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Abstract: There remains a vital necessity for new therapeutic approaches to combat metastatic cancers,
which cause globally over 8 million deaths per year. Mesenchymal stem cells (MSCs) display aptitude
as new therapeutic choices for cancer treatment. Exosomes, the most important mediator of MSCs,
regulate tumor progression. The potential of harnessing exosomes from MSCs (MSCs-Exo) in cancer
therapy is now being documented. MSCs-Exo can promote tumor progression by affecting tumor
growth, metastasis, immunity, angiogenesis, and drug resistance. However, contradictory evidence
has suggested that MSCs-Exo suppress tumors through several mechanisms. Therefore, the exact
association between MSCs-Exo and tumors remains controversial. Accordingly, the applications of
MSCs-Exo as novel drug delivery systems and standalone therapeutics are being extensively explored.
In addition, engineering MSCs-Exo for targeting tumor cells has opened a new avenue for improving
the efficiency of antitumor therapy. However, effective implementation in the clinical trials will need
the establishment of standards for MSCs-Exo isolation and characterization as well as loading and
engineering methods. The studies outlined in this review highlight the pivotal roles of MSCs-Exo in
tumor progression and the promising potential of MSCs-Exo as therapeutic drug delivery vehicles
for cancer treatment.
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1. Introduction

Cancer, the second leading cause of mortality worldwide, is responsible for more than
80.2 million mortality annually [1]. The tumor microenvironment (TME) is heterogeneous
regarding tumor and non-tumoral cells, as well as complex interactions within cells, making
tumors resistant to conventional therapies [2]. Over the last few years, despite the extensive
progress in therapeutic technology, the fundamental mechanisms driving tumors remain
unwell understood. Many endeavors have been performed to overcome tumor metastasis
and resistance. In this regard, stem cells display hopeful results as novel therapeutic
tools for cancer therapy [3]. One promising stem cell is mesenchymal stem cells (MSCs),
multifunctional stem cells with the ability to differentiate into several cells and can be found
in several tissues such as fat, bone marrow, dental pulp, umbilical cord, and placenta [4].
These cells contribute to tissue regeneration; however, according to previous studies, they
can regulate tumor cells and immune responses [5,6]. MSCs may participate in inhibiting
or/and promoting tumor progress [7,8]. MSCs may target several aspects of TME, including
immune cells, endothelial cells (ECs), and fibroblasts, regulating tumor development [9,10].
MSCs can secret various soluble factors, cytokines, and immunomodulatory factors that
can affect tumor cells, the phenotype of cancer-associated fibroblasts (CAFs), Ref. [9]
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and immune cells [11], and thereby regulate tumor progress. In addition, MSCs can be
dictated by tumor-associated MSCs (TA-MSCs) and transmuted into the tumor-supporting
phenotype to promote tumor growth [12]. Common knowledge is that extracellular vesicles
(EVs) are the main mediators of MSCs in regenerative medicine and cancer [13]. EVs
are the heterogeneous population of cell-derived vesicles that contribute to cell-to-cell
communication by transferring various biomolecules like signaling molecules, RNAs,
proteins, DNA strands, carbohydrates, and lipids between cells [14,15]. These vesicles
release out of cells and are usually present in urine, blood, tears, saliva, cerebrospinal fluid
(CSF), milk, etc. [16,17]. Once reach target cells, EVs can regulate the function, shape, and
fate of cells through various signaling pathways. According to ISEV, three subclasses of
EVs can be identified based on their mechanism of generation and size, known exosomes
(30–150 nm), microvesicles (100–1000 nm), and apoptotic bodies (1000–6000 nm) (Figure 1
and Table 1) [14,15]. Exosomes are generated within endosomal compartments named
multivesicular bodies (MVBs) inside cells via a complex mechanism involving different
proteins and interactions [18,19]. Following the fusion of MVBs with the plasma membrane,
exosomes are released into the extracellular matrix for targeting cells located nearby or
far from (Figure 1). Therefore, exosomes play pivotal roles in normal and pathological
conditions [18–21]. The main class of EVs is exosomes, which are widely studied for their
function in biomedical fields and drug delivery systems. Compared with conventional
nanocarriers, exosomes offer several benefits due to their distinctive physicochemical
properties [22]. Due to their natural origin, exosomes show high biocompatibility, low
toxicity, and low immunogenicity [22]. They also are being examined in clinical trials.
Following the COVID-19 pandemic, many researchers have examined the regenerative
potential of exosomes of MSCs (MSCs-Exo) in clinical trials. MSCs-Exo has been shown
to regulate tumor cell growth and metastasis. Beside cell-free therapies, MSCs-Exo has
received much attention in the last years regarding its application as a novel drug delivery
system [23]. This review aims to summarize the current literature on the role of MSCs-Exo
in cancer progression, discussing their application in drug delivery systems.

Table 1. Types of extracellular vesicles.

Extracellular
Vesicles Size Markers Mechanism of Generation

Exosomes 30–150 nm CD9, CD63, CD81,
Tsg101

Generated from MVBs through
ESCRT-dependent or/and

ESCRT-independent mechanism
and secreted out of cells upon

fusion of MVBs with the
plasma membrane

Microvesicles 100–1000 nm Annexin A1, ARF6
Pocketing from membrane

protrusions/the plasma
membrane detaching

Apoptotic bodies 1000–6000 nm Phosphatidylserine Produced from apoptotic cells
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Figure 1. Biogenesis of extracellular vesicles (EVs) from cells. Exosome biogenesis is complex;
different molecules contribute to biogenesis, trafficking, and section of exosomes (I). Exosomes
are formed within multivesicular bodies (MVBs) located inside cells. MVBs may fuse with the
plasma membrane (A), back-fuse with the plasma membrane (B), and fuse with lysosomes (C). Rabs
participate in intracellular trafficking MVBs. Microvesicles are originated from the plasma membrane
(II), and apoptotic bodies are formed from apoptotic cells (III). EVs can target cells in three possible
ways: internalization, fusion, and receptor-ligand interaction. This figure is reused from our published
article [24], under the article’s Creative Commons license. The Creative Commons CC BY license
permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
(accessed on 4 November 2022).

2. The Roles of MSCs-Exo in Tumors

TME consists of many different cells, such as endothelial cells (ECs), tumor-associated
MSCs (TA-MSCs), immune cells, myeloid-derived suppressor cells (MDSCs), and tumor-
associated macrophages (TAMs), creating highly complex environment [25,26]. This envi-
ronment supports tumor cells in their growth and development. The main component of
TME is exosomes that regulate interactions between cells resident in TME [27]. Exosomes
derived from MSCs contain different miRNAs, proteins, and other biomolecules that can re-
program other cells, including tumor cells, ECs, immune cells, TAMs, MDSCs, and CAFs [7].
Previous studies report contradictory results on MSCs-Exo effects; some of them indicate
these exosomes promote tumor development [28], but others show antitumor effects of
them [29]. This discrepancy results may arise from the type of exosomes cargo and/or
source of MSCs. For example, MSCs-Exo from bone marrow contains distinct miRNAs that
could increase the proliferation of osteosarcoma cells and lung cancer [30,31]. However, He
et al. showed that MSCs-Exo from a human umbilical cord source could deliver miRNA-375
to esophageal squamous cell carcinoma and decrease tumor cell progression [32]. In this
section, we discuss the promoting function of MSCs-Exo in tumor development (Table 2)
(Figure 2).

http://creativecommons.org/licenses/by/4.0/
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Table 2. Promoting function of MSCs-Exo.

MSCs Source Targeted Tumor Exosomes
Cargo Function Ref.

Bone marrow Multiple
myeloma

PSMA3 and
PSMA3-AS1

Promote tumor drug
resistance [33]

Mouse bone
marrow

Multiple
myeloma Cytokines

Promote the proliferation
and migration/drug

resistance of tumor cells
[34]

Human bone
marrow Lung cancer miRNA-21-5p Promote the growth and

migration of tumor cells [35]

Human bone
marrow Breast cancer TGF-β, C1q, and

semaphorins
Accelerating breast cancer

metastasis [36]

Human bone
marrow

Nasopharyngeal
carcinoma FGF19 Induce nasopharyngeal

carcinoma growth [37]

Human
umbilical cord Gastric cancer - Promote invasive and EMT

ability of tumor cells [38]

Human
umbilical cord Breast cancer Platelet-derived

growth factor
Promote the angiogenic

potential [39]

Human
umbilical cord Breast cancer - Promote the angiogenic

potential [40]

Tumor
associated MSCs Gastric cancer G6PD-NF-κB-

HGF
Promote tumor cell

proliferation [41]

Mouse bone
marrow Breast cancer miRNA-16 Promote the angiogenic

potential [42]
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2.1. Promoting Function
2.1.1. Proliferation and Metastasis

The constant growth, distribution, and metastasis of tumor cells are governed by
intercellular communication between cells located in TME. Metastasis is the movement of
tumor cells from the original location (primary cancer) through the circulatory system to
the secondary location and the construction of new tumors (metastatic tumors) [43]. This
process is a vital property of malignant tumors that is accountable for more than 90% of
cancer-related death [44]. Organotypic metastasis is a feature of primary tumors to dictate
secondary tumors at the metastatic location in distinct organs and comprises a chain of
cell-interaction procedures recognized together as the invasion-metastasis process [44,45].
Induction of epithelial-to-mesenchymal transition (EMT) is a hallmark of aggressive tumors;
therefore, cells that acquired EMT are inclined to transfer and form colonies distant from
the location of origin. MSCs-Exo has been known to play roles in cancer metastasis through
different signaling pathways. Zhou et al. reported that MSCs-Exo from bone marrow could
increase the proliferation of tumor cells in vivo by ERK1/2 signaling pathways [40]. It was
demonstrated that MSCs-Exo contains vimentin and N-cadherin molecules that promote
proliferation and EMT of nasopharyngeal carcinoma by initiating the FGF19/FGFR4-
dependent ERK signaling pathways [37]. Gu et al. showed that MSCs-Exo could induce
EMT in gastric cancer cells by activating the AKT signaling pathway [38]. In addition,
MSC-Exo from bone marrow can increase the growth and invasion of human gastric cancer
cells by delivering miRNA-221 to cells in vitro [46]. Li et al. found that exosomes from
MSCs contain miR-222 that could reach CRC cells, target ATF3 binding, and inhibit the
activity of AKT1, increasing tumor invasion and immunosuppression of colorectal cells [47].
Lin et al. showed that MSCs-Exo from human adipose tissue promoted breast cancer
progression and metastasis through activating Wnt signaling [48]. These results indicate
that MSCs-Exo can support tumor progression by inducing growth and metastasis.

2.1.2. Tumor Angiogenesis

Angiogenesis, raising new vessels from pre-existing vessels, is the hallmark of cancer
that exosomes can regulate, participating in tumor progression [49,50]. This process is
regulated by balancing pro and anti-angiogenesis factors with roles in pathological and
physiological conditions [49,50]. Angiogenesis is an essential factor for tumor growth and
metastasis. MSCs can release numerous growth factors and cytokines, such as VEGF, which
may promote neovascularization and thus support tumor growth [51,52]. MSCs-Exo can
deliver bioactive molecules to cancer cells, which induce expression of VEGF in cancer cells
by activating the ERK1/2 signaling that promote tumor progression [40]. Exosomes from
AT-MSCs contain platelet-derived growth factors that induce angiogenesis [39]. miRNA
cargo of MSCs-Exo may participate in inducing angiogenesis. For example, exosomal
miRNA-30b can promote angiogenesis in ECs [53]. In addition, MSCs-Exo has been shown
to develop angiogenesis, probable through the AKT/eNOS pathway, by increasing the
expression of miRNA-221-3p [54]. These findings show that MSCs-Exo contains cargo
regulating angiogenesis in recipient cells.

2.1.3. Tumor Immune Responses

Immune cells are vital components of the TME, interacting with other cells resident
in the TME. Previous studies have shown the interaction of MSCs-Exo with immune
cells such as neutrophils, T cells, B cells, and macrophages, inhibiting immune responses
against tumor cells [55,56]. MSCs-Exo can suppress T-cell activity by delivering soluble
factors and regulating signaling [57]. It was shown that CD30 cargo of MSCs-Exo boosted
immunosuppressive effects by promoting adenosine amassing [58]. MSCs-Exo can increase
the expression of anti-inflammatory molecules such as TGFB1 and IL-10 and decrease
the pro-inflammatory factors IL-6, IL-1B, IL-12P40, and TNFA by prompting polymyxin-
resistant SEAP expression [59]. These actions promote immunosuppression and tumor
progression. Under a hypoxic condition in vivo, Ren et al. showed that MSCs-Exo carries
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miRNA-21-5p that can induce M2 macrophage polarization by down-regulation of PTEN,
consequently increasing lung cancer growth and metastasis [35]. As known, macrophages
are central constituents of the immune system. Type M2 macrophages promote tumor
development by employing anti-inflammatory storms. Generally, MSCs-Exo is more
capable of suppressing immune response than stimulating it.

2.1.4. Tumor Drug Resistance

The main challenge in cancer management is the therapy-resistant activity of tumor
cell, which cause low tumor treatment outcomes. MSCs-Exo may contribute to drug
resistance [60]. For example, a study showed that MSCs-Exo from bone marrow con-
tains PSMA3 and PSMA3-AS1 that can cause resistance to proteasome inhibitors when
co-cultured with multiple myeloma cells [33]. MSCs-Exo- containing miRNA-222/223
contribute to drug resistance in breast cancer [61]. Additionally, in breast cancer cells,
miRNA-23b cargo of MSCs-Exo could induce resistance to the proteasome inhibitor doc-
etaxel [62]. Exosomes derived from MSCs induce drug (fluorouracil) resistance in gastric
cancer cells by promoting mRNA levels of MRP, LRP, and MDR through the activating
of calcium/calmodulin-dependent protein kinases (CaM-Ks) and the Raf/MEK/ERK cas-
cade [63].

2.1.5. TA-MSCs Derived Exosomes

While the exact function of normal MSCs on tumors remains debatable, the majority
of studies on TA-MSCs suggest that they support tumor progress. Under the complex
interaction within the TME, normal MSCs may acquire TA-MSCs that support tumor
progression. This event can be induced by exosomes derived from tumor cells because exo-
somes contain pro-oncogenic factors that cause transcriptional and translational changes
in normal MSCs [64]. These cells are immunosuppressive phenotypes that regulate sig-
naling pathways that create a microenvironment favorable to tumor growth and invasion.
Exosomes from TA-MSCs can regulate tumor development through different pathways
and affecting on different cells in the TME [7]. For example, Yang et al. reported that
TA-MSCs release exosomes that control cell migration in atypical teratoid rhabdoid tu-
mors through the miR155/SMARCA4 pathway [65]. In breast cancer, exosomes produced
by TA-MSCs transfer TGF-β, C1q, and semaphorins that can promote differentiation of
myeloid cells into immunosuppressive M2-polarized macrophages by inducing PD-L1
overexpression, prompting tumor progression [36]. TA-MSCs-derived exosomes participate
in the powerful immunomodulatory, which promotes tumor proliferation and invasion
by producing growth factors and cytokines [66]. Moreover, exosomes from TA-MSCs
deliver CCL2, CCR2, and CCL7 that can induce macrophage infiltration, increasing tumor
progression [67]. These findings indicate that exosomes from TA-MSCs contribute to tumor
progression.

2.1.6. MSCs-Exo Alter CAFs Phenotype

In TME, soluble factors produced by cells can also modify the CAF phenotype and
further support tumor progression [68]. CAFs, the main cells of TME, contribute to mak-
ing pre-tumor metastatic niches with other cancer cells and provide nutrients for tumor
metastasis [68]. In breast cancer, CAFs can promote tumor growth and metastasis [69]. It
was suggested that exosomes secreted by TA-MSCs could induce CAFs formation [70].
Interaction within TME is complex; however, a study has shown that exosomes from gastric
cancer-promoted PKM2 trigger the constant activation of the NF-κB signaling in CAFs by
mediating MSC-Exo, thus disturbing inflammatory pathway and metabolic homeostasis,
which offers sustained support for tumor growth [71]. The evidence of CAFs-exosomes
function is little. A study indicated that exosomes from CAFs could induce chemoresistance
in gastric cancer cells by delivering different miRNAs [72].
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2.2. Tumor Suppression

Increasing evidence supports the key role of MSCs-Exo in the suppression of tumors
via their involvement in different aspects of tumor progression (Table 3) (Figure 3).

Table 3. Suppression function of MSCs-Exo.

MSCs Source Targeted Tumor Exosomes Cargo Function Ref.

Human bone
marrow Leukemia miRNA-223-3p

Suppress leukemia cell
proliferation and induce

apoptosis
[73]

Human bone
marrow Breast cancer miRNA-100 Inhibit tumor cell

progression [74]

Human
umbilical cord

Endometrial
cancer miRNA-302a Suppress the proliferation

and migration of tumor cells [75]

Adipose tissue Hepatocellular
carcinoma miRNA-122

Promote the
antihepatocellular carcinoma

influence of sorafenib
[76]

Adipose tissue Hepatocellular
carcinoma miRNA-199a Increase HCC

chemosensitivity [77]

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 18 
 

 

Table 3. Suppression function of MSCs-Exo. 

MSCs Source Targeted Tumor Exosomes Cargo Function Ref. 

Human bone 
marrow 

Leukemia miRNA-223-3p 

Suppress leukemia 
cell proliferation 
and induce apop-

tosis 

[73] 

Human bone 
marrow 

Breast cancer miRNA-100 Inhibit tumor cell 
progression 

[74] 

Human umbili-
cal cord 

Endometrial can-
cer 

miRNA-302a 

Suppress the pro-
liferation and 

migration of tumor 
cells 

[75] 

Adipose tissue Hepatocellular 
carcinoma miRNA-122 

Promote the anti-
hepatocellular car-
cinoma influence 

of sorafenib 

[76] 

Adipose tissue 
Hepatocellular 

carcinoma miRNA-199a 
Increase HCC 

chemosensitivity [77] 

 
Figure 3. Role of exosomes from MSCs (MSCs-Exo) in inhibiting tumor. 

2.2.1. Proliferation and Metastasis 
MSCs-Exo can suppress the proliferation and metastasis of tumors. For example, ex-

osomes from human umbilical cord MSCs inhibit endometrial cancer cell proliferation 
and migration by transferring miRNA-302a and down-regulating cyclin D1 and the AKT 
signaling pathway [75]. Ono et al. showed that exosomes from MSCs can induce dor-
mancy in breast cancer cells (MDA-MB-231) via transferring miRNA-23b and inhibition 
of MARCKS in cells, which led to the inhibition in cell cycling and migration in vitro [62]. 
Human umbilical cord-MSCs-Exo can reduce bladder carcinoma cell growth by inhibiting 
AKT phosphorylation and increasing the cleaved caspase-3 [78]. In hematological cancers, 
it was demonstrated that bone marrow-derived MSCs-Exo delivers miRNA-222-3p to 

Figure 3. Role of exosomes from MSCs (MSCs-Exo) in inhibiting tumor.



Int. J. Mol. Sci. 2022, 23, 13974 8 of 18

2.2.1. Proliferation and Metastasis

MSCs-Exo can suppress the proliferation and metastasis of tumors. For example,
exosomes from human umbilical cord MSCs inhibit endometrial cancer cell proliferation
and migration by transferring miRNA-302a and down-regulating cyclin D1 and the AKT
signaling pathway [75]. Ono et al. showed that exosomes from MSCs can induce dor-
mancy in breast cancer cells (MDA-MB-231) via transferring miRNA-23b and inhibition
of MARCKS in cells, which led to the inhibition in cell cycling and migration in vitro [62].
Human umbilical cord-MSCs-Exo can reduce bladder carcinoma cell growth by inhibiting
AKT phosphorylation and increasing the cleaved caspase-3 [78]. In hematological cancers,
it was demonstrated that bone marrow-derived MSCs-Exo delivers miRNA-222-3p to
THP-1 cells (leukemia cell), which target the IRF2 gene, consequently down-regulate the
IRF2/INPP4B signaling, resulting in the inhibition of cell proliferation and the leukemia
progression as well as the induction of apoptosis [73]. Yao et al. reported that bone
marrow-derived-MSCs-Exo contain circ_0030167 molecules that decrease the proliferation,
migration, invasion, and stemness of pancreatic tumor cells by cleaning miRNA-338-5p and
consequently by targeting the Wif1/Wnt8/β-catenin signaling [79]. In glioma xenografts
in the rat model, miRNA-146b cargo of MSCs-Exo decreased the growth of tumor mass;
however, the detailed mechanism was not explained [80].

2.2.2. Tumor Angiogenesis

MSCs can decrease angiogenesis in cancer. For example, Lee et al. showed that
murine MSCs-Exo could dose-dependently decrease the expression of VEGF in breast
cancer cells, suppressing angiogenesis, which may facilitate by miRNA-16 [42]. In addition,
MSCs-Exo could facilitate VEGF suppression and inhibit the growth of oral squamous cell
carcinoma [81] and prostate cancer cells by preventing VEGF production and NF-κB signal-
ing [82]. Pakravan et al. demonstrated that miRNA-100 transferred by MSCs-Exo could
inhibit angiogenesis and breast cancer development, through the mTOR/HIF1A/VEGF sig-
naling pathway [74]. The roles of MSCs-Exo in angiogenesis look to be conflicting, maybe
due to the type of MSCs-Exo cargo that results in different tumor regulatory properties.

2.2.3. Tumor Immune Responses

The reported findings related to the role of MSCs-Exo in tumor progression show
that these particles can regulate innate and adaptive immune responses. According to
previous studies, comparatively few studies have examined the function of MSCs-Exo in
immune stimulation, probably as MSCs-Exo mainly mediate the former rather than the
latter. MSCs increase CD8+ and CD4+—T cell growth through a CCL2-related pathway [83].
Umbilical cord-MSCs-Exo can deliver miRNA-182 that can increase the death of cancer
cells by increasing the proliferation of NK and T cells and by regulating the sensitivity of
cancer cells to immune cells [84]. Zhou et al. engineered bone marrow-MSCs-Exo with
galectin-9 siRNA and oxaliplatin and then exposed it to immune cells. Results showed
that these exosomes induced antitumor immunity by suppressing Treg down-regulation,
cytotoxic T lymphocyte enrolment, and macrophage polarization [85].

2.2.4. Tumor Drug Resistance

MSCs-Exo may exert different impacts on drug resistance in tumor cells due to hetero-
geneity in tumor nature. MiR-199a-overexpressing MSCs-Exo suppressed glioma devel-
opment and higher sensitivity to temozolomide by inhibiting AGAP2 expression in vitro
and in vivo [86]. A recent study confirmed that AT-MSCs-Exo delivers miRNA-199a and
promotes the chemosensitivity of hepatocellular carcinoma cells by the mTOR pathway [77].
The authors concluded that miRNA-199a carried by AT-MSCs-Exo might open new av-
enues for increasing hepatocellular carcinoma cell chemosensitivity. In a similar study, Lou
et al. showed that miRNA-122 from AT-MSCs-Exo expressively improved the antitumor
efficiency of sorafenib in vivo by changing chemotherapeutic drug-sensitive expression
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genes in hepatocellular carcinoma cells [76]. These results demonstrate that AT-MSCs-Exo
can increase chemosensitivity in hepatocellular carcinoma.

3. MSCs-Exo as a Drug Delivery System for Cancer

Previous studies indicated that MSCs-exosomes could deliver therapeutic agents to
tumor cells like pancreatic ductal adenocarcinoma (PDAC), CRC, hepatocellular carcinoma,
breast cancer, and glioma. Generally, two methods are used to load therapeutic agents
into MSCs-exosomes (i) direct method, in which therapeutic agents are directly sorted into
isolated exosomes by different loading methods; (ii) indirect method, where exosomes-
producing cells (e.g., MSCs) are genetically manipulated to express distinct biomolecules
(miRNAs, proteins) or co-cultured with therapeutic agents in which exosomes derived
from them would be contained with therapeutic agents [16,87,88] (Figure 4). Approaches
currently used for the direct loading of therapeutic agents (TA) into exosomes include
electroporation, incubation, extrusion, sonication, saponin, and freeze-thaw cycles. Method
incubation is the most frequently used because of its simplicity; however, this method has
low encapsulation efficiency [89]. Though the TA loading efficacy of electroporation is
better than that of incubation, using an electric field may induce protein or RNA clump
that may interrupt exosome construction or decrease the efficiency of drug delivery [90].
Compared to other approaches, sonication shows the uppermost drug loading efficiency;
nevertheless, ultrasound may also interrupt the structure of exosomes and induce protein
aggregation [89]. Certainly, sonication is more damaging to exosome integrity than other
physical methods [91]. Related to incubation, the extrusion method produces homogeneous
exosomes and improves drug delivery productivity [92]. Nevertheless, inappropriate
mechanical compression can disrupt exosomal structural integrity [93]. Even though
freeze-thaw cycles display capacity for mass use in drug delivery systems, multiple rapid
freeze-thaw cycles may disturb the physicochemical properties of exosome membranes,
and it shows less efficiency than sonication for TA loading [92,94]. The saponin method
does not disturb the exosome membrane and offers high loading efficiency and constant
TA release [95], but the related drug delivery efficiency desires to be enhanced. Presently,
incubation and electroporation are the most commonly used approaches. Based on the
outstanding properties of MSCs-Exo [96], the policy of loading MSCs-Exo with TA for tumor
management using methods has been extensively engaged. For example, electroporation
was used to load MSCs-Exo with doxorubicin, which could inhibit colon cancer proliferation
and showed considerably greater tumor amassing than free doxorubicin [97]. Melzer et al.
used the extrusion method to load paclitaxel into MSCs-Exo to treat breast cancer [98].
MSCs-Exo were constructed by modifying surfaces and loaded with superparamagnetic
iron oxide nanoparticles. Proteins of cell-penetrating peptides (CPP) and TNF-α (CTNF-
α)-anchored were linked to EVs containing superparamagnetic iron oxide nanoparticles.
These EVs showed a targeting antitumor role and considerably suppressed tumor cell
growth by inducing apoptosis by the TNFR I pathway in both in vitro and in vivo mic
melanoma subcutaneous cancer models [99]. Previous studies have shown that MSCs-
Exo can successfully deliver chemotherapeutic drugs to cancer cells [98,100]. In a study,
MSCs-Exo were loaded with honokiol by the sonication method and exposure to cancer
cells. Results showed that these particles had superior cytotoxic effects than the free
honokiol [101]. Pascucci et al. used mouse MSCs-Exo to load paclitaxel (PTX) through
incubation of cells with PTX and found that MSCs produced exosomes containing a high
amount of PTX, which inhibited pancreatic cancer cell growth [102].
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4. Engineering MSCs-Exo for Targeting Tumor Cells

One reason for the poor therapeutic impact of chemotherapeutic drugs relates to their
systemic and non-targeting effects. Even if exosomes are promising drug delivery carriers,
their targeting effects need further development. Therefore, recent investigation efforts
have focused on increasing the targeting capacity of exosomes to tumor cells rather than
other cells, improving the efficiency of antitumor therapy (Figure 5). In this regard, engi-
neering can increase the targeting ability of exosomes to tumor cells. The more extensively
examined engineering approaches are chemical and physical modifications, like exosome
surface and content modifications (for further study, see Refs. [103,104]). The surface modi-
fication comprises the application of approaches to connect protein-coding sequences or
peptides into the exosome surface for improving their targeting capability [105]. Therefore,
the researcher can modify/load engineered exosomes with TA and acquire smart carriers,
which deliver TA into tumor cells. In a study, researchers genetically engineered MSCs
to produce exosomes overexpressing miRNA-34a, which could increase the sensitivity to
temozolomide, and inhibit the growth, migration, and invasion of glioblastoma cells by
suppressing MYCN both in vitro and in vivo [106]. One of the approaches is the insertion
of glycosyl phosphatidyl inositol (GPI) on the surface of the exosomes. GPI can attach
to functional ligands like RNAs and antibodies [107,108]. It is an anchoring structure for
functional ligands on the surface of the exosomes. It protects exosome surface proteins
from hydrolytic degradation by proteases and directs exosomes to tumor cells. Another
approach is engineering targeting peptide-Lamp2b fusion proteins for including a glyco-
sylation motif at various sites, and these glycosylation-stabilized peptides improve the
targeting ability of exosomes to tumor cells such as neuroblastoma cells [108]. In addition,
the researcher introduced a method known as click chemistry, by which the ligands are
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attached to the exosome surface by covalent modification [109]. The benefits of chemical
conjugation comprise compatibility and good chemical reaction speed; nevertheless, many
factors, including pressure, temperature, and osmotic pressure, need to be carefully con-
trolled during the modification procedure to prevent exosome rupture [109]. Therefore,
these chemical approaches are highly hopeful but operationally multifaceted and need
further investigation. Tian et al. conjugated the c(RGDyK) peptide to the surface of the
exosomes by bio-orthogonal chemistry and formed the engineered c(RGDyK)-conjugated
exosomes (cRGD-Exo), which successfully targeted injury areas of the brain in cerebral
ischemia model [110]. Researchers have used a non-covalent modification to insert specific
ligands or receptors on exosome surfaces [109]. For example, PEGylated liposomes were
inserted into the surface of exosomes using hydrophobic interactions that considerably ex-
tended the circulation time of the exosomes and enhanced their targeting ability to murine
neuroblastoma cells [111]. The targeting ability of exosomes may also be enhanced by
loading targeted TAs, such as RNAs, viruses, and proteins, into the exosomes. For example,
surface-modified MSCs-Exo loaded with galectin-9 siRNA showed considerably improved
tumor-targeting efficacy and increased apoptosis in a pancreatic cancer model [85]. In
another study, MSCs cells were modified to yield exosomes enriched with a new CFTR
Zinc Finger Protein fusion and transcriptional activation elements to affect the CFTR pro-
moter and stimulate transcription [112]. Another approach is targeting molecules highly
expressed in tumor cells. For example, hyaluronic acid (HA), highly expressed in some
malignancies, can target tumor cells. For example, Vogus et al. linked Hyaluronidase
(HYAL) to MSCs-Exo containing gemcitabine and doxorubicin to form MSCs-Exo-HYAL.
Authors reported that MSCs-Exo-HYAL targeted triple-negative breast cancer cells and
significantly reduced tumor growth [113]. In addition, the folate receptor (FR), a glyco-
protein, is anchored to the cell membrane by GPI. Folate is overexpressed in many tumor
cells; however, its expression in normal cells is low [114]. Therefore, folate may be used as
a targeting ligand for drug delivery. In this scenario, the enrichment of exosomes with FR
or folate can serve as a smart carrier for finding and targeting tumor cells [115]. In a study,
authors formed engineered exosomes containing FA from human umbilical cord MSCs and
loaded them with erastin. These exosomes could successfully target triple-negative breast
cancer cells and inhibit tumor proliferation [116]. Most recently, Feng et al. constructed
Exo-PH20-FA by inserting FA into exosomes by genetic modification, which increased
the efficacy of antitumor drug delivery [117]. Metalloproteinases (MMPs) also have the
potential for application in tumor targeting. It was demonstrated that envelope-type meso-
porous silica nanoparticles loaded with MMP substrate peptides can pretentiously target
MMP-rich hepatocellular carcinoma cells [118]. Thus, overexpressed antigens or receptors
on tumor cells are promising points for researchers to benefit from targeting tumor cells
within tissues. Researchers can use this feature to load exosomes with drugs and direct
them into tumors [103,119]. Of note, in this section, we focused on MSCs-Exo; however
other exosomes or cells may be modified by targeting other molecules. This field is in its
infancy, and further studies must confirm these findings for application in the clinic.
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MSCs-Exo are modified in their content and surface to increase therapeutic efficiency. Molecules such
as galectin-9 siRNA, hyaluronic acid, folate receptor, erastin, and metalloproteinases (MMPs) are
used to engineer MSCs-Exo. These exosomes can be named engineered exosomes which can smartly
deliver the therapeutic agent to tumor cells.

5. Opportunity and Challenges

Exosomes show many promising properties against artificial nanocarriers. For exam-
ple, exosomes are natural vesicles produced by cells, have lower immunogenicity and long
circulating half-life, superior biocompatibility, evading phagocytosis, greater modifying
potential, and better targeting ability [120,121]. In addition, exosomes can cross many
biological barriers and deeply penetrate tissue [122,123]. The application of exosomes as
vehicles for drug delivery is presently the focus of deep research. As a drug delivery tool,
MSCs-Exo has common exosomal individualities and distinctive advantages. It is impor-
tant to mention that MSCs produce more exosomes compared with other cells [96] and their
exosomes have robust tumor-targeting ability [124] and low immunogenicity [125]. The
content and surface of MSCs-Exo can be covalently or genetically modified [109]. However,
this field faces challenges, such as selecting an assured and suitable source of MSCs for
delivering therapeutic agents is a serious step; consequently, various MSCs may yield
different exosomes varied in size, cargo, and role [115]. Notably, some MSCs-Exo can help
tumor development, emphasizing the essential of cautiously characterizing their cargo.
Therefore, exosomes of MSCs with tumor-suppressive roles, like umbilical cord-derived-
MSCs, are a drug delivery system for cancer therapy [60]. MSCs-Exo must be employed
to Good Manufacture Practice (GMP) standards. This field is progressing and requires a
profound understanding of exosome kinetics and advances in exosome modifying and
loading methods to obtain well cancer treatment. The majority of studies were completed in
labs, and the outcomes of clinical application of modified MSCs-Exo remain a problem; this
field faces some challenges that are essential to be considered in clinical translation studies.
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The biology and role of exosomes are not fully revealed. Many questions are associated
with exosome biogenesis pathway and uptake, characterizations, nomenclature, and pu-
rification, which affect methods and plans that deal with exosome modifying and loading
approaches [126]. Mass production of exosomes is another challenge and requirements
standardization for their isolation, purification, loading, and modification of exosomes.
Mass production of exosomes, especially from MSCs, is very challenging since purification
and incubation of human autologous MSCs are laborious and challenging in vitro in a short
time. Similar to other exosomes, MSCs-Exo may be captured by the spleen, liver, and lungs
following intravenous injection; therefore, exosomes cannot efficiently penetrate the target
tissue [127].

6. Conclusions

MSCs-Exo are intercellular communication mediators with roles in tumorigenesis
and are now the topic of intensive research. A growing body of evidence suggests that
MSCs-Exo can support tumor proliferation, metastasis, angiogenesis, immune responses,
and drug resistance through different signaling pathways. However, conflicting results
have demonstrated that MSCs-Exo may also suppress tumors through several mechanisms.
Therefore, the exact role of MSCs-Exo in tumor progression remains controversial; the
proposal depends on the source of MSCs, tumor type, and tumor progressive stage. Despite
this controversy, it is undeniable that MSCs-Exo has promising potential as a carrier for
the delivery of therapeutic agents. MSCs-Exo can be modified on surface and content to
improve their tumor-targeting ability. However, the study of MSCs-Exo is still in its infancy,
and many problems remain to be dissolved. Clinical translation of MSCs-Exo needs more
studies regarding their mass production, isolation, loading, and modification.
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