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Background: Microsatellite instability-high (MSI-H) is a form of genomic instability present in 15% of 
colorectal cancer (CRC) cases. Several differential gene analyses have been conducted on CRC; however, 
none have specifically explored the differentially expressed genes in MSI-H CRC. Research on the different 
gene expressions between MSI-H CRC and microsatellite stable (MSS) CRC, and their different patterns of 
metastasis will provide invaluable insights for diagnosis, prognosis, and treatment.
Methods: In this study, the differential expression of 46,602 genes were analyzed across 613 different tissue 
samples from The Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD) and TCGA-rectum 
adenocarcinoma (READ) as part of a gene association analysis. R package TCGAbiolinks (version 2.18.0) 
was used to download the data set, and DESeq2 (version 1.30.1) was used for the differential gene analysis. 
The resulting genes were then analyzed for shared pathways with R package clusterProfiler (version 3.0.4).
Results: A total of 237 significantly differentially expressed genes (Padj<0.05) were found between MSI-H 
and MSS CRC. Differentially expressed genes include insulin like growth factor 2 (IGF2) and fibroblast 
growth factor 3 (FGF3), and the enriched pathways mostly involve hearing, digestive regulation, and 
neurogenesis.463 differentially expressed genes were found between metastatic and non-metastatic CRC. 
Notably differentially expressed genes in metastatic CRC include DEAD-box helicase 53 (DDX53) and 
adiponectin, C1Q and collagen domain containing (ADIPOQ), and enriched pathways include the immune 
system, cell adhesion, and cell signaling. For MSI-H CRC, a total of 34 genes were significantly differently 
expressed between metastatic and non-metastatic CRC. These include notum, palmitoleoyl-protein 
carboxylesterase (NOTUM), serpin family B member 2 (SERPINB2), and several keratin (KRT) genes, and 
the pathway analysis showed the major enrichment of the hormonal and secretion and regulation pathways. 
Of the differentially expressed genes in metastatic CRC, 25 were immunity related and include fatty acid 
binding protein 4 (FABP4), and the pathway analysis showed the enrichment of humoral immunity and 
lymphocyte regulation.
Conclusions: Of the biologically plausible differentially expressed genes, the most notable were NOTUM, 
KRT6A, KRT14, SERPINB2, and serum amyloid A1 (SAA1). NOTUM, KRT6A, and KRT14 are active in the 
Wnt pathway. All five are also involved in various inflammation pathways.
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Introduction

Microsatellites are a common type of DNA repeats with 
very low base pair numbers in their DNA motif (1–6 bp). 
During DNA synthesis, this can result in mistakes during 
DNA annealing, which in turn can result in a mismatch in 
frame and loops of single-strand DNA. These errors are 
normally repaired by a mechanism called mismatch repair 
(MMR), whereby the mismatched areas are digested, and 
the DNA polymerase is allowed to attempt replication 
again. In cases in which MMR is disabled, mutation rates 
throughout the genome increase dramatically, often 
resulting in cancer (1). This results in a feature called 
microsatellite instability (MSI), which is characterized by 
a high quantity of mutations in microsatellite locations. 
Thus, the presence of MSI implies the disabling of 
MMR mechanisms (2). This results in major mutational 
differences for MSI-high (MSI-H) CRC, most notably a 
higher chance for mutations in Kirsten rat sarcoma virus 
(KRAS), neuroblastoma RAS viral oncogene homolog 
(NRAS), B-Raf proto-oncogene, serine/threonine kinase 
(BRAF), and receptor tyrosine-protein kinase erbB-2 (HER2) 
when compared to MSS CRC (3). This is likely due to the 
unique mutagenic effects of MSI, which tend to cause large 
numbers of frame shift mutations. MSI is present in many 
types of cancers, but is most commonly associated with 
colorectal cancer (CRC); 15% of CRC patients have MSI (4).  
The most common cause of MMR dysfunction is the 
epigenetic or genetic disabling of MMR-related genes, most 
commonly MutL homolog 1 (MLH1), which is responsible 
for roughly 3/4 of cases of MSI. The other 1/4 of cases is 
caused by Lynch syndrome, a hereditary genetic mutation 
that disables 1 of the 4 key MMR genes [i.e., MLH1, 
MLH2, MLH6, or PMS1 homolog 2, mismatch repair 
system component (PMS2)] (5). Since CRC is the 2nd most 
lethal type of cancer after lung cancer in most developed 
countries, finding the most effective methods for combating 
MSI CRC is vital to the future of cancer prevention and 
treatment (6). Compared to MSS CRC, MSI CRC have 
higher rates of somatic mutations, especially in receptor 
genes, resulting in greater immune system activation. Most 
studies have shown that the outcomes for MSI-H CRC 
are better than those of MSS CRC (7,8). Indeed, MSI-H 

patients have lower rates of metastasis, higher survival, and 
slower progression (7,8). However, another study has found 
that the opposite is true in cases of germ cell tumors (9). In 
terms of treatment, programmed death-ligand 1 (PD-L1) 
inhibitors like Atezolizumab were shown to have greater 
effectiveness in MSI-H CRC when compared to MSS  
CRC (10).

Metastasis occurs in roughly 40% of CRC cases in The 
Cancer Genome Atlas (TCGA)-colon adenocarcinoma 
(COAD) and TCGA-rectum adenocarcinoma (READ) data 
sets. Driving mutations behind metastasis in CRC include 
APC, KRAS, BRAF, phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA), mothers against 
decapentaplegic homolog 4 (SMAD4), and p53 (11). 
The differential gene expression associated with CRC 
metastasis and MSI-H CRC are well known; however, no 
specific analysis appears to have been conducted on which 
expression patterns are correlated with metastasis in MSI-H. 
An expression analysis based on TCGA data showed that 
MSI-H CRC forms a cluster separate from all other CRC 
types (12). A main feature of MSI-H is its high mutation 
rate, especially that of frame shift mutations, the expression 
of which are not selectively repressed, resulting in large 
numbers of neoantigens on tumor cells (13). This results in 
a higher immune response compared to MSS CRC, which 
has a lower mutational load and fewer neoantigens (12,14).

A previous study has examined the expression differences 
between MSI and MSS CRC (15). The focus and novelty of 
this study is the comparison of gene expression in MSI-H 
and MSS and how they relate to metastasis. While some 
genetic analyses have been conducted regarding the TCGA 
gene expression data for MSI, none have focused specifically 
on its relationship with metastasis.

To identify patterns in the genetic expression associated 
with MSI-H CRC in general and metastatic MSI-H 
CRC and related immunology pathways in particular, we 
compared gene expression data across 613 CRC samples 
from TCGA-COAD and TCGA-READ. The resulting 
genes were compared to a list of immunity-related genes to 
establish biological feasibility and analyzed for interactions. 
Search Tool for the Retrieval of Interacting Genes 
(STRING) and Metascape analyses were also conducted for 
the list of differentially expressed genes obtained from each 
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analysis. We hope to use this information to improve our 
understanding of MSI-H gene expression and better predict 
disease progression.

We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6126/rc).

Methods

Patients and data sets

R package TCGA Biolinks (version 2.22.2) was used to 
retrieve messenger RNA (mRNA) expression information 
for 613 CRC samples from TCGA-COAD and TCGA-
READ after removing duplicates. This selection comprised 
the total of CRC samples in TCGA. Patients’ clinical data 
were also obtained from TCGA on May 20, 2021. All the 
data retrieval processes used R version 4.0.5. Patients’ 
demographic data are set out online available: https://
cdn.amegroups.cn/static/public/atm-21-6126-1.xlsx. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Sample classification

Samples were classified as metastatic if either “tumor, 
node, metastasis (TNM) grading” or “lymph infiltration” 
categories in TCGA clinical data were positive for 
metastasis and otherwise as non-metastatic. The MSI 
classification of TCGA data points was obtained from 
another paper, where MSI status was determined via MSI-
Mono-Dinucleotide assay (16).

Identification of immunity-related genes

A list of immunity-related keywords was used to find 
immunity-related genes (e.g., immunity, cytokine, virus, and 
immunoglobin) from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; https://www.kegg.jp/blastkoala/) and 
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp) databases. After removing the overlapping genes, 731 
immunity-related genes remained.

Differential gene analysis

R (version 4.0.5) package DESeq2 (version 1.30.1) was 
used to conduct the analysis of differential gene expression 
across the following five conditions: (I) metastasis vs. 

non-metastasis; (II) MSI-H vs. non-MSI-H; (III) MSI-H 
metastasis vs. MSI-H non-metastasis; (IV) metastasis 
vs. non-metastasis for immunological genes; and (V) 
immunological genes for MSI-H metastasis vs. MSI-H 
non-metastasis. Padj<0.05 and |log2[fold change (FC)]| 
>0 were used as the cutoffs for significant differential 
expression. A sample was defined as metastatic if there 
was either lymphatic invasion, or its TNM staging had a 
metastasis value ≥1. A MSI status is based on TCGA clinical 
information category “molecular subtype”; every patient 
that had the MSI-H subtype was considered MSS. DESeq2 
automatically corrects for any read biases when converting 
from raw reads to fragments per kilobase million (FPKM).

Interaction networks and biological function analysis

The STRING (https://cn.string-db.org/) database was used 
to build an interaction network for each set of differentially 
expressed genes, and the involved genes were downloaded 
and the duplicates were removed. R package clusterProfiler 
(version 3.0.4) was then used to perform the Gene Ontology 
(GO) and KEGG analyses on these gene lists, using a false 
discovery rate (FDR) <0.05 as the cutoff for significant 
enrichment.

Statistical analysis

Statistical analysis was conducted using R (version 4.0.5) 
and R packages TCGA Biolinks (version 2.22.2), DESeq2 
(version 1.30.1), and clusterProfiler (version 3.0.4).

Results

CRC metastasis

Of the 613 samples, 252 were classified as metastatic, 
and 361 as non-metastatic. A total of 463 differentially 
expressed genes were found in the metastasis condition, of 
which 273 were upregulated and 191 were downregulated. 
These included the under expression of various rRNA 
pseudogenes, such as RNA5SP141 and RNA5SP145. Up-
expressed genes, such as DEAD-box helicase 53 (DDX53), 
a known oncogene, and adiponectin, C1Q and collagen 
domain containing (ADIPOQ), have a positive correlation 
with metastasis and cancer (see Figure 1A,1B) (17). DDX53 
promotes stem cell-like activity and taxol resistance in 
cancer cells (18,19). ADIPOQ upregulation has been 
previously shown to positively correlate with metastasis in 

https://atm.amegroups.com/article/view/10.21037/atm-21-6126/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6126/rc
https://cdn.amegroups.cn/static/public/atm-21-6126-1.xlsx
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Figure 1 Differentially expressed genes in metastatic CRC. (A) Volcano plot of differential gene expression. Labeled genes have Padj<0.05 
and |log2FC| >2. (B) Heat map of differentially expressed genes between metastatic vs. non-metastatic CRC. Vertical axis indicates genes, 
and horizontal axis indicates patients. Color of cells indicates relative log2fold gene expression. (C) Upregulated genes in the GO analysis. (D) 
Downregulated genes in the GO analysis. (E) Upregulated genes in the KEGG analysis. (F) Downregulated genes in the KEGG analysis. 
CRC, colorectal cancer; FC, fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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CRC (20).
The STRING gene list expansion resulted in a total of 

474 genes of interest. The GO analysis identified mostly 
immune-related, cell-adhesion, and cellular signaling genes, 
while the KEGG analysis identified genes for digestion 
and cellular processes (see Figure 1C-1F). The Metascape 
analysis showed that insulin-like growth factor regulation 
and defective colony stimulating factor 2 receptor subunit 
beta (CSF2RB) were enriched in the gene list (see Figure 
S1A). CSF2RB is a part of apoptosis pathways, and was 
previously recognized in the analysis of another gene 
expression dataset as being down-regulated in CRC (21).

MSI-H

Sixty-three samples were classified as MSI-H and 550 
were classified as MSS. In the MSI condition, there were a 
total of 409 significantly differentially expressed genes, of 
which 107 were upregulated and 302 were downregulated. 
Only a single gene, regenerating family member 3 gamma 
(REG3G), had a log2FC >2. REG3G is known to play a 
role in pancreatic oncogenesis. Multiple known oncogenes 
were downregulated, such as insulin like growth factor 
2 (IGF2) and fibroblast growth factor 3 (FGF3), as were 
various other genes, like keratin 5 (KRT5, a keratin coding 
gene) and claudin 18 (CLDN18) (a tight junction protein) 
(see Figure 2A,2B). IGF2 is a well-known oncogene, FGF3 
over-expression is associated with early cancer (22), and 
CLDN18 is over-expressed in gastric cancer (23).

The STRING gene list expansion resulted in a total 
of 416 genes of interest. The GO analysis mostly showed 
genes related to hearing and ear development (see Figure 
2C), while the KEGG analysis showed neuro-interaction 
and digestion-related genes (see Figure 2D). The Metascape 
analysis showed that chemical synaptic transmission and 
sensory organ development were enriched in the gene list 
(see Figure S1B).

MSI-H metastasis

Of the 63 MSI-H samples, 21 were classified as metastatic 
while 42 were classified non-metastatic. Between these 
two groups, there were 34 differentially expressed genes, 
of which 14 were upregulated and 20 were downregulated. 
The downregulated genes included notum, palmitoleoyl-
protein carboxylesterase (NOTUM), which is known to 
affect the Wnt signaling pathway, and 2 other keratin-
related genes (i.e., KRT14 and KRT6A), which are known 

cancer biomarkers (24), and serpin family B member 2 
(SERPINB2), a gene related to autophagy and senescence in 
cancer (25). The upregulated genes included serum amyloid 
A1 (SAA1), a known tumor biomarker (see Figure 3A,3B).

The STRING gene list expansion included a total of 44 
genes of interest. The GO analysis showed mostly hormone 
homeostasis genes, while the KEGG analysis showed neuro 
ligand receptor and insulin secretion genes (see Figure 
3C,3D). The Metascape analysis showed that hormone level 
regulation and protein secretion regulation were enriched 
in the gene list (see Figure S1C).

Immunity-related genes in metastatic CRC MSI-H

Of the 463 differentially expressed genes in metastatic CRC, 
25 genes were also on the list of immunity-related genes. 
Of these, 17 were upregulated and 8 were downregulated 
(see Figure 4A,4B). The upregulated genes included fatty 
acid binding protein 4 (FABP4). The downregulated genes 
included CAMP responsive element binding protein 3 like 
3 (CREB3L3), which is a cyclic adenosine monophosphate 
(cAMP) regulating gene that is involved in inflammation 
and hepatocellular carcinoma (see Figure 4C,4D). FABP4 is 
a major predictor of metastasis in ovarian cancer (26).

The STRING gene list expansion produced a total 
of 35 genes of interest. The GO analysis showed mostly 
humoral and adaptive immune system related genes, while 
the KEGG analysis showed adenosine monophosphate-
activated protein kinas signaling, cytokine interaction, and 
complement and coagulation cascades. The Metascape 
analysis showed that adaptive immune response and 
lymphocyte-mediated immunity were enriched in the gene 
list (see Figure S1D).

Discussion

The prognostic value of MSI status in CRC is well 
recognized, and MSI status is used to recommend treatment 
protocols. MSI-H CRC is generally associated with better 
patient outcomes and different patterns in metastasis 
(7,8). In this study, we focused on describing the genetic 
expression profiles of metastasizing and non-metastasizing 
MSI-H CRC, and their relationship to immunity. For 
metastasis in CRC, the most notable differentially expressed 
genes were DDX53 and ADIPOQ. DDX53 regulates stem-
cell-like behavior in cancer cells and interacts with SRY-box 
transcription factor 2 (SOX2), a well-known oncogene (19). 
The GO and KEGG results mostly involved the immune 

https://cdn.amegroups.cn/static/public/ATM-21-6126-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6126-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6126-Supplementary.pdf
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Figure 2 Differentially expressed genes in MSI-H CRC as compared to MSS CRC. (A) Volcano plot of differential gene expression. 
Labeled genes have Padj<0.05 and |log2FC| >2. (B) Heat map of differential gene expression in MSI-H vs. MSS CRC. Vertical axis indicates 
genes, and horizontal axis indicates patients. Color of cells indicates relative log2fold gene expression. (C) Differentially regulated genes in 
the GO analysis. (D) Differentially regulated genes in the KEGG analysis. MSI-H, microsatellite instability-high; CRC, colorectal cancer; 
MSS, microsatellite stable; FC, fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

system, cell adhesion, and cell signaling, all factors that 
contribute to oncogenesis.

For MSI-H CRC, most of the differentially expressed 
genes, which included well-known oncogenes like IGF2 
and FGF3, were downregulated. The GO and KEGG 
analyses showed mostly hearing, ear development, digestive 
regulation, and neurogenesis. This is likely because the 
SOX2, transcription factor and known oncogene (27) 
are the hub of a cluster of genes, including forkhead box 
G1 (FOXG1) and EYA transcriptional coactivator and 

phosphatase 1 (EYA1), both of which are involved in 
embryonic hearing development and oncogenesis/cancer 
progression (28) (see Figure S2).

Our analysis of differentially expressed genes in 
metastatic MSI-H showed that high levels of SERPINB2 
expression is associated with increased survival and 
decreased changes in metastasis in pancreatic cancer (25). 
Our analysis of metastasis in MSI-H CRC showed that 
SERPINB2 also had a lower expression in metastatic tumors. 
SERPINB2 also plays an important role in immunity, 

https://cdn.amegroups.cn/static/public/ATM-21-6126-Supplementary.pdf


Annals of Translational Medicine, Vol 10, No 4 February 2022 Page 7 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):169 | https://dx.doi.org/10.21037/atm-21-6126

specifically by helping to regulate the inflammation 
response (29).

Several genes affecting the Wnt pathway are also 
correlated to metastasis in MSI-H CRC, notably including 
NOTUM and several KRT genes. The activation of the 
Wnt pathway is known to contribute to oncogenesis and 
cancer progression, and NOTUM negatively regulates 
the pathway, which fits with its decreased expression in 
metastatic MSI-H CRC (30). The Wnt pathway has also 
been shown to play a positive role in gut inflammation (31).

The disruption of heightened KRT expression has been 

shown to inhibit prostate cancer cells in vitro by regulating 
the Wnt pathway (32). KRT is also known to be involved 
in the immune response, especially inflammation (33), and 
to be positively correlated with various conditions, such as 
inflammatory bowel disease and cancer (34). In addition, 
KRT plays a role in the immune system detection of tumor 
cells (35).

SAA1 expression is upregulated in metastatic MSI-H 
CRC, and its upregulation is correlated with cancer 
progression (36). In addition, it also plays a vital role in the 
regulation of inflammation, as it is significantly upregulated 

Figure 3 Differentially expressed genes in metastasis of MSI-H CRC as compared to non-metastatic MSI-H CRC. (A) Volcano plot of 
differential gene expression. Labeled genes have Padj<0.05 and |log2FC| >2. (B) Heat map of gene expression in metastatic vs. non-metastatic 
MSI-H CRC. Vertical axis indicates genes, and horizontal axis indicates patients. Color of cells indicates relative log2fold gene expression. 
(C) Differentially regulated genes in the GO analysis. (D) Differentially regulated genes in the KEGG analysis. MSI-H, microsatellite 
instability-high; CRC, colorectal cancer; FC, fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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in irritable bowel disease, and correlated with CRC (37).
The GO analysis of differential gene expression in 

metastatic MSI-H showed a major enrichment of the 
hormonal and secretion and regulation pathways. The 
Metascape analysis of the expanded gene set had similar 
results, but also included G alpha signaling pathways, which 
help activate cAMP, and negatively regulate cell population 
proliferation.

Our analysis of immunity-related genes showed relatively 
few differentially expressed genes with both high absolute 
log2FC and low P values. The main exception was FABP4, 
whose expression levels is positively correlated with cancer 
metastasis in ovarian cancer (26). As expected, in our 
analysis, it was also positively correlated with metastasis. 

The Metascape, GO, and KEGG analyses showed that 
lymphocytic and adaptive immunity were the most enriched 
pathways.

In addition, despite the known effectiveness of PD-
L1 inhibitors like Atezolizumab, our study did not find a 
statistically significant difference in expression of the coding 
gene, CD247, in any of our analyses. The reason for this is 
unknown.

This study was limited by the relatively low number of 
samples, which could have led to false positives in our list of 
differentially expressed genes. Future works are needed to 
confirm gene expression correlations found in our study.

Conclusions

In summary, the relative gene expressions of metastatic 
and MSI-H CRC in TCGA-COAD and TCGA-READ 
were analyzed, and several genes of interest were identified. 
Of these, several of the most statistically significant, such 
as NOTUM, SERPINB2, SAA1, KRT14, and KRT6A, 
were found to be associated with inflammation. Given 
the correlation between chronic gut inflammation and 
CRC, this may indicate that inflammation-induced CRC 
is likely to be MSI-H. Such findings can be used to better 
improve prognosis and treatment plans for CRC patients 
with chronic gut inflammation, such as those with Crohn’s 
disease.
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