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Avocado/soy unsaponifiable (ASU) components are reported to have a chondroprotective effect
by virtue of anti-inflammatory and proanabolic effects on articular chondrocytes. The identity
of the active component(s) remains unknown. In general, sterols, the major component of
unsaponifiable plant material have been demonstrated to be anti-inflammatory in vitro and
in animal models. These studies were designed to clarify whether the sterol content of ASU
preparations were the primary contributors to biological activity in articular chondrocytes.
ASU samples were analyzed by high pressure liquid chromatography (HPLC) and GC mass
spectrometry. The sterol content was normalized between diverse samples prior to in vitro
testing on bovine chondrocytes. Anabolic activity was monitored by uptake of 35-sulfate into
proteoglycans and quantitation of labeled hydroxyproline and proline content after incubation
with labeled proline. Anti-inflammatory activity was assayed by measuring reduction of
interleukin-1 (IL-1)-induced synthesis of PGE2 and metalloproteases and release of label from
tissue prelabeled with S-35.All ASU samples exerted a similar time-dependent up-regulation
of 35-sulfate uptake in bovine cells reaching a maximum of greater than 100% after 72 h at
sterol doses of 1–10 mg/ml. Non-collagenous protein (NCP) and collagen synthesis were
similarly up-regulated. All ASU were equally effective in dose dependently inhibiting
IL-1-induced MMP-3 activity (23–37%), labeled sulfate release (15–23%) and PGE2 synthesis
(45–58%). Up-regulation of glycosaminoglycan and collagen synthesis and reduction of IL-1
effects in cartilage are consistent with chondroprotective activity. The similarity of activity
of ASU from diverse sources when tested at equal sterol levels suggests sterols are important
for biologic effects in articular chondrocytes.
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Introduction

There is a great deal of interest in the use of botanical

material in osteoarthritic and rheumatoid arthritic

disorders (1). For example, bromelain, an extract from

the pineapple plant, demonstrates anti-inflammatory

and analgesic properties in clinical osteoarthritis trials

(2). Anti-inflammatory activity is also present in the

sesquiterpenes from turmeric species (3) and avocado

and soybean oils contain a class of biologically active

compounds classified as unsaponifiable lipids [avocado/

soy unsaponifiables (ASU)] (4). The major components

of ASU by weight are the phytosterols beta-sitosterol,

campesterol and stigmasterol.
Early studies indicate the primary beneficial action

of phytosterols was their ability to inhibit cholesterol

absorption and interfere with endogenous cholesterol

biosynthesis (5). Phytosterols in general, and beta-

sitosterol in particular, are now considered potent anti-

inflammatory agents with antioxidant and analgesic

activity (6–8). Sterol extracts from different plant sources

indicate their widespread distribution, and animal tests

show their anti-inflammatory potency (9, 10).
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ASU has also been recommended for treating arthritis
with published clinical trials in animals and humans
(10–13). For example, oral administration of ASU to
meniscectomized sheep for 3–6 months elicited a protec-
tive effect on articular cartilage (12). The authors
suggested ASU may be considered a symptomatic
disease-modifying osteoarthritic compound.
ASUs stimulate aggrecan synthesis while inhibiting

stromelysin activity in osteoarthritic chondrocytes (14).
The in vitro cartilage model generally used to test ASU
is based on monitoring reduction of interleukin-1
(IL-1)-induced metalloprotease activity, nitric oxide or
eicosanoid synthesis (all agents promoting cartilage
degradation and tissue inflammation) (15). The validity
of the model generally is accepted, as elevated levels of
IL-1 are believed to be involved in initiating cartilage
degradation (16). In vitro testing of ASU on articular
cartilage showed a 2 : 1 soy/avocado combination was
more effective than the unsaponifiable fraction of
avocado or soy used separately (17). Fibroblasts also
appear responsive to ASU as the metalloproteases
MMP-2 and MMP-3 are inhibited at low doses, while
the tissue inhibitors of metalloproteases are increased at
higher doses (14). Other indices tested relate to a possible
increased capacity for repair and regeneration of articular
cartilage. For example, the anticatabolic activity of
ASU is paired with a direct effect of ASU on stimulating
collagen and proteoglycan production, possibly by
increasing transforming growth factor beta synthesis
(18). ASU is generally a complex mixture of many
compounds including fat-soluble vitamins, sterols, triter-
pene alcohols and possibly furan fatty acids. Therefore,
the identity of the active agent(s) remains uncertain.
The objectives of this investigation were (i) to identify

the sterol composition of unsaponifiable material in
ASU from diverse sources; (ii) test the influence these
materials have on up-regulation of glycosaminoglycan
and collagen synthesis of bovine chondrocytes in vitro
and (iii) similarly test this material for anticatabolic/
anti-inflammatory activity in an IL-1-induced in vitro
model of articular cartilage breakdown. Prior to testing,
all ASU material was normalized to identical sterol
content. This approach allowed testing of the hypothesis
that the biological activities of ASU from diverse sources
are comparable and may be dependent on sterol content.

Methods

Assays of anabolic and anticatabolic activity in chon-
drocytes exposed to various 2 : 1 soy/avocado ASU
formulations. We standardized the sterol content of
each sample before testing and in some studies, compared
the data with that for purified beta-sitosterol. Before
testing, the compositional profile of each preparation
was analyzed by high pressure liquid chromatography

(HPLC) (19) and gas chromatography (GC) mass
spectrometry.
We tested 2 : 1 formulations of soy/avocado ASU

obtained from several sources. Formula 1 was NMX-
1000TM obtained from Nutramax Laboratories
(Edgewood, MD). Formula 2 consisted of two-part soy
unsaponifiables (Cargill, Minneapolis, MN) and one-part
avocado unsaponifiables (Croda, Yorkshire, England).
Additional materials tested include a commercially avail-
able researched preparation (Laboratories Pharmascience,
Courbevoie, France) and a sample of beta-sitosterol
(95% pure; Sigma-Aldrich, St Louis, MO). All samples
were used after 100% ethanol extraction/dissolution of
the product using continuous shaking at 50�C for 60min
and dilution to a final sterol concentration of 10mg/ml.

Chromatographic Procedures

HPLC separation was achieved by applying 600 mg total
weight of material onto a Luna C-18, 250� 4.6mm, 5 mm
reverse-phase column (Phenomenex, Torrance, CA) with
samples at 40�C and the column at room temperature.
The flow rate was 1ml/min with acetonitrile/methanol
(50 : 50, v/v) containing 3% water as the mobile phase.
Peaks were monitored at 210 nm and ASU components
were identified by comparison with authentic standards
when possible. The concentrations of the components
stigmasterol, beta-sitosterol and campesterol were deter-
mined by calculating peak area ratios against an internal
standard with known concentrations of the analytes.
GC analysis was performed on an Agilent 6890 System

(Palo Alto, CA) equipped with a split/splitless injector
port and a flame ionization detector. The separation
of phytosterols was accomplished on a Restek XTI-5
column (30m� 0.32mm� 0.25 mm) with the injector and
detector temperatures maintained at 330�C; column
temperature program was started at 250�C and increased
to 330�C at a rate of 10�/min and held at 330�C for
5min. We injected 1 ml with a split ratio of 15 : 1. Positive
identification of the analytes was confirmed by mass
spectroscopy and comparison of retention times with
authentic samples.

In vitro Culture Studies

For in vitro metabolic synthesis studies, articular chon-
drocytes obtained by collagenase digestion of the
metacarpal joint of retired, aged Holstein cows (viability
by trypan blue �95%) were plated into 48 well multi-
cultured plates at 100 000 cells/well and incubated in
DMEM/F-12 (Cambrex, East Rutherford, NJ.) plus
10% fetal calf serum, 50 mg/ml ascorbic acid, penicillin
G (100 000U/l), streptomycin (100 000 mg/l) and ampho-
tericin B (250mg/l) for 7–10 days to acclimate the cells.
Since chondrocyte synthetic activity is influenced by the
glucose content of the medium and normal culture
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medium glucose can be as high as 17mmol/l, we
formulated DMEM/F-12 medium to contain 5mmol/l
glucose to mimic in vivo serum concentrations (20).
The rationale for this was the low synovial fluid glucose
levels in a canine model of osteoarthritis (21) and the
association with inflammatory joint disease (22). To more
closely mimic in vivo conditions, all cell cultures subse-
quently were acclimated for 24 h to a modified DMEM/
F-12 medium containing physiologic levels of glucose
(5mmol/l) plus 1% fetal calf serum. All testing was
performed in this same medium. For comparison
purposes, all ASU preparations were diluted to yield
identical sterol concentrations (each containing <0.1%
ethanol). Cultures were exposed for 24 or 72 h to the
various unsaponifiable preparations at doses of 0.1–10
and 0.1–25 mg/ml, respectively, based on sterol content.
Radiolabeled sulfate at 5 mCi/ml was added during the
terminal 6 h of incubation. For the long-term exposure
study and for the collagen analysis, we tested only
the commercial preparation and Formula 1. To assess
the long-term effects, replicate cultures were similarly
exposed to ASU for 10 days with media changes every 2
days. Increases in GAG (glycosaminoglycan) synthetic
activity was determined by assaying GAG using 1,9-
Dimethylmethylene blue reagent (23) and monitoring
CPM 35-sulfate uptake/culture. No attempt was made to
characterize the distribution of label into the various
classes of proteoglycans and the data was analyzed with
one way analysis of variance (ANOVA).

Collagen Synthesis

We analyzed collagen synthesis by comparing the effect
of the commercial ASU and Formula 1 ASU normalized
to contain equal sterol levels. Collagenase-sensitive
material was assayed according using the method of
Diegelmann et al. (24). Briefly, chondrocytes cultured in
a 24 well plate at a density of 200 000 cells/well with
DMEM-F-12 containing 5mmol/l glucose and 1% fetal
calf serum were exposed to 1, 5 and 10 mg/ml of each
preparation for 72 h. Media were changed daily and
5 mCi/ml tritiated proline was added for the last 24 h.
Cultures were terminated by addition of concentrated
trichloroacetic acid (TCA) to 10% at 5�C. The precipitate
was repeatedly washed with 10% TCA with a last rinse
of a 1 : 1 solution of diethylether and methanol. Collagen
in TCA-precipitated, air-dried plates was digested by
adding an incubation cocktail containing 25 mg purified
collagenase (CLSPA; Worthington Biochemical Corp,
Lakewood, NJ) in 200 ml 0.05mol/l Tris (pH 7.6) and
0.005mol/l CaCl2. The plates were incubated for 3–6 h at
37�C. Radioactivity in the supernatant (collagen fraction)
and TCA-precipitated pellet (NCP) were counted in
multiplate wells after adding 300 ml scintillant (Hewlett-
Packard, Houston, TX) to 100 ml sample.

Anticatabolic Studies

All ASU preparations were tested for anticatabolic
activity at sterol doses of 10, 5, 1 and 0.1mg/ml.
Chondrocytes plated into 48 well multicultured plates
(100 000 cells/well) were prelabeled with 35-sulfate
for 72 h in DMEM/F-12 plus 10% fetal calf serum.

Unincorporated label was washed out by preincubation
for 24 h while the cells were acclimated to DMEM/F-12
containing 1% fetal calf serum and 5mmol/l glucose
before adding the agents. All agents were added in a total
volume of 0.5ml and released activity monitored after

24 h. Additionally, 100 ml aliquots of media were removed
for analysis of general metalloprotease activity using the
OmniMMP

TM

fluorescence substrate (Mca-PLGDpaAR)
(Biomol International, Plymouth Meeting, PA). Total
enzyme activity was assayed after activating latent

enzymes with trypsin and reading the reaction in 96
well culture wells in kinetic mode on a Molecular Devices
Spectra Max Fluorescence reader (Sunnyvale, CA).
In effect, the sulfate release assay was a measure of
active enzyme activity, while the fluorescence MMP assay

reflected the total enzyme content.

Anti-inflammatory Assays

Six millimeter diameter bovine cartilage explants from
normal metacarpal joints of young steers (15months)
were conditioned to a metabolic steady state in DMEM/

F-12–10% fetal bovine serum and penicillin/streptomycin
for 6–10 days before use. Cartilage explants were
transferred to a 48 well culture plate with two explants
per well. Each well contained 1ml of DMEM-F12+10%
fetal bovine serum with penicillin/streptomycin and

0, 0.001, 0.01, 0.1 and 1 mg/ml of Formula 1 or the
commercially available ASU for 72 h before adding
5 ng/ml of recombinant human IL-1 beta (R&D
Systems, Minneapolis, MN) and monitoring prostaglan-
din E2 (PGE2) levels after 24 h. The PGE2 levels from the

media samples were analyzed using the R&D Systems
PGE2 kit. We performed all experiments in duplicate
using different animals. An estimation of the toxic effect
of a 5-day exposure of chondrocytes to ASU also was
assessed using Molecular Bioprobes Fluorescent Live/

Dead Cell Kit (Invitrogen, Chicago, IL).
We calculated the mean and standard error of the mean

for each sample group. For the isotopic uptake studies
and collagen analysis, means were compared using the
unpaired Student’s t-test. For assays of GAG-specific
activity, one-way analysis of variance (ANOVA) and

the student Newman-Keul’s multiple comparison test
for significance was used. Statistical significance was
accepted at P<0.05. All experiments were performed
in triplicate and representative data included in the
manuscript.
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Results

Chromatographic Analysis

Slightly varying levels of the three primary sterols were
present in all preparations (Fig. 1) with the commercial
preparation containing three additional major unidenti-
fied peaks (Fig. 1A). Based on area, Formulas 1 and 2
ASU had similar HPLC profiles (Fig. 1B and C,
respectively), but only 1.5% of the total chromatographic
area corresponded to the three unknown peaks compared
to the 80% seen in the commercial preparation.
Gas chromatographic analysis revealed the total sterol

content of the commercial preparation, Formula 1, and
components of Formula 2 were 34%, 30%, 60% (soy)
and 70.8% (avocado) by weight, respectively (Fig. 2).
Mass spectra data confirmed the sterol identity in all
samples and additionally identified several major and
some minor components of each sample (Table 1).

Metabolic Analysis

Short-term Exposure

Twenty-four hour exposure of chondrocytes to ASU
resulted in a stimulation (P=0.05) at all doses tested
(Fig. 3) with no pronounced dose response or any
difference between the different ASU preparations.

In the one instance where tested, beta-sitosterol activity
was slightly less than the other preparations. However,
exposure to ASU for 72 h showed a trend toward an
increase (P<0.01) in positive dose response (Fig. 4).
There was little difference between preparations except at
greater than 6.25mg/ml sterol doses where the increase in
synthetic activity varied slightly between samples.

Long-term Exposure

Insulin-like growth factor (IGF-1) was used as a positive
control since it exerts a stimulatory effect on chondro-
cytes (25). Continuous exposure of cells to 50 ng/ml
(IGF-1) or 1 mg/ml Formula 1 for 10 days had a chronic
stimulatory effect on glycosaminoglycan synthesis.
When measured as CPM 35-sulfate/culture, the level of
synthesis of GAG over the time of exposure to isotope,
increases of 233% (�22%) and 148% (�32%) (P<0.05)
for IGF-1 and Formula 1, respectively were seen
compared to controls (data not graphed).

Collagen Synthesis

All ASU agents’ up-regulated collagen and NCP synth-
esis with a dose-dependent stimulation apparent between
doses of 1 and 10 mg/ml (Fig. 5). The effect on NCP
synthesis was greater than (P<0.05) collagen synthesis
by at least 2-fold. At 10 mg/ml, the commercial ASU
stimulated NCP by 58% and collagen by 30% (P<0.05).
NCP and collagen synthesis were equally up-regulated by
82% with 10 mg/ml Formula 1 ASU (P<0.01) (Fig. 3).

Anti-inflammatory Activity

Assays of anti-inflammatory/anticatabolic activity
including a fluorogenic assay of MMP levels (after
trypsin activation) varied although there was a little
evidence of a dose-dependent response with any prepara-
tion at the doses tested. The commercial preparation and
Formula 1 had a maximum inhibition of IL-1-induced
MMP of 35–37% associated with a dose of 10 mg/ml
and a 18–39% reduction at 0.1 mg/ml, the lowest dose
tested. In contrast, Formula 2 was one-third as active
(Table 2). The MMP assay may reflect total enzyme
content after IL-1 exposure (depending on whether

Figure 1. (A) The HPLC chromatogram of the commercial preparation

is characterized by the presence of multiple unidentified peaks not

present in the other preparations. GC mass spectrophotometry analysis

was suggestive only of long-chain hydrocarbons. (B) The chromatogram

of Formula 1 shows predominantly known sterols. (C) The chromato-

gram of Formula 2 also shows predominantly known sterols with trace

amounts of unidentified compounds corresponding to the commercial

preparation.
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IL-1-treated cultures release aggrecan fragments as well

as intact molecules). The release of 35-sulfate from

prelabeled cultures more accurately reflected enzyme

activity. There was no dose response, but all three

preparations of ASU-inhibited sulfate release at doses

of 1–10 mg/ml, but not at 0.1mg/ml. At the time period

tested, (24 h) prostaglandin E2 synthesis, elevated by

860% after IL-1 exposure, was inhibited by 45 to 54%

with the commercial ASU and Formula 1 ASU at doses

of 0.01, 0.1 and 1 mg/ml, but not at 0.001mg/ml,

the lowest dose tested. Formula 2 was not tested.

There was no apparent dose response in this assay.

Table 1. Positive mass spectra identification of unsaponifiable lipid preparations

Components Commercial preparation Formula 1 Formula 2 (soy unsaponifiables) Formula 2 (avocado
unsaponifiables)

Major components

C20H30O2 (?) Sitosterol Sitosterol Sitosterol

C20H28O2 (?) Stigmasterol Stigmasterol Stigmasterol

Sitosterol Campesterol Campesterol Campesterol

Stigmasterol Nonacosane

Campesterol Ergost-5-en-3-ol

Squalene

Beta tocopherol

Des-methyl tocopherol

Minor components

Oleic Acid Ergostenol Oleic acid na

Docosane Hexadecanoic Acid Stigmast-4-en-3-one

Alpha Amyrin Heptacosane

Cholesterol Nonacosane

Tocopherol

Stigmast-7-en-3-ol

na, analysis not performed.
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Finally, there was no decline in viability after exposing

cells to 1 or 10 mg/ml with any ASU preparation.

Discussion

Three different ASU preparations equalized to contain

equivalent sterol content had similar metabolic effects on
articular chondrocytes. Chondrocyte response was mon-

itored in vitro under conditions of physiologic glucose
levels to define the role of ASU as an asymptomatic

disease-modifying osteoarthritic agent. There are limita-
tions of our study with regard to interpreting the effects

of ASU on osteoarthritic joints. One is the lack of
definitive identification of the various minor components

of ASU. Although sterols constitute a major fraction
of ASU, other components including alpha- and beta-
amyrin also are considered to have anti-inflammatory
and possible anabolic effects on tissue metabolism (9,26).
We did not assay for these components and although our
data suggest sterols as the major component with biologic
activity, the difference between preparations with regard
to MMP content suggest these other agents may also be
active. When beta-sitosterol was tested at similar doses,
slightly lesser activity was noted, suggesting perhaps
an interaction between the various ASU components
that promotes greater responses. The available clinical
evidence suggests symptomatic relief in patients with
osteoarthritis which relates more to ASU’s anti-
inflammatory activity rather than the up-regulation of
cartilage matrix synthesis (11).
Our results mimic those of a previously published

report on ASU (15). However, our doses are expressed as
mg/ml sterol rather than total weight ASU. In that report,
Henrotin et al. (15). used doses of ASU by weight,
ranging from 0.1 to 40 mg/ml, with greater activity seen at
the higher concentrations. Considering their preparation
contained approximately 34% sterol content (based on
our analysis of the commercial product), the actual doses
of sterol were 0.03–13.3 mg/ml, which was within the
range of our tests. Also, their data applied to cells
cultured in an alginate system and measurement of
accumulated matrix for a 12-day exposure period.
Our data on short-term 24 h exposure did not show a
pronounced dose response, but longer-term exposure of
72 h showed a positive direct-dose response with max-
imum activity at 25 mg/ml sterol (75mg/ml ASU), the
highest dose tested. Our extended 10-day exposure also
resulted in a significant increase of glycosaminoglycan
synthesis.
Our findings suggest a relationship between ASU

content and biologic activity at 0.1–25 mg/ml sterol
levels, with some variation in chondrocyte synthetic
response depending on time of exposure. Regarding
anti-inflammatory indices, we observed maximum inhibi-
tion of prostaglandin synthesis, metalloprotease activity
and release of radiolabeled sulfate from prelabeled
cartilage, at all the intermediate doses tested.
An important question is whether the major peaks

in the commercial ASU preparation, which were almost
absent in the other preparations, contributed to ASU
biologic activity. Based on our experimental design,
where all preparations were tested after equalization
to contain identical sterol content, we observed no
additional effects that could be attributed to other
components.
Evaluation of collagen synthesis suggests greater

stimulation at the higher doses. Similar results were
found by Mauviel et al. (27) and Werman et al. (28)
However, variation was seen between commercial pro-
duct and Formula 1 preparations in the degree

Table 2. Dose-dependent antiinflammatory/anticatabolic effects
of ASU on IL-1 treated chondrocytes: comparative analysis of ASU
preparations

Sample Dose
(mg/ml)

MMP
activity

% of Total
CPM 35-Sulfate
released 24 h
after IL-1 exposure

24 h PGE2

synthesis
Change
from
IL-1 (%)

Commercial preparation

Control 51.3 (3.6) 15% (4%) 104 (12)

IL-1 110.9 (5.1) 25% (8%)b 999 (240)

10 72.1 (3.4)a 14% (9%) na na

5 82.1 (3.2)a 12% (9%) na na

1 86.7 (2.2)a 16% (8%) 512 (76)a �49

0.1 92.1 (4)a 27% (8%)b 547 (70)a �45

0.01 – – 472 (49)a �53

0.001 – – 849 (76) �15

Formula 1 (ASU)

Control 48 (1.4) 10% (3%) 104 (12)

IL-1 105.3 (5.4)a 23% (9%)b 999 (240)

10 66.3 (2.1)a 7% (3%) na na

5 66.8 (2.1)a 12% (7%) na na

1 70.8 (0.5)a 14% (6%) 459 (67)a �54

0.1 64.7 (3)a 26% (9%)b 507 (76)a �50

0.01 – – 417 (26)a �58

0.001 – – 725 (79) �37

Formula 2 (ASU)

Control 38.5 (2.5) 16% (5%) na

IL-1 98 (3) 30% (11%)b na

10 88.2 (5.2) 14% (5%) na

5 88 (2)a 16% (8%) na

1 82.7 (3.2)a 15% (7%) na

0.1 85.5 (5.8) 26% (5%)b na

Values are the means� SEM; ASU, avocado/soy unsaponifiables;
asignificant reduction of IL-1 induced increase in MMP or PGE2
expressed as pM/min/ml substrate conversion (n=4) and pg PGE2/
10mg tissue (n=8), respectively; SO4 release expressed as% of total
CPM incorporated released over 24 h (n=8); bvalues significantly
different from control (minus IL-1) cultures; na, not analyzed.
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of stimulation. A 3- to 5-fold greater dose-dependent
stimulation occurred in collagen and NCP synthesis with
Formula 1. The reason for these differences nor the
significance is not known, as both preparations contained
equal sterol concentrations.
Several mechanisms could influence chondrocyte

metabolism. For example, ASU enhances synthesis of
transforming growth factor beta (18), inhibits metallo-
protease activity and eicosanoid synthesis (17). Sterols are
also rapidly incorporated into cells causing an increase
in cellular antioxidant status (29). Sterols also inhibit
synthesis and release of PGE2, a potent proinflammatory
eicosanoid (30). previously shown to have an inhibitory
effect on cartilage metabolism (31). Whatever the
mechanism, there is substantial evidence that ASU
containing sterols are anti-inflammatory and provide
protection against cartilage degeneration.
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