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ABSTRACT This study presents the genome sequence of Synechococcus sp. strain
C9 (= CCMEE 5213 = ATCC 700244), a thermophilic unicellular cyanobacterium that
was originally isolated from a thermal pool at Octopus Spring, Yellowstone National
Park, USA. The genome consists of a 2,958,309-bp chromosome with a GC content
of 52.9% and 2,854 protein-coding sequences.

Synechococcus is a polyphyletic unicellular cyanobacterial group (1, 2). Synechococcus sp.
strain C9 was isolated from a thermal pool at Octopus Spring, Yellowstone National Park,

USA (3), and grows at up to 55°C (4). Phylogenetic studies of the Synechococcus collective
based on the 16S rRNA gene (5–7) indicated that strain C9 belonged to a deeply branching
clade, the C9 lineage, which contains diazotrophic thermophiles such as Synechococcus sp.
strain JA-3-3Ab and JA-2-3B9a(2–13) (8) and a nondiazotrophic mesophile, “Brevicoccus ber-
kleyi” PCC 7336 (6). The C9 lineage is closely related to Gloeobacter violaceus PCC 7421,
which has long been recognized as an ancient group in the phylum Cyanobacteria
(9, 10), but is distantly related to a thermophilic group, the C1 lineage, containing
Synechococcus C1 (3), Synechococcus lividus PCC 6715 (11), and “Thermosynechococcus”
(6). Strain C9 has only 87 to 88% 16S rRNA identity to close relatives in the C9 lineage (7).
Here, we report the genome sequence of strain C9 to contribute to the evolutionary and
taxonomic studies of cyanobacteria.

Strain C9 (= CCMEE 5213 = ATCC 700244) was kindly provided by R. W. Castenholz.
Strain C9 was grown in liquid BG-11 medium (12) at 55°C under fluorescent lamps at
30 mmol photon m22 s21. High-quality genomic DNA was extracted and purified by the
Genomic-tip kit (Qiagen). The MGIEasy FS DNA library preparation set (MGI Tech) was used
for the library preparation, and the genome was sequenced using the DNBSEQ-G400 plat-
form (MGI Tech). A total of 13,986,408 reads with a 200-bp paired-end read length were
sequenced using the DNBSEQ-G400RS high-throughput sequencing kit. Raw reads were
trimmed using Sickle v1.33 (https://github.com/najoshi/sickle) with a minimum quality value
score of 20 and a minimum nucleotide length of 127 nucleotides. The sequence assembly
obtained using Unicycler v0.4.7 was further analyzed using KBase (13). Raw reads were
assessed using FastQ v0.11.9 and reassembled by binning contigs using CONCOCT v1.1
(https://github.com/kbaseapps/kb_concoct). After assembly and quality filter binning using
CheckM v1.0.18 (14), a total genome of 2,958,309 bp generated 4 contigs, with an N50 value
of 2,835,982 bp, a GC content of 52.9%, and completeness of 98.3%. Automatic annotation
was conducted using Prokka v1.14.5 (https://github.com/kbaseapps/ProkkaAnnotation) (15)
and is available publicly in KBase Narrative (https://kbase.us/n/112786/3). Default settings
were employed for all parameters.

The assembled genome of Synechococcus sp. strain C9 consists of 2,854 protein-coding
sequences, 44 tRNAs, and 1 rRNA cluster. The 16S rRNA gene sequence was 100% identical
to the sequence reported previously (5). Average nucleotide identity by BLAST (ANIb) values
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for strain C9 with other members in the C9 lineage were 65 to 67%. The genome of strain
C9 contains the gene sets for molybdenum-iron nitrogenase (nifXNE and nifBSUHDKVZT).
The diazotrophic members in the C9 lineage have nifT in the nif operon (8), but BLAST
searches using their nifT genes as queries found no homologous gene in strain C9; the func-
tions of the NifT protein remain unknown (16).

Data availability. The whole-genome shotgun project has been deposited in DDBJ/
ENA/GenBank under the accession number JALAAD000000000. The version described in
this paper is the first version, JALAAD010000000. The raw sequence reads are available in
the SRA database under the accession number SRR18210225. All project data are available
under the BioProject accession number PRJNA811380.
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