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Abstract

Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose
efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus
crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli
in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces
with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens
seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic
shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2–6.4 nN) than between
staphylococcal pairs (2.2–3.4 nN), especially for the probiotic Lactobacillus reuteri RC-14 (4.0–6.4 nN) after 120 s of bond-
strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the
bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid
anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can
exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it
therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens.

Citation: Younes JA, van der Mei HC, van den Heuvel E, Busscher HJ, Reid G (2012) Adhesion Forces and Coaggregation between Vaginal Staphylococci and
Lactobacilli. PLoS ONE 7(5): e36917. doi:10.1371/journal.pone.0036917

Editor: Daniel J. Muller, Swiss Federal Institute of Technology Zurich, Switzerland

Received December 22, 2011; Accepted April 16, 2012; Published May 18, 2012

Copyright: � 2012 Younes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the Lawson Health Research Institute, London, Ontario, Canada, and the University Medical Center, Groningen, The
Netherlands. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: h.c.van.der.mei@umcg.nl

Introduction

Vaginal and bladder infections are among the most common

causes of illness in females. Antimicrobial treatment regimens have

remained relatively static for 40 years without reducing recur-

rences, and now with drug resistance developing, efficacy is further

diminishing. High throughput sequencing studies on well-charac-

terized cohorts have revealed that Lactobacillus iners, Lactobacillus

crispatus, Lactobacillus gasseri, and Lactobacillus jensenii dominate the

vaginal microbiota in healthy women, but L. crispatus and L. jensenii

are unable to withstand the influx of pathogens leading to

infection, and thus are more displaced from the normal microflora

[1–3]. This inability to persist is believed to be related to their lack

of adhesion to the vaginal surface, other microbes and their failure

to adapt to the changing urogenital environment [4]. Contrarily,

the capacity of pathogens to adhere to each other and the mucosa

is critical in the infection process [5], and of these organisms,

aerobic Escherichia coli and the toxic shock syndrome (TSS) toxin-

producing Staphylococcus aureus are the most virulent [6].

In patients with bacterial vaginosis, dense pathogenic biofilms

cover the epithelial surface. Such biofilms afford not only a

synergistic opportunity for survival and evasion of host defences,

but also a means to resist host and exogenous antimicrobials,

allowing the development of recalcitrant infections [7]. Interest-

ingly, in a portion of women, bacterial vaginosis spontaneously

resolves without antimicrobial intervention, and lactobacilli return

to dominance [8]. In vitro studies have shown that the adminis-

tration of certain probiotic lactobacilli can lead to disruption of

these pathogenic biofilms [9], but the actual mechanism of

interference and biofilm penetration has not been studied.

We hypothesized that probiotic lactobacilli used successfully to

prevent recurrent infections, would display strong adhesion forces

with pathogenic strains and be able to bind pathogens into

coaggregates. If adhesion forces of lactobacilli with pathogens are

greater than those binding the pathogens to each other, this could

explain the disruptive process. The ability to penetrate dense

pathogen biofilms could also be aided by biosurfactant production

[10], but thereafter lactobacillus integration into the multilayered

structure and formation of coaggregates with the pathogens would

allow their antimicrobial molecules to disrupt the biofilms and

reduce pathogen viability [9,11,12]. For instance, Lactobacillus

reuteri RC-14 has shown the ability to penetrate mature E. coli

biofilms and kill the E. coli upon coaggregation and integration

with the biofilm [9].

Since the introduction of the atomic force microscope (AFM)

and the development of techniques to prepare bacterial probes for

interaction with surfaces [13–16], adhesion forces involved in

bacterial (co)aggregation have been measured. Bacterial (co)ag-

gregation has been demonstrated to be sensitive to even minor

differences in adhesion forces between strains. Coaggregating and
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non-coaggregating oral bacterial pairs had adhesion forces of

around 1 and 4 nN, respectively [17]. Aggregation between

Enterococcus faecalis strains is mediated by the aggregation substance

Agg, a plasmid encoded surface protein, and strains lacking Agg

had smaller adhesion forces (1.3 nN) than strains possessing Agg

demonstrating adhesion forces between 2.3 and 2.6 nN [18].

Moreover, adsorption of an antibody against Agg to an

aggregating enterococcal strain reduced the adhesion force to

around 1.2 nN. It has even been argued that a beneficial effect of

cranberry juice on adhering urogenital pathogens could be

attributed to a reduction in adhesion force between E. coli and a

silicon nitride AFM tip upon adsorption of cranberry juice

components from higher than 0.5 nN to smaller than 0.5 nN [19].

The aim of the current manuscript is to evaluate our hypothesis

that adhesion forces mediating coaggregation between lactobacilli

and staphylococci are stronger than the forces that mediate

staphylococcal aggregation. Using AFM and coaggregation assays,

we were able to demonstrate that lactobacilli indeed had equal or

stronger adhesion forces to the staphylococci than the pathogens

did with themselves, while furthermore pairs of strains showing

more extensive (co)aggregation possessed significantly higher

adhesion forces.

Materials and Methods

Bacterial Strains, Culture Conditions
Three TSS toxin 1–producing S. aureus strains, MN8 (isolated

from a patient with menstrual TSS), COL (isolated from an

operating theatre; a methicillin-resistant strain), and Newman

(isolated from a human infection) were cultured aerobically from

brain heart infusion (OXOID, Basingstoke, UK) agar plates in

10 ml of brain heart infusion broth at 37uC. Resident lactobacilli,

L. jensenii RC-28, L. crispatus 33820, and the established probiotic

strain L. reuteri RC-14 were cultured anaerobically from de Mann,

Rogosa and Sharpe (MERCK, Darmstadt, Germany) agar plates

in 10 ml de Mann, Rogosa and Sharpe broth at 37uC. All strains

were harvested in late-exponential phase by centrifugation for

5 min at 5000 g at 10uC, washed twice with sterile phosphate-

buffered saline (PBS: 150 mM NaCl, 10 mM potassium phos-

phate; pH 7.0) and resuspended in 2 ml of the same buffer.

Measurement of bacterial adhesion forces using atomic

force microscopy. In order to measure adhesion forces

between bacterial pairs, a bacterium-coated AFM cantilever must

be manoeuvred toward another bacterium that is immobilized on

a substratum surface (Figure 1A and B), and the force upon

approach and retraction of the bacterial probe is recorded from

the cantilever deflection (see Figure 1C for a schematic example of

a so-called ‘‘force-distance’’ curve). Upon approach, an increasing

repulsive force is measured until physical contact, while upon

subsequent retraction, an attractive force is found between the two

adhering bacteria until failure [20–22].

Immobilization of bacteria. Glass slides were used for the

immobilization of bacteria. The glass surface was cleaned by

sonication for 2 min in 2% RBS35 and subsequently thoroughly

rinsed with demineralized water, 70% ethanol, and finally with

demineralized water. After air-drying, 20 ml of a 0.1% w/v poly-L-

lysine solution (Sigma-Aldrich, Zwijndrecht, The Netherlands) was

put on the glass surface and allowed to air dry. Bacterial

suspensions of 105 bacteria/ml (lactobacilli) and 106 bacteria/ml

(staphylococci) were vortexed with a bench-top vortex for 5 s

before a 50 ml suspension droplet was added to the glass slide,

yielding a low number of bacteria of between 103 and 104

bacteria/cm2, respectively. A low number of adhering bacteria

was preferred in order to enable the selection of single immobilized

bacteria for force measurements. After 20 min, the slide surface

was carefully rinsed with demineralized water to remove any

loosely adhering bacteria and transported in a covered petri dish

containing paper moistened with demineralized water. All surfaces

with immobilized bacteria were freshly prepared for each

experiment.

Preparation of AFM probes. Bacterial AFM probes were

prepared by adhering bacteria to ‘‘V’’-shaped tipless AFM

cantilevers (Veeco, DNP-0, Woodbury, NY, USA) through the

use of a micromanipulator (Narishige International, Tokyo, Japan)

under microscopic observation (Leica DMIL, Wetzlar, Germany).

A small droplet of poly-L-lysine solution was placed on a glass

slide, and the cantilever was dipped in the droplet for 2 min. After

a 2 min drying period, the cantilever was dipped in a bacterial

suspension (105 bacteria/ml for lactobacilli and 106 bacteria/ml

for staphylococci) for 2 min and placed in a covered box with wet

paper on the side to ensure moist conditions during transport to

the AFM (note that all bacterial probes were freshly prepared for

each experiment). Bacterial strains were grouped into identical

pairs of staphylococci (S-S), and mixed pairs of lactobacilli and

staphylococci (L-S). Staphylococci were the preferential probe

bacteria, because of their spherical shape.

Bacterial adhesion force measurements. AFM measure-

ments were carried out at room temperature in sterile PBS

(pH 6.0) using an optical lever microscope (Nanoscope V, Digital

Instruments, Woodbury, NY, USA) with z-scan rates of 1.0 Hz

under a maximal loading force of 5 nN. Calibration of cantilevers

was performed using the AFM Tune-it Version 2 software,

yielding an overall average spring constant of

0.05360.003 Nm21. Force curves were measured after different

contact times (0, 30, 60, and 120 s) between the bacterial probe

and a bacterium immobilized on the glass slide and the maximal

adhesion force upon retraction was recorded. All force curves were

analyzed using Force-Distance software (Version 3.0.0.19).

In order to verify that a bacterial probe enabled a single contact

with the surface, a scanned image in AFM contact mode with a

loading force of 1–2 nN was made at the onset of each experiment

and examined for double contour lines, which are indicative of

multiple bacteria on the probe in contact with the bacterium

selected on the slide. Any probe exhibiting double contour lines

were discarded. At this point it must be noted however, that

double contour line images seldom or never occurred, since it

represents the unlikely situation that bacteria on the cantilever are

equidistant to an immobilized bacterium on the glass surface

within the small range of the interaction forces, which is unlikely if

only by the angle under which the cantilever is in contact with the

substratum. To ensure that a bacterial probe was not affected by

previous measurements, a force curve at 0 s surface delay on clean

glass was compared to five initially measured control force curves

on glass. If the continued measurement differed by more than

0.2 nN from the average control force, data were discarded and a

new probe prepared. For each combination of bacterial strains, at

least 40 force-distance curves were recorded with two to four

bacterial probes and bacteria from at least two different cultures of

each strain.

Coaggregation Assay
Bacterial suspensions in PBS (pH 6.0) of all strains were

adjusted to equal concentrations of bacteria, after which equal

volumes of each pair were mixed for 20 s using a bench top vortex,

and left for 2 h. A droplet of this suspension was then put on a

glass slide and Gram-stained for visual observation of aggregates,

defined as visible clumps of bacteria and classified according to the

presence of large and dense visible clumps of bacteria (++), small
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and sparsely distributed clumps (+), or no visible clumps or bound

bacteria (2), as based on the assays used by Kolenbrander et al. for

oral-co-aggregation [23].

Statistical Analysis
In order to determine the statistical significance of differences in

maximal adhesion forces between L-S and S-S pairs, the

differences in adhesion force between S-S pairs and the

corresponding L-S pairs were calculated for each pair of

Lactobacillus and staphylococcal strains at all surface delay times

up to 120 s using a linear mixed model (LMM). For a fixed

combination of strains, i.e. a specific L-S or S-S pair, the LMM was

applied to account for random variations due to the differences in

adhesion forces, including the use of multiple cultures and probes.

Next, procedure MIXED of SAS (Version 9.2) using restricted

maximum likelihood and the Kenward-Rogers option for the

number of degrees of freedom was used to fit the LMM. This

yielded modeled values of the mean adhesion forces at all four

surface delay times, representing the maximal adhesion force from

the interaction of each bacterial pair as can be read from Figure 1C

at position 3.

The null-hypothesis that the mean adhesion forces for the L-S

pairs equals the corresponding S-S pairs at all four surface delay

times was tested for each mixed pair separately with an F-test at

significance level a = 0.05.

The mean adhesion forces from this LMM at 120 s were used as

input for the two-sample t-test to investigate a relation between

adhesion forces and coaggregation scores and statistical signifi-

cance was set at p,0.05.

Results

Figure 1A and C show schematics of the experimental AFM

setup used in this study and the force-distance data that is

generated. Examples of actually measured force distance curves

over the surface delay time points are shown in Figures 2A and B

for an identical staphylococcal pair and a mixed pair of

staphylococci and lactobacilli, respectively. For both bacterial

pairs, adhesion forces increased over time. For the identical

staphylococcal pair (Figure 2A), a maximal adhesion force of

25.8 nN was reached after 120 s, which is considerably smaller

than the maximal adhesion force of 27.1 nN between the mixed

Staphylococcus and the Lactobacillus strain (Figure 2B). The maximal

Figure 1. AFM experimental set-up and the resulting force-distance curve. A. Schematic presentation of the experimental AFM set-up
depicting lactobacilli immobilized on poly-L-Lysine coated glass and a staphylococcus attached to the AFM cantilever. B. Fluorescence image of a
bacterial probe coated with S. aureus Newman. The tipless cantilever (Bruker; Camarillo, CA) was prepared according to the methods outlined in the
paper, used for AFM force adhesion experiments and stained using LIVE/DEAD Baclight viability stain (Molecular Probes Europe BV; Leiden, The
Netherlands). Green spots represent viable bacteria. C. Schematic presentation of the cantilever deflection and the resulting force-distance curve
upon approach and retraction of two bacteria in AFM. At large separation distances, no adhesion force is measured between bacteria (1), while at
closer approach, repulsion occurs between the interacting bacteria, indicated by positive force values (2). Upon retraction, an attractive, negative
force is measured (3).
doi:10.1371/journal.pone.0036917.g001
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adhesion force was reached at slightly closer distances for the

identical staphylococcal pair (40 nm) compared to its mixed

counterpart (70 nm), but pull-off events were sustained at much

larger distance ranges for the mixed pair (.200 nm).

Figure 3 summarizes the maximal adhesion forces derived

from the LMM as a function of the surface delay times for the

three identical S-S pairs in this study. S. aureus MN8 consistently

showed the strongest adhesion forces irrespective of the surface

delay time, increasing from 20.5 to 23.4 nN within 120 s. S.

aureus COL and Newman displayed similar increases in

adhesion forces over time, but adhesion forces were generally

smaller than those of MN8. Note, from Figures 2A and B, that

depending on the bacterial combination involved, an increase in

surface delay time may be accompanied by adhesion forces

sustaining over longer distances.

The difference in maximal adhesion forces between mixed pairs

of staphylococci and lactobacilli and each corresponding S-S pair

is shown in Figure 4 as a function of surface delay time. The LMM

analysis for all time points indicated that the L-S pairs had equal

or stronger adhesion forces when compared to the S-S pairs. While

the L-S pairs on the whole showed stronger adhesion forces (2.2–

6.4 nN) than the S-S pairs (2.2–3.4 nN) after 120 s, there were

differences seen within the lactobacilli strains themselves. Pairs

involving the probiotic strain L. reuteri RC-14 after 120 s surface

delay, overall had the strongest adhesion forces (4.0–6.4 nN) and

showed significant differences in adhesion forces with two

pathogen pairs (p,0.05). On the other hand, L. jensenii RC-28

and L. crispatus 33280, both vaginal residents showed statistically

significant different adhesion forces with only one pathogen pair

each (p,0.05). One noteworthy point is that there were no

significant differences between L-S pairs with the S. aureus MN8

strain; all such pairs contained either S. aureus COL or Newman.

Within all pairs studied, only coaggregation scores ++ (dense

clumping for L. reuteri RC-14 with S. aureus COL) or + (minimal

clumping as seen for L. crispatus 33820 with S. aureus COL) were

observed (Figure 5A). The pairs were grouped according to their

coaggregation scores and their corresponding maximal adhesion

forces (Figure 5B). Pairs that coaggregated well (++) had a

significantly (p = 0.020) higher adhesion force (24.961.0 nN)

than pairs coaggregating less well (+), which had an adhesion force

of 23.161.1 nN.

Figure 2. AFM force-distance curves from different bacterial pairs. A. Representative force-distance curves between an identical pair of S.
aureus Newman with retraction curves measured after 0, 30, 60, and 120 s surface delay. B. Representative force-distance curves between a mixed
pair of L. crispatus 33820 and S. aureus Newman. Retraction curves were measured after 0, 30, 60, and 120 s surface delay time.
doi:10.1371/journal.pone.0036917.g002

Figure 3. Maximal adhesion forces as a function of surface delay. Maximal adhesion forces, obtained using the LMM on the measured data,
as a function of the surface delay time for the three strains of identical staphylococcal pairs involved in this study, with their 95% confidence intervals
indicated by the dotted lines.
doi:10.1371/journal.pone.0036917.g003
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Discussion

Bacterial adhesion is an important determinant of biofilm

formation on host surfaces and their pathogenesis. Biofilms can be

formed by adhesion of single bacteria or coaggregates, emphasiz-

ing the role of adhesion forces between bacteria in the infectious

process. In this study, we hypothesized that the adhesion forces

between lactobacilli and pathogenic staphylococci would be

stronger than between staphylococcal pairs. Furthermore, we

proposed that these adhesion forces may mediate coaggregation.

Indeed the main findings of this study supported our hypotheses.

Adhesion forces between pairs of lactobacilli and staphylococci

were equal or greater in magnitude than adhesion forces between

staphylococcal pairs in all cases (Figure 4). In addition, a significant

difference was found between the adhesion forces corresponding

to the two coaggregating scores (p = 0.020). Statistical significance

is generally hard to establish in the measurement of adhesion

forces between microorganisms using AFM. Both parametric and

non-parametric statistics as well as Weibull analyses of adhesion

forces have been applied to compare AFM adhesion forces in

biological systems [24]. The LMM statistical method [25,26]

applied here is relatively new in the field and allows the user to

combine and account for multiple sources of variation (inter-probe

and intra-probe effects for specific pairs) in order to be able to

identify the true standard error around the mean adhesion forces

between pairs at different time points. Therewith LMM has

allowed us to determine realistic statistical significances, instead of

using statistical tests that cannot incorporate this heterogeneity and

thus provide either over- or under-estimates of standard errors.

This type of statistical model is highly recommended for adhesion

force data, as it is able to deal with issues that have hitherto

compounded the analysis of this type of heterogeneous data.

Adhesion forces between lactobacilli and pathogenic staphylo-

cocci occurred instantly upon contact and matured within one to

two minutes. Clinically, it has been shown that the microbiota can

shift within days from being healthy and dominated by two of the

species tested here, L. crispatus or L. jensenii [1–3], to a pathogen-

dominated aberrant microbiota, including in some women to one

that has a large abundance of S. aureus (unpublished data). The

adhesion forces of the S. aureus strains with L. crispatus 33820 and L.

jensenii RC-28 were less strong when compared to those with the

probiotic RC-14. This suggests that Lactobacillus species effective in

displacing pathogens, need to display strong adhesion forces to

their pathogen targets, a desirable probiotic characteristic for

infectious interventions. As studies of the human microbiome

divulge, critical changes that lead to homeostasis and health or

Figure 4. Maximal adhesion force differences between L-S and S-S pairs as a function of surface delay. Differences between the
maximal adhesion forces for mixed pairs of staphylococci and lactobacilli pairs (L-S) and the corresponding identical staphylococcal pairs (S-S) as a
function of the surface delay time, together with their 95% confidence intervals indicated by the dotted lines. Positive values indicate stronger
adhesion forces between identical S-S pairs than between mixed L-S pairs. Significant differences (confidence interval not including the zero line)
from the corresponding S-S pair at individual time points are indicated by an asterisk (*).
doi:10.1371/journal.pone.0036917.g004
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disease, the ability to understand physical forces at the nano-level

that influence these dynamic reactions, will be critical to develop

novel therapeutic interventions.

Although all three S. aureus strains involved in this study have the

ability to produce toxic shock syndrome toxin 1, only S. aureus

MN8 was isolated from a clinical case of TSS. Interestingly, S.

aureus MN8 had stronger adhesion forces to itself when compared

to S. aureus Newman and COL (see Figure 3), especially after 120 s

surface delay that could hardly be surpassed by lactobacillus

interaction with S. aureus MN8 (see Figure 4). This suggests that

strong adhesion forces between pathogenic organisms must be

considered as a virulence factor.

Coaggregation between enterococci and different oral bacterial

pairs has been previously shown to occur with forces ranging from

2.6 to 4.0 nN [17,18], which are slightly less than observed here,

probably because we account for bond-strengthening while most

other studies only report adhesion forces immediately upon

contact. Adhesion forces between bacteria can become stronger

over time due to progressive removal of water from in between the

interacting cell surfaces, re-arrangement of surface structures and

unfolding of binding molecules. Note that these aspects of bond-

strengthening are all physico-chemical in nature and occur for

inert polystyrene particles as well. Irreversible anchoring of

organisms, through, for example, production of extracellular

polymeric substances, requires more time and is unlikely to

happen in the absence of nutrients, as applied in the current study

which occurred in PBS. Interestingly, bond-strengthening was

accompanied by adhesion forces extending over longer distances,

which is likely due to the involvement of more and longer adhesive

cell surface appendages in the bond after strengthening. This

opens an alternative way to analyze our data.

The analysis presented so far is based on adhesion forces,

whereas the area under a force-distance curve represents the

energy required to disrupt the bond between two bacteria.

Figure 5. The relationship between coaggregation scores and maximum adhesion forces. A. Phase-contrast micrographs, demonstrating
the difference between coaggregation score (+) and (++) for mixed pairs of L. crispatus 33820 (left) and L. reuteri RC-14 (right) with S. aureus COL.
Images were obtained with a CCD camera (Basler AG, Germany) mounted on a phase contrast microscope (Leica DM2000; Leica Microsystems Ltd,
Germany) set at 406 objective. B. Maximal adhesion forces grouped according to the corresponding coaggregation scores for the identical and
mixed bacterial pair included in this study. The adhesion forces shown here are the means of the two groups of coaggregation scores, also visually
represented with the thin grey horizontal lines. The dotted grey line visually represents the difference between the mean of the maximal adhesion
forces of the two coaggregation groups, at a statistically significant difference of p = 0.020 (*).
doi:10.1371/journal.pone.0036917.g005
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Analysis of the data in terms of adhesion energy (see File S1 and

Figure S1) demonstrated that overall the L-S pairs had greater or

equal adhesion energies than the S-S pairs and four L-S pairs

showed significantly stronger adhesion energies (p,0.05) than

their corresponding S-S pairs, in general agreement with our

hypothesis and the analysis on basis of adhesion forces. However,

whereas adhesion forces confirmed our hypothesis for four L-S

pairs (Figure 4), the same number of L-S pairs also showed

significantly greater adhesion energy than the S-S pairs. Only one

pair was different in bacterial strains from the adhesion force

analysis: the analysis on the basis of adhesion energies identified

significant effects for L. jensenii RC-28 and S. aureus MN8, while in

the adhesion force analysis, L. jensenii RC-28 was significant with

the pathogen S. aureus strain COL. The combined analysis of

adhesion forces and energies strengthens our conclusions, despite

the strain difference detected between both analyses.

The coaggregation process in the oral cavity has been well

described not only for diseased states but also for the maintenance

of a relatively homeostatic microbiota [27]. In the vagina, when

the coaggregates are pathogen-dominated, conditions like bacte-

rial vaginosis arise and increase the subject’s risk of numerous

complications including infections and preterm labour [28]. On

the other hand, when lactobacilli form coaggregates and bind to

pathogens, this results in a return to homeostasis [29], as

coaggregation creates a hostile biochemical micro-environment

around a pathogen and prevents it from continuation of growth

and domination of the niche. Therewith this study provides

support for the use of probiotic lactobacilli to treat and prevent the

most common aberrant conditions in women, namely urogenital

infections.

In summary, adhesion forces between lactobacilli and three

virulent toxic shock syndrome toxin 1–producing S. aureus strains,

were found to be equal or stronger than between staphylococcal

pairs, especially for the probiotic L. reuteri. In addition, pairs of

strains showing stronger adhesion forces showed more extensive

(co)aggregation. The lower adhesion forces between resident

lactobacilli and pathogenic staphylococci may explain why these

lactobacilli are more easily displaced by urogenital pathogens in

vivo [28]. Therewith, this study opens a new pathway for the design

of effective probiotic strains that involves optimization of the

adhesion forces governing coaggregation with target pathogens.

AFM, as applied here, can provide a quantitative means to guide

this process.

Supporting Information

Figure S1 Mean adhesion energy differences between
L-S and S-S pairs as a function of surface delay. The

differences for the mixed pairs of staphylococci and lactobacilli

pairs (L-S) and the corresponding identical staphylococcal pairs (S-

S) are shown here with their 95% confidence intervals (dotted

lines). Positive values indicate higher adhesion energy for an

identical S-S pairs than for the mixed L-S pair. Significant

differences (confidence interval not including the zero line) from

the corresponding S-S pair at individual time points are indicated

by an asterisk (*).

(TIF)

File S1 Analysis based on adhesion energy.

(DOC)
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