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Abstract

Prokaryotes benefit from having accessory genes, but it is unclear how accessory genes

can be linked with the core regulatory network when developing adaptations to new niches.

Here we determined hierarchical core/accessory subsets in the multipartite pangenome

(composed of genes from the chromosome, chromid and plasmids) of the soybean micro-

symbiont Sinorhizobium fredii by comparing twelve Sinorhizobium genomes. Transcrip-

tomes of two S. fredii strains at mid-log and stationary growth phases and in symbiotic

conditions were obtained. The average level of gene expression, variation of expression

between different conditions, and gene connectivity within the co-expression network were

positively correlated with the gene conservation level from strain-specific accessory genes

to genus core. Condition-dependent transcriptomes exhibited adaptive transcriptional

changes in pangenome subsets shared by the two strains, while strain-dependent transcrip-

tomes were enriched with accessory genes on the chromid. Proportionally more chromid

genes than plasmid genes were co-expressed with chromosomal genes, while plasmid

genes had a higher within-replicon connectivity in expression than chromid ones. However,

key nitrogen fixation genes on the symbiosis plasmid were characterized by high connectiv-

ity in both within- and between-replicon analyses. Among those genes with host-specific

upregulation patterns, chromosomal znu and mdt operons, encoding a conserved high-affin-

ity zinc transporter and an accessory multi-drug efflux system, respectively, were experi-

mentally demonstrated to be involved in host-specific symbiotic adaptation. These findings

highlight the importance of integrative regulation of hierarchical core/accessory components

in the multipartite genome of bacteria during niche adaptation and in shaping the prokaryotic

pangenome in the long run.
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Author summary

Prokaryotic pangenomes are characterized by a high rate of turnover in gene content,

with core genes shared by all members of a taxonomic group and accessory genes present

in only a subset of the members. Accessory functions could serve as an arsenal enabling

prokaryotes to develop adaptations to new niches. Therefore, prokaryotic core and acces-

sory components are analogous to the operating system and applications (apps) of smart-

phones. However, it is puzzling how these accessory functions are linked with the core

regulatory network in prokaryotes during niche adaptations. Here we address this ques-

tion by investigating the adaptive regulation of hierarchical core/accessory subsets in the

multipartite pangenome (chromosome, chromid and plasmid) of Sinorhizobium fredii,
which is a facultative microsymbiont of soybeans. The level and variation of gene expres-

sion, and gene connectivity revealed in transcriptomes under free-living and symbiotic

conditions are positively correlated with the gene conservation level, i.e. from strain-spe-

cific accessory genes to genus core. Replicon-dependent organization and adaptive regula-

tion of hierarchical core/accessory subsets suggest distinct roles of different replicons not

only in environmental adaptation but also intra- and inter-species differentiation. Among

core and accessory genes with host-specific upregulation patterns, we experimentally

identified novel symbiotic players involved in host-specific adaptation.

Introduction

Prokaryotes play important roles in recycling nutrients and forming pathogenic or mutualistic

associations with eukaryotes. It has been established that many ecologically important processes

are differentially mediated by prokaryotes at the strain level [1]. This is partially explained by the

fact that even closely related strains of bacteria and archaea can have great differences in their

genomes due to a high rate of turnover in gene content, so that there are core genes shared by all

members of a taxonomic group and accessory genes present in only a subset of the members

[2,3]. However, it is still puzzling why and how prokaryotes maintain such a high degree of

genome content variability [4]. It is widely accepted that certain accessory genes can benefit their

host by conferring the ability to occupy new niches, despite the existence of putative junk genes

in the pangenome [4,5]. However, it is largely unexplored to what extent these accessory func-

tions are linked with the core regulatory network during the development of adaptations to new

ecological niches.

Soil bacteria able to form nitrogen-fixing nodules on legumes, collectively called rhizobia,

have global impacts on sustainable agriculture and the nitrogen cycle. These facultative micro-

symbionts need a cluster of key symbiosis genes called nod/nif/fix, which are located on a hori-

zontally transferable plasmid or a genomic island, to establish a mutualistic interaction with

legume plants [6–10]. The ability to form nitrogen-fixing nodules on legumes has been

reported for hundreds of species in alpha- and beta-proteobacteria [11]. Among the 122 com-

plete genome sequences from twelve genera of rhizobia available in the GenBank database (on

March, 30th 2018), 107 genomes from eleven genera have two or more DNA molecules, a

genome architecture described as a multipartite genome. This multipartite organization is

found in approximately 11% of 1,708 bacterial genomes analyzed in a recent study [12]. Each

DNA molecule with a separate origin of replication in bacterial genomes is referred to as a rep-

licon. The largest replicon, with most of the core genes, is known as a chromosome, while

megaplasmids (above 350 kb in size) and plasmids refer to replicons lacking core genes and

are characterized with significantly biased signatures such as GC content and dinucleotide
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composition compared to the chromosome [12,13]. The term “chromid” was recently intro-

duced to refer to a replicon with plasmid-type maintenance and replication systems, but carry-

ing some core genes and having sequence signatures more similar to chromosomes than

plasmids and megaplasmids [12,13]. Accumulating evidence has suggested distinct roles of dif-

ferent replicons in rhizobial adaptations to either saprophytic or symbiotic conditions [14–17],

though the coordinated regulation of core and accessory functions in these multipartite

genomes is largely unexplored.

A multipartite genome, composed of at least a chromosome, a chromid, and a megaplasmid

(the symbiosis plasmid), is present in most sequenced genomes within the Sinorhizobium
genus, which includes microsymbionts associated with the important legume crops alfalfa and

soybean [18–20]. The chromid genes in Sinorhizobium associated with the same legume host

show a higher differentiation level compared to the other two replicons [21,22]. In contrast to

the symbiosis plasmid, which shows evidence of horizontal gene transfer, the chromid core

genes have a phylogeny generally congruent with that of chromosomal core genes [21]. An engi-

neered chromosome containing essential core genes transferred from the chromid is sufficient

for growth of a model microorganism Sinorhizobium meliloti in a sterile bulk soil environment

[16]. Metabolic modeling suggests that the chromosome of S. meliloti also contributes to fitness

in rhizosphere, and the chromid shows a greater fitness contribution in the rhizosphere than in

bulk soil [15,22]. By contrast, transcriptomics studies of free-living and symbiotic Sinorhizo-
bium strains have demonstrated a specific up-regulation of many genes on the symbiosis plas-

mid within legume nodules, where core functions are generally down-regulated consistent with

the growth arrest status of nitrogen-fixing rhizobia [23–25]. However, scattered genetic evi-

dence suggests that genes located on the chromosome and the chromid can also contribute to

the integration and optimization of symbiotic functions in diverse rhizobia including Sinorhizo-
bium [25–30]. It has been proposed that the rhizobium-legume symbiosis requires optimization

through a long-term evolutionary process involving integration of lineage-specific accessory

genes (those genes only present in a limited subset of related strains, species or genera) with the

regulatory network of core genomes [26,31], but there is little direct evidence as yet [30,32].

There is a need for omics-based comparative analyses of the variation in the contents, regulation

and integration of core and accessory genes under different conditions.

In this study, we investigate how core and accessory genes are organized and integrated in

the multipartite genome of the soybean microsymbiont, Sinorhizobium fredii. To this end,

complete genome sequences were obtained for S. fredii CCBAU45436 and CCBAU25509,

which have an overlapping host range. The genes of these two genomes were divided into four

hierarchical core/accessory subsets based on comparative genomics analyses with ten pub-

lished genomes of Sinorhizobium spp. Then the global transcriptomic profiles of the two test

strains were determined at exponential and stationary phases in free-living cultures, and at the

symbiotic stage within the nodules of cultivated and wild soybeans. By analyzing this transcrip-

tomic and genomic information, we obtained a global integration pattern of core and acces-

sory genes under different conditions, and identified novel genes involved in symbiotic

adaptations. These findings will be discussed in the more general context of the organization

and evolution of the prokaryotic pangenome in relation to ecological adaptations.

Results

Host specificity and multipartite genomes of the two soybean

microsymbionts

S. fredii CCBAU45436 and CCBAU25509 (Fig 1A), which are effective microsymbionts of

local soybean cultivars grown in northern China [33], induced normal nitrogen-fixing nodules
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and non-fixing nodule-like structures, respectively, on the roots of soybean accession C08 (Fig

1B), which is a close relative of the sequenced soybean cultivar Williams 82 [34,35]. They both

established nitrogen-fixing nodules on the wild soybean accession W05 (Fig 1B), which has

recently been sequenced [36].

Complete genome sequences for CCBAU45436 and CCBAU25509 were first obtained by

assembling Illumina data generated previously [26]. In this study, full assembly of these

genomes were achieved by new PacBio and Ion Torrent sequencing data (S1 Table), and

Sanger sequencing of PCR products was used to fill assembly gaps when necessary. The general

features of CCBAU45436 and CCBAU25509 genomes are summarized in S2 Table. CCBAU

25509 has a typical tripartite genome, consisting of a chromosome (cSF25509; 4.20 Mb), a

chromid (pSF25509b; 2.21 Mb) and a symbiosis plasmid (pSF25509a; 0.40 Mb). In the CCBA

U45436 genome, two additional smaller plasmids, pSF45436d (0.20 Mb) and pSF45436e (0.17

Mb) were also found besides the chromosome (cSF45436; 4.16 Mb), the chromid (pSF45436b;

1.96 Mb) and the symbiosis plasmid (pSF45436a; 0.42 Mb).

By including ten published genomes of Sinorhizobium (Fig 1A and S1 Fig), the gene

homologs shared by CCBAU45436 and CCBAU25509 were each divided into three hierar-

chical core subsets (Fig 2A): subset I, gene homologs present in all Sinorhizobium strains;

subset II, those present in all S. fredii strains excluding subset I; subset III, those shared by

CCBUA45436 and CCBAU25509 but not present in all S. fredii strains, i.e. excluding subsets

I and II. The remaining accessory genes of CCBAU45436 or CCBAU25509 were defined as

subset IV. As expected, genes within each of these hierarchical core/accessory subsets were

unevenly distributed on different replicons in the two strains (Fig 2B and S3 Table; Pear-

son’s chi-square test, P< 0.001). Around 80% of the subset I genes were concentrated on

chromosomes. Genes within subsets II and IV were overrepresented on chromids. The sym-

biosis plasmids were characterized by their enrichment with the subset III genes (58%-59%

genes on the symbiosis plasmid) and to a lesser extent with the subset II genes (23%-25%).

Two replicons (pSF45436d and pSF45436e) specific to CCBAU45436 were extremely

enriched with the subset IV genes (69.3% and 84.6%).

Fig 1. Phylogeny and symbiotic performances of S. fredii CCBAU45436 and CCBAU25509. (A) A maximum likelihood

phylogenetic tree based on the concatenated 1278 core genes shared by Sinorhizobium strains and an outgroup strain

Rhizobium leguminosarum WSM1325. Scale bar represents 5% substitutions per site. (B) Effective nodules and/or

pseudonodules induced by test strains on Glycine soja W05 and Glycine max C08. The red color of nodule sections indicates

effective nitrogen-fixing nodules.

https://doi.org/10.1371/journal.pgen.1007428.g001
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Replicon-dependent transcriptional profiles of genes within different

hierarchical core/accessory subsets under free-living and symbiotic

conditions

To investigate how core and accessory genes with biased replicon distributions were integrated

during adaptations, we used RNA-seq to obtain transcriptomes of the two test strains under

three conditions: (1) free-living culture in the mid-log phase (non-stress), (2) free-living cul-

ture in the nutrient-starved stationary phase (abiotic stress), and (3) symbiotic bacteroids

within the nodules of cultivated and/or wild soybeans (biotic stress) (S4 Table). For conve-

nience, genes were classified into four expression levels (Level_1-Level_4) using arbitrary cut-

offs at the first, second and third quartiles of the expression profiles based on the RPKM (reads

per kilobase per million mapped reads) value of each gene under test condition. The distribu-

tion of these genes across different transcriptional levels under test conditions was analyzed

for each replicon (Fig 3 and S2 Fig).

On the chromosomes and chromids, the proportion of genes expressed at levels higher

than the first quartile (above Level_1) decreased along with reduced gene conservation levels

(from subset I to subset IV) under all test conditions (Fig 3 and S2 Fig). This phenomenon can

also be found in the transcriptional profiles of symbiosis plasmid genes under symbiotic condi-

tions but not in free-living cultures, particularly for highly expressed genes (Level_4). There

was generally an increased number of highly expressed genes (Level_4) in subsets I-IV of the

Fig 2. Biased distributions of core and accessory genes regarding replicons. (A) A schematic diagram illustrating the

hierarchical division of core/accessory subsets for the genomes of S. fredii CCBAU45436 and CCBAU25509. Subset I, genus

core genes present in all strains; subset II, genes present in all S. fredii strains excluding subset I; subset III, genes shared by

CCBUA45436 and CCBAU25509 but not present in all S. fredii strains, i.e. excluding subsets I and II; subset IV, the remaining

accessory genes in either CCBAU45436 or CCBAU25509. The actual total gene numbers of each subset within the genome of

CCBAU45436 (left) and CCBAU25509 (right) are shown in frames. The slight differences between two strains in the numbers

of core genes in subsets I-III are due to the counting of multi-copy genes belonging to the same homologous gene cluster,

which can include one or more genes in each strain. (B) Percentage values are the ratios of genes included in hierarchical core/

accessory subsets (shades of colors from deep to light: I, II, III, IV), harbored by each replicon within the genome of

CCBAU45436 or CCBAU25509. The actual total gene numbers of each replicon are shown in parentheses. Pearson’s chi-

square test of independence indicates the distribution of different core/accessory subsets on replicons is not random

(CCBAU45436, X-squared = 1455.3, df = 12, P< 2.2E-16; CCBAU25509, X-squared = 1010.4, df = 6, P< 2.2E-16).

https://doi.org/10.1371/journal.pgen.1007428.g002
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symbiosis plasmid in legume nodules compared to free-living cultures. By contrast, the pro-

portion of high-expressed (Level_4) subset I genes on the chromosome was notably reduced

under symbiotic conditions and in the stationary phase compared to that of mid-log phase.

The chromid genes did not exhibit drastic changes in the proportions of different transcrip-

tional levels under test conditions, except a notable increase of highly expressed genes

(Level_4) at the stationary phase compared to the mid-log phase. Although transcriptional lev-

els showed a strong dependence on both the replicon location and the conservation levels, log-

linear analysis indicated that replicon and core/accessory status were independently related to

gene expression levels (all P< 0.001).

Transcriptional profiles of core genes reflect environmental adaptations

To further investigate how genes within different hierarchical core/accessory subsets would

respond to different growth conditions, dendrograms based on gene expression distance (GE

distance, defined in Materials and Methods) were constructed. When we examined the expres-

sion profiles of shared genes within each of subset I, subset II and subset III, the profiles of the

two strains were closely matched with respect to growth phases and symbiotic conditions (Fig

4A–4C), while the expression profiles of the strain-specific genes (subset IV) were, inevitably,

Fig 3. Replicon-dependent transcriptional profiles of genes within different hierarchical core/accessory subsets

under free-living and symbiotic conditions. Bar intensities represent the proportion of genes transcribed at four

expression levels (arbitrary cut-offs at the first, second and third quartiles of expression profiles based on RPKM values

of all genes) for each of the four hierarchical core/accessory subsets (I-IV) under free-living (mid-log phase and

stationary phase) and symbiotic conditions (bacteroids isolated from G. soja W05 nodules). Q1, Q2 and Q3 represent

the first, second and third quartiles, respectively. Results are shown separately for each of the three replicons

(chromosome, chromid, plasmid) in the genome of CCBAU25509. Log-linear analyses indicate significant differences

among the replicons in the distribution of genes of different transcriptional levels for each of the hierarchical core/

accessory subsets under each condition (all P< 0.001). Similar replicon-dependent expression pattern was also found

in CCBAU45436 (see S2 Fig).

https://doi.org/10.1371/journal.pgen.1007428.g003
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clustered by strain (Fig 4D). The overall picture is that, for all gene subsets, expression in nod-

ules is more similar to expression in exponential phase than in stationary phase and, for all

subsets that they share, the difference between the two strains is less than the effect of growth

conditions.

Although similar condition-dependent clustering patterns were observed for subsets I-III

(Fig 4A–4C), the average gene expression level under each condition decreased with reduced

gene conservation level (from subset I to subset IV) (Fig 4E). Moreover, the higher expression

plasticity (gene expression variance among conditions) was observed for the more conserved

subsets (Fig 4F), and subset IV showed the least variance in expression plasticity. As expected,

further analyses of the differentially expressed genes (DEGs, Log2R> 1.732, FDR< 0.001)

based on pairwise comparisons showed that DEGs were significantly enriched in subset I and/

or subset II, while depleted in subset III and/or subset IV (S5 Table, all P< 0.05). It is notewor-

thy that up-regulated and down-regulated genes had distinct enrichment patterns across the

core/accessory subsets (S3 Fig and S5 Table). Genes down-regulated at the stationary phase or

in the symbiotic nodules compared to the mid-log phase were enriched in subset I (the genus

core genes), while the up-regulated ones were enriched in subsets II and III (the genus acces-

sory genes shared by the two test strains) (Pearson’s chi-square test, all P< 0.05). These results

provided another line of strong evidence for differential roles of core genes with different con-

servation levels during environmental adaptation. To further dissect this phenomenon, we

then examined the condition-dependent co-expressed genes.

Fig 4. Condition-dependent transcriptional profiles of S. fredii CCBAU45436 and CCBAU25509 under free-living and

symbiotic conditions. (A-D) Clustering analyses of Log2-transformed RPKM values for genes within different hierarchical

core/accessory subsets (I-IV) using the average linkage method based on Euclidean distance. CCBAU45436 and CCBAU25509

are represented by white and grey boxes respectively. S, stationary phase; M, mid-log phase; W/C, microsymbionts in nodules of

G. soja W05 or G. max C08. Bootstrap values above 70% are indicated. (E) Gene expression level within different hierarchical

core/accessory subsets under test conditions, dots and error bars refer to the means and standard errors of Log2-transformed

RPKM values. (F) Gene expression plasticity within different hierarchical core/accessory subsets under test conditions, dots and

error bars refer to the means and standard errors of variances of Log2-transformed RPKM values. Multi-copy genes were not

included in these analyses.

https://doi.org/10.1371/journal.pgen.1007428.g004
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Distinct groups and functional categories of genes are involved in

environmental adaptations

Genes could be divided into four groups based on k-means clustering of their transcriptional

profiles (Gr.1-4; Fig 5A). Gr.4 consisted of genes constitutively expressed or non-expressed

under all conditions, while Gr.1, Gr.2 and Gr.3 consisted of those up-regulated at mid-log

phase, stationary phase and symbiotic stage in nodules respectively (Fig 5A). Genes within dif-

ferent condition-dependent groups were unevenly distributed in the hierarchical core/acces-

sory subsets (Fig 5B). Gr.4 was overrepresented within subsets III and IV (Pearson’s chi-square

test, all P< 0.001). Gr.1 genes were enriched in subset I, Gr.3 genes in subsets II-IV, while Gr.2

Fig 5. Biased distributions of genes in condition-dependent transcription groups with respect to replicons, core/

accessory subsets and COG categories. (A) K-means clustering of transcriptional profiles of 5,561 (CCBAU45436) and

5,101 (CCBAU25509) genes that were induced under at least one condition (RPKM> 15, Log2R> 1). S, stationary phase

culture; M, mid-log phase culture; W, microsymbionts in nodules of wild soybean W05; C, microsymbionts in nodules of

cultivated soybean C08. The color of scale bar indicates the relative level of gene expression. #a, Group 4 includes the

genes expressed constitutively under all conditions. (B-C) Enrichment analyses of condition-dependent transcription

groups for each of the replicons and core/accessory subsets (I-IV). Significant enrichment/depletion is indicated by red/

black stars (�, P< 0.05; ��, P< 0.01; ���, P< 0.001; Pearson’s chi-square test). (D) Distribution of COG categories

among condition-dependent transcription groups. #b, Groups significantly enriched in the corresponding COG

categories for both CCBAU45436 and CCBAU25509 (all P< 0.05, Pearson’s chi-square test).

https://doi.org/10.1371/journal.pgen.1007428.g005
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genes in none of them (Fig 5B). Among different replicons, the chromosomes and symbiosis

plasmids were enriched with Gr.1 genes and Gr.3 genes, respectively, while both Gr.2 and Gr.3
genes were overrepresented on the chromids (Fig 5C), indicating a replicon-dependent gene

regulation under test conditions.

Functional annotations of genes within Gr.1-4 were further analyzed regarding COG cate-

gories. Gr. 1, Gr.2 and Gr.3 were respectively enriched in the COG category J (translation, ribo-

somal structure and biogenesis), S/W (S: function unknown; W: extracellular structures) and

P/X (P: inorganic ion transport and metabolism; X: mobilome: prophages, transposons)

(Fig 5D).

Strain-dependent DEGs are enriched on chromids and overrepresented by

the intraspecies accessory genes shared by CCBAU45436 and

CCBAU25509

Among the 4,931 single-copy orthologous genes shared by CCBAU45436 and CCBAU25509,

the DEGs between these two strains (151 at the mid-log phase, 292 at the stationary phase, and

197 within the nodules of G. soja W05; Log2R> 1.732, FDR < 0.001) were significantly

enriched in the hierarchical core/accessory subset III (Fig 6A and S6 Table). This provides fur-

ther evidence that the differential regulation of intraspecies accessory genes may contribute to

bacterial diversification. Consistent with results described above that genes within different

hierarchical core/accessory subsets exhibited a biased replicon distribution pattern (Fig 2), the

strain-dependent DEGs were significantly enriched on the chromids, and the non-symbiosis

plasmid pSF45436d (Fig 6B & S6 Table).

Positive relationship between gene connectivity and gene conservation

levels in S. fredii genomes

The biased distribution of condition-dependent co-expressed genes and strain-dependent

DEGs with respect to core/accessory genomes and replicons raised the question of whether

Fig 6. Replicon-dependent transcriptional variations between CCBAU45436 and CCBAU25509 under free-living and

symbiotic conditions. (A) Enrichment analyses of differentially expressed genes (Log2R> 1.732, FDR< 0.001) between

CCBAU45436 and CCBAU25509 under free-living and symbiotic conditions for the hierarchical core/accessory subsets.

(B) Enrichment analyses of differentially expressed genes between CCBAU45436 and CCBAU25509 under free-living and

symbiotic conditions for each replicon. The black bars represent the background ratios of 45436–25509 shared genes in

each of the hierarchical core/accessory subsets or replicons. Significant enrichment and/or depletion are indicated by stars

(�, P< 0.05; ��, P< 0.01; ���, P< 0.001; Pearson’s chi-square test). All analyses of this figure are based on datasets without

multi-copy genes and strain-specific genes.

https://doi.org/10.1371/journal.pgen.1007428.g006
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accessory genes have been integrated in a replicon-dependent way among S. fredii strains.

Therefore, we investigated the gene connectivity (co-expression of gene pairs) within or

between replicons in gene co-expression networks constructed from the transcriptional pro-

files of S. fredii CCBAU45436 and CCBAU25509 (described in Materials and Methods). When

the genes from all replicons were pooled together, a significant decrease in gene connectivity

was revealed in parallel with the decreasing conservation level of the genes (from subset I to

subset III) (Fig 7A and S4 Fig). This correlation was observed on chromosomes and symbiosis

plasmids, but not on chromids and other plasmids (pSF45436d/e) (Fig 7A and S4 Fig).

A larger fraction (68%) of chromid genes were linked to the chromosome than were the

symbiosis plasmid genes (36%) (Fig 7B and S4 Fig), indicating that chromids are more closely

associated with chromosomes than symbiosis plasmids in terms of transcriptional regulation.

On the other hand, the symbiosis plasmid possessed a larger fraction (46%) of within-replicon

gene connectivity than the chromid (23%) (Fig 7B and S4 Fig), and most of the within-replicon

gene connectivity on the symbiosis plasmid was linked to genes required to support symbiotic

nitrogen fixation, such as nif and fix genes (S5 Fig). Nevertheless, more than half (54%) of the

gene connectivity associated with the symbiosis plasmid was between-replicon (Fig 7B and S4

Fig). Both the typical symbiosis genes with high within-replicon gene connectivity and certain

genes with low within-replicon gene connectivity can show a high level of between-replicon

gene connectivity (S5 Fig). These genes with between-replicon connectivity could be interest-

ing candidates for further functional analyses of the optimization of symbiosis.

Identification of chromosomal loci involved in host adaptations

CCBAU45436 can form effective nodules on both the wild soybean, G. soja W05, and the culti-

vated soybean, G. max C08. This allowed us to investigate the potentially adaptive transcrip-

tional profiles of rhizobia in the nodules of a cultivated soybean compared to those in wild

soybean nodules. There were 42 and 77 genes down-regulated and up-regulated, respectively,

in CCBAU45436 bacteroids within C08 nodules compared to those in W05 nodules

(Log2R> 1, FDR< 0.001; S1 Dataset). These DEGs were slightly enriched in the subset II

Fig 7. Connectivity analyses of gene co-expression networks in the multipartite genome of S. fredii CCBAU25509.

(A) Gene connectivity degrees of the Sinorhizobium pangenome subsets for each replicon. Error bars represent

standard error of mean. (B) Within- and between-replicon gene connectivity. The total number of gene connectivity

identified for each replicon is shown in brackets. The relative abundances of within- and between-replicon gene

connectivity are indicated by different sections of the perimeter colored according to the connected replicons (orange,

the gene connectivity to the chromosome cSF25509; blue, the chromid pSF25509b; light green, the symbiosis plasmid

pSF25509a). Between-replicon gene connectivity is depicted in grey. The within- and between-replicon connective

patterns of CCBAU45436 (see S4 Fig) are similar to those of CCBAU25509 shown here. Multi-copy genes except one

out of two nifHDK copies were not included in these analyses.

https://doi.org/10.1371/journal.pgen.1007428.g007
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(harboring 24.4% of DEGs and 14.9% of the total number of genes; Pearson’s chi-square test,

P< 0.05) but were not enriched in any one of the replicons.

To uncover potential candidate genes essential for host adaptation, we constructed mutants

for ten representative genes (S6 Fig and S7 Table) that were up-regulated in C08 nodules com-

pared to W05 nodules. These representative genes were among those with the highest log2R

values and covered the four conservation levels (subsets I-IV; S1 Dataset). Eight of the mutants

exhibited indistinguishable symbiotic phenotypes on both W05 and C08 compared to the wild

type (S8 Table), but ΔznuA and mdtA::pVO had significant effects (Table 1). The Sinorhizo-
bium core genes znuA/B/C (in subset I) encode the conserved zinc transporter components,

and the in-frame deletion mutant of znuA (ΔznuA) formed a reduced number of nodules

(34.9% - 48.4%, respectively, compared to wild type, P< 0.01) on both W05 and C08, but with

higher fresh weight per nodule (167% - 247% of wild type, respectively, P< 0.05) (Table 1 and

S7 Fig). C08 plants nodulated by ΔznuA had lower leaf chlorophyll content, 80.7% of that from

C8 soybean plants inoculated with the wild-type strain (P< 0.0001), which was not signifi-

cantly different from the uninoculated control (Table 1 and S7 Fig). However, the same ΔznuA
mutant was still fully effective in supporting the growth of W05 (Table 1 and S7 Fig). The

mutant for mdtA, which is found together with mdtB/C in an operon that encodes a putative

multi-drug efflux system, was ineffective on both W05 and C08 as indicated by the signifi-

cantly reduced chlorophyll content of these host leaves compared to those from plants inocu-

lated with the wild-type strain (Table 1 and S7 Fig). Notably, the mdtA mutant induced many

root bumps on C08 but not on W05 (S7 Fig) and the mdt operon is present in CCBAU45436

but not in CCBAU25509 (i.e. it is in subset IV). Both znu and mdt operons are located on the

chromosome.

Discussion

Optimization of symbiotic efficiency requires coordinated regulation of

genes from multiple replicons

The transferable symbiosis island or symbiosis plasmid is the major reason for an ever increas-

ing collection of rhizobial germplasm associated with diverse legumes [8–11,37]. The increased

contribution of genes on symbiosis plasmids and dramatically reduced contribution of chro-

mosomal genes to the transcriptomes of nitrogen-fixing bacteroids within nodules were

observed for both of the S. fredii strains in this study (Fig 3 and S2 Fig) and in previous tran-

scriptomic studies of S. meliloti 1021 and S. fredii NGR234 [24,38,39]. Notably, genes on the

symbiosis plasmids of CCBAU45436 and CCBAU25509 that were highly expressed (Level_4)

in nodules included genes belonging to pangenome subsets I-IV (Fig 3 and S2 Fig). These

Table 1. Responses of soybean plants to inoculation with Sinorhizobium fredii CCBAU45436 and its derivatives.

Inoculant Number of nodules (/plant) Nodule fresh weight (mg/plant) Nodule fresh weight (mg/

nodule)

Leaf chlorophyll content

(SPAD)

W05 C08 W05 C08 W05 C08 W05 C08

Uninoculated control - - - - - - 30 ± 2��� 33 ± 3��

wild type 9 ± 4 25 ± 8 50 ± 8 252 ± 51 6 ± 1 11 ± 1 41 ± 2 36 ± 2

mdtA::pVO 12 ± 2 13 ± 5�� 91 ± 14��� 146 ± 56��� 8 ± 0 12 ± 1 27 ± 2��� 28 ± 3���

ΔznuA 4 ± 1�� 9 ± 4��� 61 ± 12� 146 ± 43��� 16 ± 3� 19 ± 2�� 40 ± 2 29 ± 3���

Note: multiple independent experiments were carried out and mean ± SD scored from nine plants in the same experiment is shown. Significant difference compared to

values of wild type strain are indicated by stars (�, P< 0.05, ��, P < 0.01; ���, P< 0.001; Student’s t-test).

https://doi.org/10.1371/journal.pgen.1007428.t001
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findings support a model that the symbiosis plasmid harbors genes of different conservation

levels that contribute to symbiotic adaptation.

However, a higher level of between-replicon connectivity than within-replicon connectivity

was observed for symbiosis plasmids in the co-expression networks (Fig 7B and S4 Fig). Key

genes involved in nitrogen fixation (nif/fix) have a considerable degree of both within- and

between-replicon gene connectivity (S5 Fig). Genes involved in inorganic ion transport and

metabolism (COG category P), and those belonging to the COG category X (mobilome: pro-

phages, transposons) were found to be up-regulated within nodules (Fig 5D). Indeed, some

transporters provide elements (such as iron, molybdenum, and sulfur) essential for nitroge-

nase activity [25,40,41]. The high-affinity transporters for phosphate and zinc were required

by S. fredii to effectively fix nitrogen in soybean nodules [25]. Genes encoding these transport-

ers, and many of those directly involved in nitrogen-fixation, such as nifH/D/K, belong to

COG category P. The activation of mobile elements under symbiotic conditions has been

widely observed in many transcriptome analyses [24,28,42], and was recently found to have an

important role in the adaptive evolution of rhizobial symbiotic compatibility [17].

The conserved znu and accessory mdt of CCBAU45436 contributed to symbiotic adapta-

tion to G. max C08, but to a lesser extent to the symbiosis with G. soja W05 (Table 1 and S7

Fig). The zinc transporter encoded by znu can import zinc under low-zinc conditions [43,44].

This indicates possibly different nodule environments of W05 and C08 with respect to the zinc

ion concentration. Although the mdtA mutant did not induce pseudonodules (root bumps) on

W05 (S7 Fig), mdt contributed to the symbiotic efficiency of CCBAU45436 on W05 (Table 1).

A reasonable explanation might be that genes other than mdt have been recruited by

CCBAU25509 to optimize its symbiosis with W05. This view is supported by our recent find-

ing that strain-specific accessory genes can be recruited by different Sinorhizobium strains in

optimization of symbiosis with the same legume host [27]. Since both znu and mdt are located

on the chromosome, this suggests that chromosomal core and accessory genes can be recruited

by S. fredii to optimize the symbiotic functions in a host-dependent manner. These results

increase our understanding of the integration of key symbiosis genes with the diverse genomic

backgrounds of rhizobia as characterized by their large phylogenetic diversity [31,32].

Chromids have a high level of cross-regulation with chromosomes and

contribute to environmental adaptations and diversification of

Sinorhizobium
Co-expression analysis of the two S. fredii strains under different conditions unveiled a higher

level of gene connectivity between chromids and chromosomes than that between symbiosis

plasmids and chromosomes (Fig 7B and S4 Fig). This is in line with the computational predic-

tion of the regulatory network in S. meliloti, i.e. the preference for cross-regulation between

the chromosome and chromid, as opposed to the symbiosis plasmid [45]. A recent study of the

S. meliloti metabolome revealed that removal of the chromid has a larger effect on the metabo-

lome than loss of the symbiosis plasmid [46]. These findings support the hypothesis of the

ancient integration of chromid functions with those on the chromosome [13]. Indeed, some

essential genes can be found on the chromid, but not on the symbiosis plasmid, of Sinorhizo-
bium strains [16,47,48]. Moreover, in contrast to genes on symbiosis plasmids, chromid core

genes are more likely to have a congruent phylogeny with that of the species tree of Sinorhizo-
bium [21].

It was reported that chromids contribute to the intraspecies differentiation of S. meliloti
strains [22]. This is in line with the enrichment of strain-specific genes (subset IV) on chro-

mids of the two S. fredii strains. Here we reveal that the chromid gene pool also makes a
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significant contribution to inter-species differentiation in Sinorhizobium, as approximately

38.7% of the subset II are located on the chromids of S. fredii. When the transcriptional profiles

of single-copy genes were compared between CCBAU45436 and CCBAU25509, DEGs were

significantly enriched on chromids under all test conditions (Fig 6B). It has been demonstrated

in Escherichia coli that strain-dependent DEGs were more polymorphic or divergent than

other genes, indicating the role of differential gene regulation in bacterial diversification

[49,50]. These findings indicate that the expression pattern of genes on chromids may evolve

relatively rapidly, which echoes a report that genes evolve faster on chromids than on chromo-

somes [51].

Those genes up-regulated at stationary phase were enriched on chromids of the two S. fredii
strains, and were over represented with genes of unknown function and those involved in

modifying extracellular structures, indicating a role of chromids in stress adaptation. Notably,

the average level of gene connectivity for chromid genes was generally lower than that for

those from chromosome and symbiosis plasmids under test conditions (Fig 7A and S4 Fig).

This may be due to a critical role of chromids in intra- and inter-species diversification and in

adaptation to more diverse niches [15,16] that were not effectively covered in this study. In

line with this view, the chromid of S. meliloti was enriched with genes that were up-regulated

under osmotic stress conditions [52]. Moreover, genetic and metabolic modelling studies

show that the chromosome alone is sufficient for the growth of S. meliloti in sterile soil, while

the chromid may confer more specialized functions in the rhizosphere [15,16]. Likewise,

among six extrachromosomal replicons including the symbiosis plasmid pRL10 of R. legumi-
nosarum Rlv3841, many genes of pRL8 are specifically up-regulated in the rhizosphere of pea,

but not in that of alfalfa and sugar beet [14], indicating a contribution by pRL8 to host-specific

fitness. Therefore, in addition to the well-known symbiosis plasmid essential for symbiotic

adaptation, extra-chromosomal replicons including chromids may offer rhizobia novel adapta-

tions that are needed in soils and rhizospheres characterized by highly fluctuating levels of

nutrients and stress factors.

The more conserved a gene is, the greater its level of coordinated adaptive

regulation

The transcriptional profiles of pangenome subsets I-III exhibited a strong condition-depen-

dent clustering pattern (Fig 4A–4C) rather than a strain-dependent one as observed for the

subset IV (Fig 4D). These results are consistent with the recent comparative transcriptomic

analyses of E. coli strains under free-living conditions, which revealed that the gene expression

distances of core genes between strains were mainly dependent on the culture conditions

rather than phylogenetic relatedness [50], though a later independent study also identified a

large number of strain-dependent transcripts in addition to condition-dependent ones [49].

Distinct characteristics of test conditions among different studies may exert variable strength

of influence on clustering patterns.

Earlier transcriptomic studies of E. coli strains under free-living conditions revealed a posi-

tive correlation between ortholog frequency (% E. coli genomes exhibiting gene) and expres-

sion level [50]. In our study, the average expression level of a gene under each test condition

(free-living or symbiotic) is positively related to its conservation level in four hierarchical sub-

sets of the S. fredii pangenome (Fig 4E) from strain-specific to genus core. The most recently

acquired genes, such as those of subset IV, showed the lowest variation in expression levels

between different conditions, whereas the more conserved subsets III, II and I exhibited

increasing expression plasticity (Fig 4F). Moreover, the more conserved a gene is, the higher

its level of gene connectivity in the co-expression network (Fig 7A and S4 Fig). These findings
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highlight that transcriptional regulation contributes to the development of the more conserved

pangenome subsets, and the newer pangenome members are less intensively integrated with

the core regulation network involved in environmental adaptations. It has been hypothesized

that the prokaryotic pangenome mainly results from adaptive, not neutral, evolution [4], and

this appears to be true at least for the subsets I-III of the S. fredii pangenome. For those newly

acquired genes with few interaction partners in the pangenome, earlier bioinformatics analysis

suggests that they may take many million years to be integrated into regulatory interaction net-

works [53].

Conclusion

Prokaryotic core and accessory genome components are analogous to the operating system

and applications (apps) of smartphone [54]. This work provides further evidence of the organi-

zation, regulation and integration of apps with the operating system in the prokaryotic multi-

partite genome of S. fredii. We demonstrated that the average level of gene expression, the

variation of gene expression between environments, and the gene connectivity degree within

co-expression networks are positively related to the conservation level of a gene. There are rep-

licon biases in genes of different conservation levels, in genes up-regulated under specific con-

ditions, and in the connectivity of genes within co-expression networks. Moreover,

chromosomal loci znu and mdt operons were identified as novel players in host-specific adap-

tations, which are generally thought to be the domain of the symbiosis plasmid. These findings

shed new light on our understanding of the coordinated regulation of core and accessory

genes of rhizobia, facultative microsymbionts of legumes. Similar strategy can be used to study

other prokaryotes, which are subject to diverse stimuli in the ever-changing circumstances.

Materials and Methods

Growth conditions for bacterial strains and plants

S. fredii strains were cultured at 28˚C in tryptone-yeast extract (TY) medium [55], and E. coli
strains at 37˚C in Luria-Bertani (LB) medium. When required, the media were supplemented

with the appropriate antibiotics at final concentrations of 30 μg/ml for nalidixic acid, 10 μg/ml for

trimethoprim, 10 μg/ml for tetracycline, 50 μg/ml for kanamycin, and 30 μg/ml for gentamicin.

Plant growth and inoculation was performed according to the method previously described

[25]. Seeds of G. max C08 were surface-sterilized by successive treatments with 95% ethanol

for 30 sec and 3% (w/v) NaClO for 5 min, and were then washed 6 times by autoclaved deion-

ized water. For seeds of G. soja W05, a pre-treating step in concentrated sulfuric acid for 2 min

was needed before the surface-sterilization. The surface-sterilized seeds were germinated on

0.6% agar plates in the dark at 28˚C for 36–48 hours. Then, germinated seeds were planted in

vermiculite wetted with low-N nutrient solution in Leonard jars [56] and were inoculated with

1 ml of physiological saline suspension (OD600 = 0.2) of rhizobia per plant. Plants were grown

at 24˚C with 12-h day and night cycles for 30 days. Nodules for bacteroid isolation or RNA

extraction were harvested, immediately frozen in liquid nitrogen, and then stored at -80˚C

until use.

Genome sequencing, assembly and annotation

Illumina paired-end sequences have been previously obtained for the genomes of S. fredii
strains CCBAU45436 and CCBAU25509 [26]. In this study, PacBio and Ion Torrent sequenc-

ing technologies were used to get sequences of larger genomic libraries of these two strains (S1

Table). Error correction and a hybrid model were used to perform genome assembly by Celera
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Assembler V8.3 [57]. Sanger sequencing of PCR products was then used to close sequence

gaps. Gene prediction and functional annotation were performed by RAST [58] and Blast2GO

[59].

Comparative genomics analyses

In this study, twelve Sinorhizobium genomes, spanning five S. fredii strains (CCBAU45436,

CCBAU25509, HH103, NGR234 and USDA257), six S. meliloti strains (Rm1021, AK83,

BL225C, GR4, Rm41 and SM11) and one S. medicae strain (WSM419), were used for compara-

tive genomics analyses. Protein sequences encoded by these genomes were collected and clus-

tered by CD-HIT [60] to generate a (0, 1)-matrix describing the distribution of all gene

orthologs (>70% identity over at least 80% of the length of the smallest protein) in the pangen-

ome of twelve Sinorhizobium strains. Based on this matrix, the core and accessory genomes of

S. fredii CCBAU45436 and CCBAU25509 were defined at three different levels: between

CCBAU45436 and CCBAU25509, among S. fredii strains, and among Sinorhizobium strains

(S1 Fig). Using this information, the genomes of S. fredii CCBAU45436 and CCBAU25509

were divided into four hierarchical core/accessory subsets (Fig 2A).

RNA extraction, library construction and sequencing

Free-living bacterial cultures in TY medium at mid-log phase (OD600 = 0.6) and stationary

phase (OD600 = 4.5) were harvested by centrifugation at 4˚C and 12,000 rpm for 10 min. Bacte-

rial RNA extraction was performed using RNApure Bacteria Kit (CWBIO) according to the

manufacturer’s recommendation. Bacteroids were isolated from nodules using a method

described earlier [24] and ground in liquid nitrogen before RNA extraction. Total RNA from

nodules (a mixture of plant and bacterial RNA) induced by CCBAU45436 was also extracted

using the TAKARA RNAiso plus reagent.

Strand-specific RNA sequencing was carried out by BGI-Shenzhen with Next Generation

Sequencing (NGS). In brief, the integrity and quality of all RNA samples were checked with

Agilent Bioanalyzer 2100 (Agilent Technologies). Genomic DNA contamination was removed

by DNase I digestion (30 min at 37˚C). Total RNA was then treated with the Ribo-Zero rRNA

removal kit to remove the ribosomal RNA. The ribosomal RNA-depleted samples were then

used to construct whole transcriptome libraries following the manufacturer’s instructions

(Illumina) and the resultant products were sequenced on an Illumina Hiseq 2000 platform

(Illumina). Two independent cultures and two sets of nodules were used to prepare RNA

samples.

RNA-seq reads mapping, DEG calling and gene expression plasticity

analysis

Clean reads in fastq files were mapped to the reference genomes of S. fredii CCBAU45436 or

CCBAU25509 using Bowtie2 (default parameters) [61]. Summary statistics for the clean reads

data and mapping results are shown in S2 Table. The number of mapped reads for each pro-

tein-coding gene was extracted from sorted bam files by HTseq-count (-a 0) [62]. DESeq2 was

used to identify DEGs (Log2R > 1.732 or 1, FDR< 0.001) using raw counts data as input [63].

Strain-specific genes and multi-copy genes shared by S. fredii CCBAU45436 and CCBAU

25509 were omitted when calling DEGs between these two strains. The expression plasticity of

a gene was defined as the variance of the Log2-transformed RPKM values of this gene across

all transcriptomes of each tested strain.
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Gene clustering and co-expression analyses

Dendrograms of samples were built from normalized RPKM data using the dendextend pack-

age in R [64], where multi-copy genes were excluded while the values of strain-unique genes

were set to zero for the strain that lacked them. This RPKM dataset were first Log2-trans-

formed before calculating Euclidean distance between each sample pair and the final hierarchi-

cal clustering (hclust, method = average). This RPKM dataset, after the removal of strain-

unique genes and the addition of nifHDK-1 genes, was also used for a weighted and signed

gene co-expression network analysis by using R statistical package WGCNA [65]. The num-

bers of co-expressed gene pairs with a Pearson’s correlation coefficient (r) above 0.8 were

counted to calculate gene degree values. Condition-dependent co-expression groups were

divided by k-means clustering of the RPKM dataset of each test strain by using Gene Cluster

3.0 [66]. The two independent RPKM datasets were Log2-transformed, filtered (at least two

observations > 4 and Max-Min > 1) and centered by gene, respectively, before the final clus-

tering (k = 3).

Molecular and genetic manipulations

Strains, plasmids and primers used in this study are listed in S7 Table. The schematic diagrams

illustrating the construction of the mutants of representative differentially expressed genes are

shown in S6 Fig. In brief, the internal DNA fragments of target genes, which could serve as

homology arms for exchanging, were amplified by PCR amplification and each cloned into

pVO155, a plasmid used for gene inactivation via site-specific insertion [67]. The resulting

pVO155 derivatives were then conjugated into S. fredii CCBAU45436 and insertion mutants

were screened on the TY-agar plates supplied with 30 μg/ml nalidixic acid and 50 μg/ml kana-

mycin and verified by colony PCR and Sanger sequencing.

Statistical analyses

All enrichment analyses used in this study were performed by using the Pearson’s chi-square

test, and the Benjamini-Hochberg FDR controlling procedure was used for P-value correction

in multiple comparisons. Correlations were determined with the cor.test R command using

the nonparametric Kendall’s s statistic. Two-tailed Student’s t-test was used to compare the

symbiotic phenotypes between the wild type and mutant strains.
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S6 Table. Biased distribution of differentially expressed genes between CCBAU45436 and

CCBAU25509 under free-living and symbiotic conditions regarding replicons and hierar-

chical core/accessory subsets.

(XLSX)

S7 Table. Strains, plasmids and primers used in this study.
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S8 Table. Responses of soybean plants to inoculation with S. fredii CCBAU45436 and its

ten mutants.
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S1 Fig. The pangenome at the intra-species and intra-genus levels. (A) Venn diagram show-

ing the numbers of unique orthologous genes in CCBAU45436 and CCBAU25509, respec-

tively, and the number of core orthologous genes found in both strains. (B) Flower plot

showing the numbers of strain-specific unique orthologous genes, and the number of S. fredii
core orthologous genes. (C) Flower plot showing the numbers of strain-specific unique ortho-

logous genes, and the number of Sinorhizobium core orthologous genes. The RefSeq genome

assembly accession: GCF_000283895.1 (HH103), GCF_000018545.1 (NGR234), GCF_00026

5205.3 (USDA257), GCF_000006965.1 (Rm1021), GCF_000147795.2 (AK83), GCF_0001

47775.2 (BL225C), GCF_000320385.2 (GR4), GCF_000304415.1 (Rm41), GCF_000218265.1

(SM11), GCF_000017145.1 (WSM419).

(PDF)

S2 Fig. Replicon-dependent transcriptional profiles of genes within different hierarchical

core/accessory subsets under free-living and symbiotic conditions. Bar intensities represent

the proportion of genes transcribed at four expression levels (arbitrary cut-offs at the first, sec-

ond and third quartiles of expression profiles based on RPKM values of all genes) for each of

the hierarchical core/accessory subsets (I-IV) under free-living (mid-log phase and stationary

phase) and symbiotic conditions (bacteroids isolated from G. soja W05 nodules and G. max
C08). Q1, Q2 and Q3 represent the first, second and third quartiles, respectively. Results are

shown separately for each of the five replicons (chromosome, chromid, symbiosis plasmid,

pSF45436d, pSF45436e) in the genome of CCBAU45436. Log-linear analyses indicate signifi-

cant differences among the replicons in the distribution of genes of different transcriptional

levels for each of the hierarchical core/accessory subsets under each condition (all P< 0.001).

(PDF)

S3 Fig. Condition-dependent enrichment of differentially expressed genes in hierarchical

core/accessory subsets. All of the differentially expressed genes based on pairwise compari-

sons are defined as up-regulated genes of condition.column/condition.row (or equivalent to

down-regulated genes of condition.row/condition.column; log2R > 1.732, FDR < 0.001). Sig-

nificant enrichment/depletion are indicated by orange/green color (Pearson’s chi-square test,

all P< 0.05).

(PDF)

S4 Fig. Connectivity analyses of gene co-expression networks in the multipartite genome

of S. fredii CCBAU45436. (A) Gene connectivity degrees of the hierarchical core/accessory

subsets for each replicon. Error bars represent standard error of mean. (B) Within- and

between-replicon gene connectivity. The total number of gene connectivity identified for each

replicon is shown in brackets. The relative abundances of within- and between-replicon gene

connectivity are indicated by different sections of the perimeter colored according to the con-

nected replicons (orange, the gene connectivity to the chromosome cSF45436; blue, the
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chromid pSF45436b; light green, the symbiosis plasmid pSF45436a; dark green, pSF45436d;

purple, pSF45436e). Between-replicon gene connectivity is depicted in grey. Multi-copy genes

except one out of two nifHDK copies were not included in these analyses.

(PDF)

S5 Fig. Within- and between-replicon gene connectivity related to genes on the symbiosis

plasmid in the co-expression networks constructed by using WGCNA. Multi-copy genes

except one out of two nifHDK copies were not included in these analyses.

(PDF)

S6 Fig. Schematic diagrams illustrating the construction of mutants derived from S. fredii
CCBAU45436.

(PDF)

S7 Fig. Symbiotic performance of ΔznuA and mdtA::pVO mutants derived from S. fredii
CCBAU45436 on Glycine soja W05 and Glycine max C08. (A) Soybean shoot and nodule

morphology from the plant inoculated with the corresponding strains. Scale bar = 1 mm (indi-

cates the size of nodules). (B) Host plant responses to inoculation of mdtA::pVO mutant. The

red and yellow arrows in rightmost panel point to normal external morphological nodule and

nodule-like bumps. Scale bar = 1 cm.

(PDF)

S1 Dataset. Differentially expressed genes of CCBAU45436 bacteroids in nodules of W05

and C08.

(XLSX)
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