitting shape of non-linear change. Although this 

somewhat exploratory approach is deemed to be useful because the growth function of 

neural activation during cognitive control is not clearly known, we note that the estimated 

parameters from the latent basis growth model can be difficult to map onto theoretical 

notions of particular patterns of developmental processes, and that the model does not make 

predictions outside the observation period (Grimm et al., 2011). Third, we used cut-offs of 

RMSEA ⟨ 0.08 and CFI ⟩ 0.90 based on Little (2013) who provided model fit evaluation 

guidelines for longitudinal SEM considering unique features of longitudinal models (e.g., 

requiring both covariance and mean structures as opposed to models used for SEM fit 

assessment recommendations that model only covariance). Nevertheless, these were less 

stringent than the commonly used cut-off criteria that have been recommended based on 

simulations of single-occasion covariance structure models (e.g., RMSEA ≤ 0.06 and CFI ≥ 

0.95; see Hu and Bentler, 1999). All of our models satisfied RMSEA ≤ 0.06 and the models 
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involving rACC models satisfied CFI ≥ 0.95. However, the models involving fronto-parietal 

indicators had CFIs ranging from 0.91 to 0.92, pointing out a need for replication to improve 

the model and identify misspecification. We speculate that the worse CFI fit of the models 

involving fronto-parietal indicators may reflect the ‘model size’ effect, demonstrating a 

worsening of CFI as the number of observed variables increased (Shi et al., 2018). Finally, 

replication of our findings is needed given that we used the same data set for selecting brain 

regions and for testing our statistical models. As an initial inferential step in testing a latent 

growth modeling approach to analyzing multi-wave multivariate neuroimaging data, we used 

functionally defined ROIs defined from the SwE procedure which may be susceptible to 

inflated effect sizes (Vul et al., 2009), although perspectives on how inflated and the extent 

to which nonindependent ROIs are useful are mixed (Lieberman et al., 2009). We 

recommend that future studies ideally use independent datasets for selection and analyses to 

ensure independence of the results while preventing circularity (Kriegeskorte et al., 2009).

5. Conclusion

Consistent with neurodevelopmental models of adolescent motivated behavior that 

emphasize the regulating role of prefrontal cortex functioning over limbic functioning, the 

development of cognitive control has implications for risky decision making and health risk 

behaviors during adolescence (Casey et al., 2008; Kim-Spoon et al., 2017). As adolescents 

age, the decreasing activation trajectory of the fronto-parietal regions together with the 

increasing activation trajectory of rACC may reflect maturing neural substrates of cognitive 

control that improve the top-down control by the prefrontal cortex over limbic reward and 

emotional processing—top-down control that ultimately drives the decline of impulsive 

decision making from adolescence to adulthood. Given that the magnitude of fronto-parietal 

activation (but not rACC activation) was a significant predictor of behavioral performance 

during cognitive control, reduced effects of cognitive interference indicated by fronto-

parietal recruitment may be a marker of a maturing brain that underlies better cognitive 

control performance during adolescence. Methodologically, our work illustrates that latent 

variable modeling can facilitate multivariate repeated measures of fMRI data to be used in 

complex longitudinal models to critically inform our understanding of the neurobehavioral 

development of cognitive control and many other functions.
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Fig. 1. Schematic Display of the Multi-Source Interference Task (MSIT) and Activation Maps 
Showing Significant Activation for the Interference-Neutral Contrast.
Note: A) Adolescents were instructed to identify the different digit while ignoring its 

position. B) Statistical T map showing regions of positive and negative linear change in the 

interference effect on BOLD responses with time point using the Sandwich Estimator 

Toolbox after applying a gray matter mask. C) Statistical T maps showing regions of positive 

(interference > neutral) and negative (neutral > interference) interference effect for each time 

point after applying a gray matter mask.
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Fig. 2. Longitudinal Confirmatory Factor Analysis with Strong Invariance for the Fronto-
Parietal Regions
Note. Factor mean/variance are presented in italics. For clarity of presentation, factor 

loadings are presented for Time 1 only (factor loadings were equal across time), and residual 

correlations across time for the same variable and between left and right insula within the 

same time point are not presented. L = left; R = right; “=” fixed parameters; *p < .05.
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Fig. 3. Bivariate Growth Model for Neural and Behavioral Cognitive Control.
Note. The model was estimated separately for the fronto-parietal regions and the rostral 

anterior cingulate cortex (neural cognitive control). For the fronto-parietal regions, latent 

factors were used instead of manifest variables (as shown in Fig. 2). CC = cognitive control; 

T1 = Time 1; T2 = Time 2; T3 = Time 3; T4 = Time 4; n_res = neural residual; b_res = 

behavioral residual.
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Fig. 4. Mean growth curve with individual values across four times
Note. A. Fronto-parietal activation factor scores. B. Rostral anterior cingulate cortex (rACC) 

activation C. Intraindividual variability behavioral performance scores.
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