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Abstract: Natural compounds are emerging as effective agents for the treatment of malignant dis-
eases. The active constituent of α-mangostin from the pericarp of Garcinia mangostana L. has earned
significant interest as a plant base compound with anticancer properties. Despite α-mangostin’s
superior properties as an anticancer agent, its applications are limited due to its poor solubility and
physicochemical stability, rapid systemic clearance, and low cellular uptake. Our review aimed
to summarize and discuss the nanoparticle formulations of α-mangostin for cancer drug delivery
systems from published papers recorded in Scopus, PubMed, and Google Scholar. We investigated
various types of α-mangostin nanoformulations to improve its anticancer efficacy by improving
bioavailability, cellular uptake, and localization to specific areas These nanoformulations include
nanofibers, lipid carrier nanostructures, solid lipid nanoparticles, polymeric nanoparticles, nanomi-
celles, liposomes, and gold nanoparticles. Notably, polymeric nanoparticles and nanomicelles can
increase the accumulation of α-mangostin into tumors and inhibit tumor growth in vivo. In addi-
tion, polymeric nanoparticles with the addition of target ligands can increase the cellular uptake
of α-mangostin. In conclusion, nanoformulations of α-mangostin are a promising tool to enhance
the cellular uptake, accumulation in cancer cells, and the efficacy of α-mangostin as a candidate for
anticancer drugs.

Keywords: Garcinia mangostana L.; nanotechnology; drug delivery; cancer therapy

1. Introduction

Cancer is the second leading cause of death globally and was responsible for an
estimated 9.6 million worldwide deaths in 2018 [1]. The incidence of cancer cases is
gradually increasing because of population growth and life expectancy with a projected
increase in cases of up to 75% and is predicted to be the main cause of death by 2030 [2–4].
Currently, cancer treatments are surgery, radiotherapy, and anticancer drugs (chemotherapy
and immunotherapy). Surgery and radiotherapy are most effective for the treatment of
local and non-metastatic cancers, but less efficient for metastatic cancers [5,6]. Furthermore,
anticancer drugs are the current choice for the treatment of metastatic cancer, because they
can reach every organ in the body through the bloodstream [7]. However, anticancer drugs
such as chemotherapy have many limitations, including the high incidence of side effects,
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limited effectiveness, multidrug resistance, and is highly toxic to growing healthy cells due
to their non-specific targeting of cancer cells [8,9].

The development of natural product-based compounds is a promising strategy for
cancer treatment. Various plant-based molecules such as α-mangostin, curcumin, and
taxanes have chemopreventive or anticancer properties based on in vitro and in vivo
studies [10–21]. α-mangostin is a xanthone derivate extracted from the skin of the fruit of
Garcinia mangostana Linn known as the queen of fruits. It has revealed several anticancer
properties [22–26] in various kinds of cancers such as colon [27,28], lung [29], pancreas [30],
breast [22,31], skin [32], and blood [33]. However, α-mangostin has some physicochemical
properties drawback, especially limited water solubility, resulting in poor absorption and
low bioavailability on intravenous and oral administration, which can affect its effectiveness
as an anticancer therapeutic agent [34–36].

Thus, to overcome those limitations, nanoparticles or nano-structured materials were
introduced as a drug delivery system as an alternative to conventional drug delivery
systems to achieve high water solubility and specific biodistribution [37,38]. Various
nanotechnology-based drug delivery systems such as polymeric nanoparticles, solid lipid
nanoparticles, liposomes, and nanomicelles have been designed to improve the low-water
solubility of α-mangostin [39]. Many researchers reported that these formulations can en-
hance the therapeutic efficacy achieved from enhanced targeted localization and improved
cellular internalization of α-mangostin nanoformulation in cancer cells. Despite many de-
velopments in nanoformulation of drug delivery systems for α-mangostin, the engineering
on morphology and chemical structure related to their targeted or selective recognition
of cancer cells and control released drug delivery system remain challenges. This review
highlights various nanotechnological approaches used for α-mangostin delivery focused
on cancer therapy.

2. Methodology

This review is based on the literature obtained from Google Scholar, PubMed, and
Scopus using the keywords “nanoformulation of α-mangostin for cancer drug delivery
system”, “nanoparticle formulation of α-mangostin for cancer drug delivery system”, and
“α-mangostin nanoparticle for cancer drug delivery system” published in the last 10 years.
Opinions, assessments, and unrelated subjects such as pharmacological characteristics
and bioactivities were utilized as exclusion criteria. The flowchart of the methodology is
shown in Figure 1. The distribution of articles based on the year of publication can be seen
in Figure 2.
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3. α-Mangostin

α-mangostin (Figure 3) is a metabolite of 1,3,6,7-tetrahydroxy-2,8-di(3-methyl-2-butenyl)
xanthones isolated from mangosteen pericarps [23,40–42]. α-mangostin is soluble in
methanol and has a water solubility of 2.03× 10−4 mg/L at 25 ◦C (Table 1) [43,44]. The low
solubility of α-mangostin in water causes low bioavailability. Pharmacokinetic studies per-
formed in mice after a single oral dose (20 mg/kg) showed low bioavailability (F = 2.29%)
which was thought to be due to low gastrointestinal absorption and rapid metabolism of
α-mangostin in the liver and small intestine [45].
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α-mangostin has been found to possess a wide range of biological activities such
as anticancer [22,27,46–49], antioxidant [50], antibacterial [51,52], hepatoprotective [53],
cardioprotective [54], antimalarial [55], anti-obesity activities [56], and neuroprotective
properties in Alzheimer’s disease [57]. Previous studies have shown that α-mangostin
acts against cancer cells through several mechanism pathways such as suppressing fatty
acid synthase [31], downregulating the PI3K/Akt pathway [46], and β-catenin gene reg-
ulation [28]. Despite having the above-mentioned anticancer properties, its poor oral
bioavailability remains the main drawback, limiting its clinical potential. As a result,
these issues have led to the development of α-mangostin nanoformulations in the quest of
improving α-mangostin delivery for better therapeutic outcomes.



Pharmaceutics 2021, 13, 1993 4 of 21

Table 1. The physicochemical properties of α-mangostin [39,58].

Property Description

Molecular formula C24H26O6

IUPAC name 1,3,6-Trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-
xanthen-9-one

Molecular weight 410.5

Color/Form Faint yellow to yellow powder

Melting point 180–181 ◦C

Solubility Soluble in methanol, in water (2.03 × 10−4 mg/L at 25 ◦C)

LogP log Kow = 7.71

Stability Stable under normal temperatures and pressures

Dissociation constants pKa1 = 3.68 (primary carbonyl); pKa2 = 7.69 (secondary carbonyl);
pKa3 = 9.06 (tertiary carbonyl)

4. α-Mangostin Nanoformulation

The application of nanotechnology to medicine has resulted in the development of
nanoparticle therapeutic carriers [59]. The recommended particle size for cancer treatment
is 10–200 nm, which allows it to easily infiltrate tumor blood vessels that leak and collect in
tumor tissue, reducing side effects [60].

Several types of nanoparticles are in different stages of the development process as
cancer drug delivery systems, including nano polymers, micelles, liposomes, lipid-based
carriers (lipid emulsions and lipid–drug conjugates), and several ligand-targeted products
(such as an antibody, folate, and transferrin conjugated molecules) [59,61–63]. Nanopar-
ticles usually consist of two or more components, and at least one of them is an active
pharmaceutical ingredient. The materials and methods selection for nanoparticle assembly
is mainly based on the size and shape of the nanoparticles, physicochemical properties of
the active ingredient, the target delivery, and their stability and safety. Components and
methods selected are very crucial to ensure the intended administration method and drug
targeting abilities [64].

Nano-based cancer treatment, which employs a mixture of nanomaterials and chemother-
apeutic drugs, plays a significant role in the therapeutic effects against cancer [60,65,66].
Nanoparticles preferentially accumulate in tumors due to their enhanced permeability and
retention effect (EPR) (Figure 4), resulting in differences in the biodistribution between
conventional chemotherapeutics and nanoparticle drug carriers, where nanoparticle-based
chemotherapy can achieve higher drug concentrations in the intratumor environment,
and eventually better therapeutic efficiency and lower toxicity [67–69]. Various nanofor-
mulations are being explored to enhance the delivery of α-mangostin to tumor sites.
α-mangostin nanoformulations for cancer should enhance anticancer activity and selec-
tivity compared to free α-mangostin, and at the same time be non-toxic to normal cells.
α-mangostin nanoformulations for cancer that have been reported in the literature include
nanofibers, nanostructures lipid carrier, solid lipid nanoparticles, polymeric nanoparticles,
nanomicelles, liposomes, and gold nanoparticles. These nanoformulations are described in
Figure 5 and summarized in Table 2.
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Figure 4. (A) Nanoparticles are intended to exploit the enhanced permeability and retention effect to
exit the blood vessels through leaky vasculature, accumulate within tumor tissues, and enter the cells
via endocytosis before releasing their ‘drug’. Conversely, owing to the tight endothelium junctions in
normal tissues, the nanoparticles would remain in the bloodstream. (B) Small nanoparticles could
be internalized through many pathways such as (i) clathrin or caveolin-mediated endocytosis and
(ii) clathrin/caveolin-independent endocytosis.
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Table 2. Summary of α-mangostin nanoformulations.

Carrier Cell Line Outcome Ref.

Silk fibroin
N-(3-Dimethylaminopropyl)-

N′-ethylcarbodiimide
hydrochloride (EDC) and

polyethylenimine (crosslinker)

Caco-2
MCF-7

• Increased solubility
• Sustained release
• Reduced hematotoxicity up to 90%
• Stable for up to 24 h when dispersed in IV diluent and

6 months when preserved as lyophilized powder at 4 ◦C
• Improved cytotoxicity and apoptosis in vitro

[3]

Acetobacter xylinum B16F10; MCF-7;
hGF; HaCaT

• Significantly lower toxicity to normal cells than to
cancer cells

• Slightly toxic to HaCaT cell (normal cells)
[70]

PLGA, soybean lecithin,
DSPE–PEG2000–COOH

Thioaptamer (ligand)
MCF-7

• Particle size 150–300 nm
• Internalization of nanoparticles
• Strong disaggregation of MCF-7 multicellular

tumor spheroids

[71]

Miglyol 812, cetyl paomitate,
montanov 82, and oleoyl
chitosan (coating agent)

Caco-2
Hela

• Particle size < 200 nm
• High physical stability
• Excellent encapsulation efficiency (EE > 90%)
• High level cellular internalization
• Improved cytotoxicity
• Downregulation of cyclin D1-(CCND1) and anti-apoptotic

gene BCL2

[72]

PLGA

Pancreatic cancer
cell line (AsPC-1,

PANC-1, and
Mia-Paca-2)

Cancer stem cells
(CSCs)

• Particle size < 200 nm
• Can easily enter into the cells
• Downregulation of pluripotency maintaining factors

components of Shh pathway, Gli targets, EMT markers,
transcription factors, and upregulation of E-cadherin

• Inhibit proliferation, colony formation; cell motility,
migration, and invasion

• Induced apoptosis, inhibits the growth, inhibits
development and metastasis of pancreatic cancer

[35]

PLGA

HCT116 and
HT29

Normal
epithelial cells

(CRL-1831)

• Internalization of nanoparticles
• Suppressing the expression of Notch receptors and their

ligands, γ-secretase complex protein and downstream target
• Induced cancer cells and did not induce apoptosis in

normal cells

[73]

α, β dan γ cyclodextrin (CD)
Epichlorohydrid (ECH)

as linker
CT26WT

• The highest level of solubility and complexation efficiency
of α-mangostin was shown in complexation with βCD

• CD nanoparticle α-mangostin complexes showed larger
loading ratio than CDs themselves

• Rapid release and slow release
• Decreased cytotoxicity

[74,75]

β-cyclodextrin A549

• Particles size < 50 nm
• Nanoparticles taken up into the cancer cells and affected

nuclear morphology
• Improved cytotoxicity

[76]

Chitosan and alginate
Genipin as crosslinker HT-29

• Particle size around 400–500 nm
• Genipin as a crosslinker significantly increases the loading

efficiency and loading capacity of the nanoparticles
• Improved cytotoxicity

[77]
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Table 2. Cont.

Carrier Cell Line Outcome Ref.

Poly-(ethylene
glycol)–poly(l-lactide)

(PEG–PLA)
CREKA peptide (ligand)

PANC-1
NIH3T3,

PANC-1-Luc2

• Particle size 100 nm
• Controlled and continuous release
• Increased intracellular delivery
• Suppressed NIH3T3 activation, decreased fibronectin

expression (in vivo), promotes tumor vascular
normalization and enhances blood perfusion (in vivo)

• Blocked TGF-β signaling pathways by inhibiting
phosphorylated Smad2 and Smad3 protein synthesis
(in vitro and in vivo); cancer-associated fibroblast (CAF)
suppression and collagen downregulation effect

[78]

Chitosan and Kappa
Carrageenan MCF-7

• Particle size 200–400 nm
• Excellent encapsulation efficiency (EE > 97%)
• Increased solubility
• Initial burst release
• Improved cytotoxicity

[79]

Polyvinylpyrrolidone (PVP) HCT 116

• Significantly increases the solubility of alpha mangostin
(1000-fold)

• Particles size < 130 nm
• Nanomicelles can enter into cancer cell
• The half maximal inhibitory concentrations for α-mangostin

nanomicelles was higher than raw α-mangostin

[43]

Monomethoxy poly (ethylene
glycol)-polycaprolactones

(MPEG-PCL)

A375 and B16
non-tumor cell

lines (LO2, Vero,
and HEK293T

cells)

• Mean particle size = 30 nm as a monodisperse system
• Drug loading up to 99.1%
• Sustained drug-release profile
• Excellent cellular uptake
• Induced apoptosis via the mitochondrial-mediated intrinsic

pathway and the exogenous apoptosis pathway
• Pharmacokinetic study shows a slow excretion behavior

from blood vessels

[80]

Methoxy poly(ethylene
glycol)-poly(lactide)

(MPEG-PLA)
U87

• Mean particle size 32 nm and EE = 99.5%
• Sustained release
• Improved the pharmacokinetics of α-mangostin
• Suppression of protein bcl-2 decreased, pro-apoptotic

protein Bax and cleaved-caspase-3, 8 and 9

[81]

Phosphatidylcholine and
cholesterol

Calu-3; HT-29;
MCF-7; Caco-2;
HaCaT; HDF

• Particle size around 100 nm
• Lower toxicity in normal cells than α-mangostin in

aqueous solution
• Decreased cytotoxicity, induced apoptosis

[82]

Dioleoylphosphatidylcholine
and cholesterol Hep-G2

• Particle size around 100 nm, high entrapment efficiency,
slow and sustained release

• Improved cytotoxicity
[83]

Gold citrate PC-3
DU145

• Induced DNA fragmentation
• Improved cytotoxicity [84]

4.1. Nanofibers

Nanofibers are one-dimensional nanomaterial with a size of less than 500 nm [85].
Currently, nanofibrous polymer materials are being thoroughly investigated for a variety
of medical uses. The use of nanofiber system drug carriers in anticancer therapy offers
numerous benefits, including the ability to form fibers with varying diameters ranging
from nanometers to sub-microns, surface modification, having a large outer surface ratio
and unique porosity to maximize the drug encapsulation process, controlled and sustained
drug release in the desired workplace to improve efficacy [86–91].
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In 2019, D.T. Pham et al., tried to develop a fibroin nanoformulation for α-mangostin
using a natural polymer (silk fibroin) as a carrier, EDC or PEI as a crosslinker, and utilize
the desolvation method. Fibroin is a natural biocompatible and biodegradable protein
extracted from Bombyx mori silk. This material has been used as a carrier for anticancer
drugs [92,93]. The observed mean size was around 300 nm with a narrow size distribution
with PI < 0.3 and zeta potentials from −15 to +30 mV proportionally to the increase of
EDC content. The formula that uses a crosslinker had a higher entrapment efficiency and
loading capacity (70%) and (7%) than the formula without a crosslinker (<50% and <5%).
Compared to the free α-mangostin, nanoparticles increased the drug’s solubility up to
threefold. In vitro cytotoxicity of α-mangostin and α-mangostin loaded nanoparticles was
conducted in Caco-2 and MCF-7 cells. The results showed that the nanoparticle maintained
the apoptotic effect of α-mangostin and exhibited improved cytotoxicity (i.e., lower IC50)
than the free α-mangostin. It is related to differences in the cellular uptake mechanisms.
Free α-mangostin in solution penetrates the cells via a passive transport pathway, limited
by cell lipid bilayers and the efflux pumps. Whereas, silk fibroin nanoparticles loaded with
α-mangostin effectively enter the cell via surface adsorption and endocytosis pathways,
where it is possible that two amino acids located near the N-terminal of the fibroin heavy
chain can bind to surface receptor integrin. In particular, the cell surface receptor integrin
was overexpressed in many cancer cells, including colon and breast cancer. This binding
will induce the endocytosis process. Therefore, the formulation of α-mangostin using
fibroin nanoparticles can enhance IC50 so that it can boost the effectiveness of α-mangostin
as a cancer medicine [3].

Taokaew et al. formulated bacterial cellulosic nanofiber film synthesized from Aceto-
bacter xylinum (Gram-negative aerobic bacteria). This bacterial-based nanofiber has several
advantages, such as its similarity to the natural extracellular matrix, high loading capacity,
non-toxicity, and resistance to heating during the sterilization process. Bacterial cellu-
losic cytotoxicity testing was performed on cancer cells (B16F10 melanoma and MCF-7
breast cancer cells) and normal cells (HaCat fibroblast and hGF keratinocyte cells). The
loading capacity of α-mangostin was up to 7.33% and the loading efficiency ~67.3% with
a concentration proportion of 0.01–1% (2, 24, and 250 mg/cm3). The characteristics of
bacterial cellulosic nanofiber are cellulose fibers with a diameter of 50–100 nm with an
empty cavity that stretches between the fibers to absorb the active ingredients. The cyto-
toxicity of nanofibers on cancer and normal cells was tested at three α-mangostin loading
concentrations, namely 2, 24, and 250 mg/cm3. The findings revealed that a concentration
of 2 mg/cm3 had no cytotoxic effect on B16F10 melanoma, but a higher concentration
of α-mangostin inhibited growth and caused changes in cell morphology that suggested
membrane damage in B16F10 melanoma and MCF-7 breast cancer cells. Furthermore,
testing on normal cells showed a decrease in viability, namely ~40% in hGF cells and
38% in HaCaT cells during 24 h of observation. After incubation for 48 h, HaCaT cells
experienced an increase the viability by 111% while hGF cells by 53%. It suggests that
the α-mangostin nanofiber is slightly more toxic to HaCaT cells than hGF cells. It was
concluded that bacterial cellulosic nanofiber α-mangostin has lower cytotoxicity against
normal cells compared to cancer cells [70].

4.2. Solid Lipid Nanoparticle

Solid lipid nanoparticles (SLN) are colloidal particles constructed from biodegradable
physiological lipids which are solid at room and body temperature. It has sizes ranging
from 50 to 1000 nm according to the manufacturing method and type of lipid used. SLN
is widely used as a carrier for cancer medicines because it has many benefits, such as
solvent-free preparation, being composed of biocompatible and biodegradable materials,
site-specific targeting, physical stability, and controlled release for both hydrophilic and
lipophilic drugs [94–96].

F. Bonafè et al. attempted to develop solid lipid nanoparticles of α-mangostin conju-
gated with CD44 thioaptamer as a ligand targeting multicellular tumor spheroids (MCTSs)
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by MCF-7 cell. Using a nanoprecipitation technique, lipid nanoparticles were synthe-
sized from PLGA, soybean lecithin, and DSPE–PEG2000–COOH, and the thioaptamer was
conjugated to nanoparticles using the two catalysts, 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide, and N-hydroxysuccinimide [71]. PLGA deployed as the core can carry
hydrophobic drugs with high loading capacity. Then, hydrophilic coating by soybean
lecithin and DSPE-PEG2000-COOH provides steric protection capable of reducing systemic
clearance rates, prolonged circulation half-life in vivo, and functional groups for surface
modification attachment of ligands [97]. The mean diameters of the nanoparticles were
227.0 ± 88 and 174.0 ± 29 nm (after filtered by 200 nm cut-off). α-mangostin nanoparticles
(0.1 µg/mL) induced significant dissociation of MCTSs at a dose 10 times lower than the
α-mangostin (1 µg/mL). These results suggested that nanocarrier is a suitable vehicle
for α-mangostin to suppress tumors at low concentrations. Moreover, the nanoparticles
conjugated to the CD44 thioaptamer could reduce the size of the spheroids. It suggests that
several cells died or slowed down their process of duplication [71]. Another solid lipid
nanoparticle was prepared by V. Kumar and tested against diethylnitrosamine-induced
hepatocellular cancer. This method generated particles with a size of 182.3 nm and a poly-
dispersity index of 0.203, and it reduced hepatic nodules by 84.5% and 93.4%, respectively.
The nanoparticle α-mangostin controlled the PI3K and Akt pathways, which are involved
in the inhibition of hepatic cancer growth and proliferation, as well as its chemoprotective
action [98].

4.3. Nanostructured Lipid Carriers

Nanostructured lipid carriers are novel therapeutic formulations consisting of phys-
iological and biocompatible lipids, surfactants, and co-surfactants. The use of NCL as
a carrier for chemotherapy agents is very promising because it is a bio-compatible and
bio-degradable lipid-based nanoparticle that is able to improve its physical and chemical
stability, and significantly increase the therapeutic capacity with low pharmacokinetic
properties [99–101].

The mucoadhesive NLC was developed for the possible oral delivery of α-mangostin.
Nanostructure lipid carrier coated with oleoyl-quaternized-chitosan (NLC-CS) with high-
pressure homogenization process was used for the nanoparticles prepared in a range of
nanoparticle sizes from 200 to 400 nm, low polydispersity, zeta potentials 40.9 mV, with
excellent encapsulation efficiency (>90%). Results demonstrated that the NLC-CS has a
higher toxicity than the NLC against Hela and Caco-2 cells. The CS-NLC particles resulted
in better cellular uptake than the NLC particles due to the mucoadhesive properties of the
CS-NLC particles. Positively charged nanoparticles have a higher internalization rate than
neutral or negatively charged species. This behavior is due to the strong electrostatic adhe-
sion of positively charged chitosan to negatively charged mucosal surfaces. Furthermore,
CS-NLC outperformed NLC due to improved mucoadhesion of the particles with the cells,
allowing for internalization. These findings support the use of surface-modified CS-NLC
nanoparticles as mucoadhesive carriers for drugs to cancer cells [72].

4.4. Polymeric Nanoparticle

Polymeric nanoparticles are particles in the size range from 1 to 1000 nm and can be
loaded with active compounds trapped in or surface adsorbed onto the polymer core [102].
These systems are typically structured through spontaneous assembly in which the thera-
peutic compound is trapped within the core of the nanoparticle structure [103]. Generally,
polymeric nanoparticles are composed of natural polymers (chitosan and alginate) and
synthetic polymers (PLGA and cyclodextrins) [104]. There are many advantages to using
polymeric nanoparticles for the delivery of anticancer drugs in cancer treatment, among oth-
ers, they can be used to deliver various types of drugs such as hydrophilic and hydrophobic
drugs, peptides, and biological macromolecules via several routes of administration [105],
improve the drug solubility [106], provide controlled release, increase bioavailability, thera-
peutic index, can transport active ingredients to targeted tissues or organs at a specified
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concentration [102,107], surface modification with ligand linking for stealth and targeted
drug delivery, biocompatibility, biodegradability, and low toxicity [108].

4.4.1. PLGA Nanoparticle

Verma et al. developed α-mangostin encapsulated PLGA nanoparticles to improve
the bioactivities of α-mangostin for inhibiting pancreatic cancer stem cells (Pan CSCs) in
human and KC mice (PdxCre; LSL-KrasG12D) (Pan CSC). This formula produces a particle
size of 186.3 ± 6.42 nm, a zeta potential of 0.03 ± 0.005 mV, and a drug encapsulation of
51.16 ± 2.61%. The results indicated that α-mangostin nanoparticles inhibited cell prolif-
eration of Pan CSCs and pancreatic cancer cell lines more effectively than α-mangostin
and had no significant effect on human pancreatic normal ductal epithelial [35]. In an-
other study, V. Chandra Boinpelly et al. reported that α-mangostin-encapsulated PLGA
nanoparticles inhibit human colorectal cancer cells and colony deformation in colorectal
cancer HCT116 and HT29 cells in a dose-dependent manner at a dose of 0–10 mol/L [73].
These findings suggest that α-mangostin encapsulated PLGA nanoparticles are appropriate
for use as carriers to advance the effectiveness and therapeutic effects of α-mangostin for
pancreatic cancer and colorectal cancer.

4.4.2. PEG-PLA Nanoparticles

In 2020, J. Feng et al. developed cancer-associated fibroblasts (CAFs) targeting polymer
nanoparticle (methoxy poly (ethylene glycol)3000-poly (lactic acid)34000 (Me-PEG-PLA)
and maleimide-poly (ethylene glycol)3000-poly (lactic acid)34000 (Male-PEG-PLA) coated
with CREKA peptide and loaded with α-mangostin. The concept of using CAFs-targeting
nanoformulation α-mangostin is an effective method of modifying tumor environment to
enhance pancreatic ductal adenocarcinoma chemotherapy. Nanoparticles with spherical
shape particles and average particle size diameter of α-mangostin nanoparticles [NP(α-M)]
is 103.76 ± 7.45 nm; α-mangostin nanoparticles coated with CREKA peptide [CRE-NP(α-
M)] is 106.93 ± 3.69 nm with a zeta potential of −31.77 ± 2.12 mV, respectively. The
negative charge generated by the nanoparticles renders an optimal possibility to develop
the EPR effect when examined in vivo. The nanoparticles effectively reduced the produc-
tion of secreted mass extracellular matrix both in vitro (NIH3T3 cells) (5.8-fold) and in vivo
by blocking the TGF-β signaling pathway and significantly inhibiting the tumor growth
(<70%), inducing apoptosis and necrosis on an orthotopic mice model. Biodegradable
nanocarriers (PEG-PLA) demonstrate controlled and continuous release behavior. Addi-
tionally, the use of PEG can avoid the elimination of nanoparticles by the reticuloendothelial
system, which further increases the circulation time in the body. Moreover, CREKA peptide
as a target ligand can bind to the fibroin–fibronectin complex that is overexpressed in the
tumor mass extracellular matrix, thereby increasing the accumulation in the tumor region.
From the results achieved, we can infer that this formula could be amplified as an efficient
method to enhance the therapeutic effects [78].

4.4.3. Chitosan-Alginate Nanoparticles

Samprasit et al. formulated α-mangostin-loaded chitosan/alginate (CS/ALG) nanopar-
ticles cross-linked with genipin (GP), used the ionotropic gelation method, and evaluated
antitumor activity against the colorectal cancer cells (HT-29) [77]. Chitosan is composed of
amino groups with a polycationic charge that interacts with negatively charged polymers
such as alginate, forming colloid nanoparticles. Chitosan and alginate complexes have
attracted attention due to their easy processing [109–111]. Genipin acts as a cross-linking
agent that reacts with the primary amine group of chitosan to form a rigid nanoparticle
structure with a slow degradation rate, making it capable of controlling swelling, degra-
dation, and drug release [111]. The mean particle sizes of GP nanoparticles and non-GP
nanoparticles were 477.2 ± 32.2 and 437.6 ± 50.3 nm. The percentage of loading efficiency
and capacity of GP nanoparticles is three times higher than that of non-GP nanoparticles. It
demonstrates that GP enhanced the α-mangostin loading, wherein during the cross-linking
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process α-mangostin may be trapped within the GP nanoparticles, resulting in increased
loading of α-mangostin. It is also in line with the increase in the particle size of the GP
nanoparticles. In vitro release tests simulated the state of the digestive tract at pH 1.2,
6.8, and 7.4. The result is that the release rate of α-mangostin is slower than the non-GP
nanoparticles at all pH conditions. Genipin can control the degradation, diffusion, erosion
of the nanoparticles, thereby inhibiting α-mangostin release into the medium. From the
entire pH range tested, the release of α-mangostin at low pH was significantly lower than
at high pH. At high pH, the amine group of chitosan undergoes deprotonation and loses its
charge, causing weak electrostatic interaction between chitosan and alginate and unstable
nanoparticles, which implies a higher release of α-mangostin. The pattern of slow release
of α-mangostin from GP nanoparticles in acid medium and rapid release of α-mangostin at
higher pH illustrates that GP nanoparticles can concentrate on the release of α-mangostin
in the small intestine and colon [77,111,112].

The viability of the cells treated with varying concentrations of blank GP nanoparticles
showed no substantial decrease in cell viability. As a result, blank GP nanoparticles
have little effect on cell viability and protected drug carrier. The cytotoxicity of the α-
mangostin-loaded GP nanoparticles was dose-dependent. Cell viability was lower at
concentrations of 200 and 300 µg/mL of α-mangostin-loaded GP nanoparticles compared
to the control. These findings are associated with α-mangostin’s cytotoxicity, confirming
that α-mangostin-loaded nanoparticles and α-mangostin have antitumor action against
colorectal adenocarcinoma cells. It concluded that chitosan/alginate nanoparticles cross-
linked with genipin could be promising candidates for a controlled release drug delivery
system of α-mangostin to the large intestine [77].

4.4.4. Chitosan-Kappa Carrageenan Nanoparticles

Wathoni et al. developed an enteric-coated nanoparticle of α-mangostin-loaded
chitosan-kappa carrageenan. Kappa carrageenan is a natural polymer used as an encap-
sulator that will protect nanoparticles from gastric acid because of its low sensitivity to
pH and ionic strength. This formula yields an average particle size of 200–400 nm, high
entrapment efficiency, and increased solubility. In vitro release testing showed that the
nanoparticles produced an initial burst release for pH 1.2 and 7.4, respectively, followed by
a slow and sustained release. Cytotoxicity in MCF-7 cells showed an increase in nanoparti-
cle activity compared to free α-mangostin. The IC50 of α-mangostin, α-mangostin-chitosan
nanoparticle, and α-mangostin-chitosan-kappa carrageenan was 8.2, 6.7, and 4.7 g/mL,
respectively [79].

4.5. Cyclodextrin Nanoparticles

Cyclodextrins are non-reducing oligosaccharides of starch-modified products with a
ring-shaped chemical structure and are formed through the cyclization process by CGTase
activity (cyclodextrin glycosyltransferase). Suitable reaction conditions will produce three
main groups of cyclodextrin: α-, β-, and γ-cyclodextrins consisting of 6, 7, and 8 units of
(1,4) linked D(+)-glucopyranose. As there are numerous hydroxyl groups linked to the
top and bottom of the molecule, it is water-soluble, but the inside of the cyclic structure
is hydrophobic and may trap hydrophobic molecules; this configuration is known as the
“molecular pocket”. The number of glucose units determines the cavity size, and the cavity
diameters of α-, β-, and γ-cyclodextrin are 5.7, 7.8, and 9.5 Å, respectively [113–115]. The
cyclodextrins molecular pocket is used to trap hydrophobic medicines like α-mangostin
without interfering with their bioactivity [74].

Cyclodextrin-based nanoparticles (CDNP) encapsulating α-mangostin were devel-
oped by a polyaddition reaction using epichlorohydrin and examined cytotoxicity in
CT26WT cancer cells. The cyclodextrin-containing hyperbranched polymer was produced
by a poly-addition reaction between cyclodextrin and epichlorohydrin (ECH) that capa-
bly integrates numerous cyclodextrins into the polymer using a relatively easy synthesis
technique. The results showed that βCDNP showed a higher loading ratio of α-mangostin.
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The cell viability results after 24 and 48 h of incubation indicated the CDNP themselves
are inert, while in the case of CDNP α-mangostin complexes, the cell viability is differ-
ent depending on the type of CD. The αCDNP/α-mangostin and γCDNP/α-mangostin
showed high cytotoxicity for cells after 24 h. However, cell viability decreased signif-
icantly for βCDNP/α-mangostin after 48 h. It indicates that the α-mangostin in the
αCDNP and γCDNP systems can be easily released from the polymer network structure
so that almost no cells survived after 24 h of incubation. In contrast, because βCDNP
can strongly resist α-mangostin release, the βCDNP system does not show any toxicity
after 24 h. However, due to the presence of other candidates of the guest molecule for
βCD, such as cholesterol in the cell membrane, the α-mangostin in βCDNP was proba-
bly gradually exchanged by the guest molecules, resulting in releasing α-mangostin and
inducing higher toxicity after 48 h [74]. Continuing the previous study, V.T.H.Doan et al.
focused on the anticancer activity of CDNP/α-mangostin. They have evaluated in vitro
and in vivo anticancer efficacy using a CT26WT cell line. There was an increase in the
IC50 value from CDNP compared to α-mangostin in the monolayer culture, in the or-
der of α-mangostin (~14.5 µM), αCDNP/α-mangostin (~27.7 µM), GCDNP/α-mangostin
(~43.5 µM), and βCDNP/α-mangostin (~50.4 µM). It occurs due to nanoparticles retention
capability for α-mangostin release from the system. In this study, they examined the
in vitro cytotoxicity of α-mangostin and CDNP/α-mangostin on CT26WT spheroid cells.
The IC50 values increased ~33 times in α-mangostin and ~9 times in CDNPs/α-mangostin.
In the spheroid cells, the drug must penetrate the spheroid cellular layer to migrate inside
and kill the cells. This is because of the hydrophobicity of α-mangostin that was easily
adsorbed on the spheroid cells and causes a decrease in drug concentration in the spheroid.
Whereas, CDNP reduces the hydrophobicity of α-mangostin so that it has better cellular
penetration than α-mangostin, which has better cytotoxicity and lower IC50 than that
observed for α-mangostin. The contrast in IC50 values between βCDNP/α-mangostin and
GCDNP/α-mangostin is due to the higher α-mangostin retention capability of βCDNP
than γCDNP. α-mangostin may not be released much in the case of βCDNP/α-mangostin,
appearing in a higher IC50 than γCDNP/α-mangostin. It is relevant to the cavity size of
CDs; γCDNP/α-mangostin have a larger cavity than βCDNP/α-mangostin. Impressively,
in vivo anticancer efficacy showed changes in the tumor volume and tumor growth ratio
after i.v. (10 mg/kg) of α-mangostin and βCDNP/α-mangostin into BALB/c mice bearing
CT26WT tumors. α-mangostin showed tumor volume and tumor growth ratio gradually
increased over 22 days and reached 1145 ± 194 mm3 in tumor volume and tumor growth,
indicating an increase of ~10-fold. While, the βCDNP/α-mangostin showed appreciable
suppression of tumor growth. The tumor volume was 501 ± 372 mm3 and the tumor
growth ratio was ~4 [75]. The increase in tumor size and volume on α-mangostin treatment
was due to α-mangostin swiftly clearing from the blood within 3.5 h after intravenous
injection with a single dose [36]. Consequently, to achieve significant anticancer efficacy a
frequent α-mangostin administration is required. Whereas for βCDNP/α-mangostin, most
of the particles remained in the serum after 6 h, showing good circulation in the blood,
which may be due to the hydrophilic surface of βCDNP. Biodistribution testing showed
βCDNP appeared to accumulate in the tumor [75].

In another study, M.P. Nguyen Thi et al. synthesized ßCDNP/α-mangostin with
particles size of <50 nm and zeta potential of −38 mV. Cytotoxicity against lung cancer
cells A549 demonstrated that βCDNP/α-mangostin exhibited lower IC50 values than
α-mangostin (2.34 and 4.86 g/mL, respectively). Furthermore, fluorescence microscopy
revealed that βCDNP/α-mangostin is carried into cancer cells and changes the shape of the
cell’s nucleus. These findings suggest that βCDNP/α-mangostin improves bioavailability
and anticancer efficacy [76].

4.6. Nanomicelles

Nanomicelles are colloidal nano-sized structures with a hydrophobic core and a
hydrophilic shell [116]. Nanomicelles have been widely used as the delivery system for an-
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ticancer drugs, in particular for the delivery of water-insoluble bioactive compounds [117].
Micelles structures formed amphiphilic block copolymers containing hydrophilic blocks
and hydrophobic blocks, some hydrophilic and nonionic polymers, such as PEG, poly
(N-vinyl pyrrolidone) (PVP), poly (N-isopropyl acrylamide) (PNIPAM), and poly (hydrox-
ypropyl methacrylamide) (PHPMA) is widely used as shell-forming material. Nanomicelles
have many advantages, including being structurally stable, having the ability to trap a
large number of hydrophobic drugs, their surface can be conjugated with the targeting
ligand [118], and they have a suitable size distribution to avoid rapid renal excretion,
allowing accumulation into the tumor tissue through the effect of EPR [119].

In a study from A.F.A. Aisha et al., α-mangostin was prepared in PVP by solvent
evaporation method and the intracellular delivery through endocytosis that may enhance
the antitumor efficacy of α-mangostin was examined. The cellular uptake assay on human
colon tumor cell line 116 (HCT16) showed high permeability of α-mangostin through the
cytoplasmic membrane around the treated cells whereas nanomicelles showed fluores-
cence in the form of spherical particles. These results suggest that cellular uptake from
nanomicelles can be mediated through endocytosis. The cytotoxic effect of α-mangostin
and nanomicelles exhibited a significant cytotoxic effect in a dose-dependent manner with
IC50 of 7.7 ± 0.1 and 8.9 ± 0.2 µg/mL, respectively. Cytotoxicity results show intracellular
release of drug payload, which occurred due to the degradative effect of lysosomal en-
zymes and also show the interaction of PVP and α-mangostin does not affect α-mangostin’s
cytotoxicity [43].

Another study of nanomicelles nanoformulation was used to improve the α-mangostin
anti-melanoma effect. The α-mangostin/MPEG-PCL has a core structure with PCL (hy-
drophobic) which absorbs α-mangostin and MPEG (hydrophilic) as shells. The molecular
modeling examined the interaction between the αM and MPEG-PCL as carriers which
were observed by comparing the interactions in the aquatic environment and the tumor en-
vironment. The results showed that the interaction between α-mangostin and MPEG-PCL
in an aqueous environment tended to persist with a spherical particle shape, whereas in
the tumor environment, MPEG-PCL did not appear to be able to maintain their spherical
particles so that it was easier for αM to exit the nanoparticle system. In in vitro cytotoxic
testing, α-mangostin nanomicelles possessed a stronger inhibitory effect compared to the α-
mangostin on A375 and B16 melanoma cells and exhibited low cytotoxicity for non-tumor
cell lines (LO2, Vero, and HEK293T cells). The growth inhibitory effect of the α-mangostin
and α-mangostin nanomicelles shows inhibition on melanoma cell colonies. Surprisingly,
no colony formation was observed in A375 and B16 cells treated by α-mangostin nanomi-
celles. However, several colony formations under the same condition were formed in the
α-mangostin group. These results suggest that α-mangostin nanomicelles have a more
intense restraining effect on the colony formation rate in melanoma cells compared to
α-mangostin. Moreover, the improved apoptotic activity of α-mangostin nanomicelles
was determined compared with α-mangostin. It is because the nanomicelles had a better
cellular uptake behavior than the α-mangostin. Furthermore, in vivo anticancer activity
of the α-mangostin nanomicelles was observed using A375 cells injected subcutaneously
into the female BALB/c athymic mice. The α-mangostin nanomicelles possessed a better
effect on tumor growth inhibition (tumor weight and volume = 0.35 g and 400 mm3) com-
pared to the free α-mangostin (0.7 g and 910 mm3). The α-mangostin nanomicelles held
smaller tumors than α-mangostin. In conclusion, a strategy was presented in which the
α-mangostin delivery system in nanomicelles comprehensively increases the anti-tumor
activity of α-mangostin in vivo [80].

In another study, α-mangostin encapsulated with MPEG-PLA nanomicelles was
formulated by S. Zheng et al. The nanomicelles show a spherical, monodisperse, and
narrow particle size structure with an average size of 32 nm. In vitro antitumor activity
of α-mangostin and nanomicelles on U87 cells indicate the inhibition of the proliferation
process and promoted apoptosis. The antitumor effect of nanomicelles was higher when
compared to α-mangostin, with apoptosis rates, at concentrations of 10 and 20 µg/mL, of
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36.6% and 54.9% for nanomicelles and 20.4% and 45.5% for α-mangostin. Furthermore,
the antitumor activity test on female C57/BL6 mice showed nanomicelles increased the
antitumor effect of α-mangostin (65% reduction of tumor volume) and indicated by a
decrease in tumor weight (0.62 g for nanomicelles and 1.14 g for α-mangostin), inhibited
tumor growth, decreased proliferation, suppression of angiogenesis, and an increase in
the apoptosis index that was two times higher than that of α-mangostin. This increase
in activity is due to the particle size of nanomicelles at the nanoscale, being able to pass
through the inter-endothelial junctions of a tumor by passive diffusion, and the use of
PEG to increase the stability of nanoparticles in blood circulation and high retention in the
tumor region [81].

4.7. Liposomal Nanoparticles

Liposomes are membrane vesicles composed of amphiphilic lipids that surround
the water nucleus. Liposomes form spontaneously as lipid molecules are dispersed in a
liquid medium, resulting in nanometer to micrometer size. Liposomes are formed by a
phospholipid sheath composed of one or more lipid bilayers with hydrophilic head groups
and hydrophobic tail groups [120,121]. This vesicle bilayer system enables the liposome to
trap lipophilic and hydrophilic molecules, enabling these vesicles to bundle different drugs.
Via the effect of increased permeability and preservation, encapsulation in the liposome
structure can shield compounds from early inactivation, oxidation in the bloodstream,
improve the half-life, and increase aggregation in the tumor [120,122,123].

R. Benjakul et al. developed liposomes nanoformulation and evaluated their cytotoxic
effect and mechanism inducing cell death in various human carcinomas (human lung
epithelial carcinoma (Calu-3), human colon carcinoma (HT-29), human breast carcinoma
(MCF-7), and human colon carcinoma (Caco-2) cells). Liposome was prepared with phos-
phatidylcholine and cholesterol using the reverse-phase evaporation method. The particle
size, polydispersity index, and zeta potential were 113.98 ± 2.95 nm, 0.13 ± 0.01, and
−25.6 ± 0.07 mV, respectively. The cytotoxic effect trends of α-mangostin liposomes on
human carcinoma cell lines revealed that α-mangostin liposomes were less toxic than
α-mangostin. In all four measured cells, the IC50 was 2–4 times greater than α-mangostin.
It is due to the disparity in the cellular absorption process, where α-mangostin can reach
cells through passive diffusion, while α-mangostin liposomes can enter cells through ad-
sorption, endocytosis, or the fusion mechanisms, then accompanied by an α-mangostin
release from its carriers. Although free α-mangostin showed relatively higher toxicity
than α-mangostin liposomes, the use of liposomes as nanocarriers can still be used as a
promising α-mangostin delivery system for anticancer therapy to avoid direct toxicity of
α-mangostin to normal cells (drug targeting) [82].

In another study from M.P. Nguyen Thi et al., α-mangostin liposomes were formulated
with dioleoylphosphatidylcholine and cholesterol, and a cytotoxicity test was conducted
on human hepatocellular carcinoma (Hep-G2) cells. There was a significant decrease in the
IC50 value of 2.4 times between α-mangostin and α-mangostin liposomes (1.9 and 4.6 µM,
respectively). Furthermore, the cell viability significantly reduced after 48 and 96 h in the
α-mangostin liposome group compared with the α-mangostin. Due to the α-mangostin
liposome group, α-mangostin is released slowly and the cells could absorb it gradually so
that it kills fewer cells than free α-mangostin within 24 h and length of the period (48 and
96 h). It is consistent with the release of in vitro liposome that exhibits a sustained drug
release profile. As for α-mangostin, cell viability varied with the concentration during
the first 24 h. The results of this study indicate that liposomes exhibited a more effective
cytotoxic effect against Hep-G2 cells as compared with free α-mangostin [83].

4.8. Gold Nanoparticles

Gold nanoparticles are excellent carrier molecules for cancer drug delivery. They
can be synthesized in a variety of sizes and surface characteristics, which make them
promising candidates as drug delivery vehicles. Multifunctional gold nanoparticles are
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now widely used in cancer therapy because of their inertness and biocompatibility. The
surface of the gold nanoparticles can be easily modified to provide a controlled release
strategy using internal or external stimuli [124–126]. S. Qiu et al. developed α-mangostin
gold nanoparticles using gold citrate and coated with PEI and sulfated β-cyclodextrin to
complex α-mangostin. This formula produces an average particle size of around 100 nm
with a particle size distribution that is monodisperse. The zeta potential of the nanoparticles
is 30± 3 mV, meaning that they are stable. In vitro cell viability assays of gold α-mangostin
nanoparticles against prostate cancer cell lines (PC-3 and DU145) revealed a 15% and 50%
improvement in activity relative to α-mangostin, respectively. Furthermore, α-mangostin
nanoparticles are known to trigger an apoptotic death pathway that enables tumor cell
damage and elimination through phagocytosis. According to the findings of this research,
this drug delivery mechanism (gold nanoparticles) could increase the cytotoxicity of α-
mangostin against prostate cancer cell lines [84].

5. The Perspective of the Authors

Recently, nanoformulations have been taken into consideration as a drug carrier as
they have improved the pharmacokinetic properties of the drug to increase its efficiency
and reduce side effects. In cancer treatment, targeted treatment only targeted the cancer
cells to be killed and less harm to the normal cells is increasingly desirable. Nanotechnology
has improved cancer therapy in many ways, such as selective recognition of cancer cells,
targeted drug delivery, and overcoming the limitations of α-mangostin.

It is generally known that nanoparticles with smaller sizes and modified surface
properties can reach or penetrate certain areas that normally cannot be passed through.
Surface properties, particularly the surface charge of the particles, can also influence
the distribution of the nanoparticles and possibly lead to higher toxicity in both cancer
and non-cancer cells. Therefore, future research can perform surface functionalization
of α-mangostin nanoformulations with specific antibodies, proteins, nucleic acids, and
small molecules that can actively attach to cancer cells. Currently, CREKA peptide and
thioaptamer are ligands that use α-mangostin nanoformulations. The use of these two
ligands showed to increase the intracellular delivery and the efficacy of α-mangostin.
There are many types of target ligands (such as antibodies and small molecules) that
can develop in nanoformulations of α-mangostin to increase the anticancer effectiveness
of α-mangostin.

Polymeric nanoformulation (PEG-PLA-CREKA), β-cyclodextrin nanoparticles, lipo-
somes, gold nanoparticles, and nanomicelles (MPEG-PCL and MPEG-PLA) have particle
size characteristics >150 nm, which are suitable for entry into cancer cells and increased
cellular uptake of α-mangostin nanoparticles. Cytotoxicity testing in vitro also showed
increased activity in the tested cancer cell lines, except for in β-cyclodextrin nanoparticles,
there was a decrease in cytotoxicity in the CT26WT cell line and liposomes (phosphatidyl-
choline and cholesterol) in Calu-3, HT-29, MCF-7, and Caco-2 cell lines. It is due to
differences in the cellular mechanism for uptake of free α-mangostin, which can pass
into cells by passive transport (diffusion) mechanism, the β-cyclodextrin and liposome
nanoformulations can be taken up into cells by adsorption and endocytosis and related to
the α-mangostin release from the carrier. MPEG-PLA and MPEG-PCL nanomicelles were
proved to improve the bioavailability of α-mangostin in mice which showed significantly
reduced α-mangostin elimination. In addition, the in vivo anticancer activity showed
better inhibition of tumor growth than α-mangosin.

Polymeric, fibroin, solid lipid nanoparticles are very promising to be developed due to
biodegradable components, high-loading capacity (up to 17%), and easy preparation, but
these formulas produce large particle sizes up to 400 nm. The development of nanoformu-
lations for α-mangostin such as enteric coating nanoparticles (chitosan-kappa carrageenan)
and mucoadhesive (NLC-CS) is an alternative for oral delivery of α-mangostin, by modify-
ing the release stimulated by pH and the surface charge interactions of the nanoparticles
that can target the release at specific areas of the gastrointestinal tract. Even though in vitro
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studies have been shown to increase cytotoxicity activity through the activity of inhibit-
ing proliferation and increasing apoptosis against cancer cells, further studies regarding
anticancer activity in vivo are needed.

Although recent reports on α-mangostin nanoformulation to date appear promising,
most of the published data come from in vitro and in vivo (Table 3) trials and not clinical
trials. Therefore, there are concerns regarding the toxicity of nanoparticles, as little is
known about the behavior of nanoparticles in humans. While the unique properties
of nanoparticles brought about by their small size provide enormous opportunity for
medicinal uses, safety concerns have surfaced since their physicochemical properties
might lead to altered pharmacokinetics, with the ability to overcome biological barriers.
Furthermore, the inherent toxicity of several of the compounds, as well as their capacity to
collect and stay in the human body, has hampered their translation. The use of biological
capping materials like such as chitosan further reduce toxicity while their biocompatibility
and biodegradative capacity making them an intuitive choice for a nanocarrier. The stability,
circulation time, access and bioavailability to disease locations, and safety profile of these
nanoparticles are critical for successful clinical translation. Thus, clinical trials are ultimately
needed to understand the in vivo behavior of the α-mangostin nanoformulation, which can
ultimately lead to the design of a suitable formulation with superior therapeutic efficacy.

Table 3. The volume reduction of tumor treatment with different α-mangostin nanoformulations.

Formulation Type of
Tumor Reduction of Tumor Volume Ref.

PLGA Pancreatic More than 60% of tumor reduction
with 20 mg/kg dosage [35]

Cyclodextrin nanoparticle Colon Approximately 56% of tumor
reduction with 10 mg/kg dosage [75]

PEG-PLA nanomicelles
coated with CREKA peptide Pancreatic More than 70% of tumor reduction

with 20 mg/kg dosage [78]

MPEG-PCL nanomicelles Melanoma Almost 50% of tumor growth
reduction with 50 mg/kg dosage [80]

MPEG-PLA nanomicelles Glioma Approximately 65% tumor reduction
with 50 mg/kg dosage [81]

6. Conclusions

In recent years, various nanoformulations of α-mangostin have been developed to im-
prove bioavailability and effectiveness in cancer treatment. α-mangostin exhibits excellent
anticancer properties but its poor solubility, rapid elimination, and poor pharmacokinetic
properties hinder its usability as a potent drug against cancer. Many techniques have been
used to address this issue, one of which is the development of nanosized delivery vehicles.
For α-mangostin formulated as nanoparticles, this development is very welcome because
they are not only able to improve the dispersion of α-mangostin in aqueous solution, but
also provide other advantages not obtained from conventional delivery techniques. These
advantages include changeable particle size as well as modifiable surface characteristics.
For example, the conjugation of α-mangostin nanoparticles with targeting ligands such
as peptides and aptamers can provide specific targeting to cancer cells. With the nanofor-
mulation, the researchers can improve the bioavailability and therapeutic properties of
α-mangostin nanoparticles to achieve high therapeutic efficacy. Moreover, the α-mangostin
nanoformulation appears to have good affinity and selectivity against cancer cells while
imparting negligible toxicity to normal cells.
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