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Secreted proteins play an important part in the pathogenicity of Mycobacterium tuberculosis, and

are the primary source of vaccine and diagnostic candidates. A majority of these proteins are

exported via the signal peptidase I-dependent pathway, and have a signal peptide that is cleaved

off during the secretion process. Sequence similarities within signal peptides have spurred the

development of several algorithms for predicting their presence as well as the respective cleavage

sites. For proteins exported via this pathway, algorithms exist for eukaryotes, and for Gram-

negative and Gram-positive bacteria. However, the unique structure of the mycobacterial

membrane raises the question of whether the existing algorithms are suitable for predicting signal

peptides within mycobacterial proteins. In this work, we have evaluated the performance of nine

signal peptide prediction algorithms on a positive validation set, consisting of 57 proteins with a

verified signal peptide and cleavage site, and a negative set, consisting of 61 proteins that have an

N-terminal sequence that confirms the annotated translational start site. We found the hidden

Markov model of SignalP v3.0 to be the best-performing algorithm for predicting the presence of a

signal peptide in mycobacterial proteins. It predicted no false positives or false negatives, and

predicted a correct cleavage site for 45 of the 57 proteins in the positive set. Based on these

results, we used the hidden Markov model of SignalP v3.0 to analyse the 10 available annotated

proteomes of mycobacterial species, including annotations of M. tuberculosis H37Rv from the

Wellcome Trust Sanger Institute and the J. Craig Venter Institute (JCVI). When excluding proteins

with transmembrane regions among the proteins predicted to harbour a signal peptide, we found

between 7.8 and 10.5 % of the proteins in the proteomes to be putative secreted proteins.

Interestingly, we observed a consistent difference in the percentage of predicted proteins

between the Sanger Institute and JCVI. We have determined the most valuable algorithm for

predicting signal peptidase I-processed proteins of M. tuberculosis, and used this algorithm to

estimate the number of mycobacterial proteins with the potential to be exported via this pathway.

INTRODUCTION

The pathogen Mycobacterium tuberculosis is believed to be
responsible for approximately 2 million deaths every year,
the majority of which occur in areas with a large
population density and poor health service infrastructure
(WHO, 2007). The bacteria are typically transmitted via

aerosol droplets generated from patients with an active
form of the disease. Following exposure and inhalation of
the bacilli, they cross the lung epithelium, and are
subsequently taken up via specific receptor recognition
by alveolar macrophages and by other immune cells in the
lung interstitium. In this process, both membrane and
secreted proteins play a central role in the host–pathogen
interaction. Secreted proteins are used for nutrient uptake,
adherence to host proteins and modulation of the host
immune response, and are ultimately instrumental in
allowing M. tuberculosis to target, and survive and

Abbreviation: JCVI, J. Craig Venter Institute.

A supplementary table showing positive and negative validation sets is
available with the online version of this paper.
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proliferate inside immune cells such as macrophages and
dendritic cells. Exposure to many of these proteins is
evident from the immune response towards recognized
secreted mycobacterial proteins (Målen et al., 2008) and is
considered to confer protection against subsequent infec-
tions with mycobacterial strains (Wiker et al., 1986). Early
observations demonstrated the importance of secreted
proteins for the efficacy of the BCG vaccine (Heimbeck,
1948), and their significance is also reflected in the current
vaccine phase II and III trial candidates, which consist of
modified versions of a live BCG organism, or fusion
proteins of extracellular proteins (Andersen, 2007).
However, our knowledge of the proteins that make up
the mycobacterial secretome does not quite match the
importance that we attach to it, and is primarily based on
the experimental identification of proteins produced and
exported in axenic cultures in the laboratory.

The Mycobacteriaceae have several methods for releasing
their proteins to the exterior, and lately there has been
much focus on what has been suggested to be a type VII
secretion system (for a review, see Abdallah et al., 2007).
However, the bulk of exported proteins are dependent on
an N-terminal secretion signal and the activity of signal
peptidase I. The signal peptide is normally made up of
~ 30 aa, and is recognized by SecA, which transports the
signal peptide-containing protein to a membrane-spanning
complex that includes the proteins SecE and SecY. While
the signal peptide is inserted into the membrane, the
remainder of the protein is translocated across the
membrane via the protein complex in an unfolded
configuration. As the signal peptide is cleaved off, the
mature protein can be released to the exterior of the cell.
The N-terminal signal sequence starts with a positively
charged region, and is followed by a hydrophobic region,
and then a C-terminal region, which includes the cleavage
site. The 23 and 21 positions relative to the mature protein
appear to be of significance for the exact positioning of the
cleavage event. It is the recognition of these shared features
that has paved the way for development of algorithms to
predict the presence of signal sequences and cleavage sites in
proteins based on their N-terminal amino acid sequences.
Many computational approaches exist to gain insights into
the properties of proteins based on their sequences (Chou,
2002). The most specialized methods with regard to signal
peptide prediction both predict the presence of a signal
peptide sequence and suggest a probable cleavage site (von
Heijne, 1986; Pugsley, 1993). The programs are based on
either weight matrices or machine learning methods, and
are trained on data acquired from Swiss-Prot and other
resources that contain information about experimentally
verified N-terminal sequences of mature secreted proteins.
They are divided into two or more algorithms, each
specialized to recognize signal peptides of certain groups
of organisms, e.g. eukaryotes, Gram-negative bacteria and
Gram-positive bacteria.

Until recently, relatively few secreted mycobacterial
proteins with a known start of the mature sequence after

cleavage by signal peptidase I were known. We have
extended this set of proteins considerably (Målen et al.,
2007; de Souza et al., 2008), and improved the dataset
further using high-accuracy MS combined with a database
that allows identification of N-terminal mature peptides
starting between amino acids 15 and 45 of the annotated
translational start site. Combined with 14 previously
published proteins, we obtained a positive validation set
of 57 secreted proteins. In addition, we gathered informa-
tion about proteins that are not transported by the general
secretory pathway. This negative validation set thus
consisted of 23 new and 38 previously published proteins
with observed N-terminal sequences coinciding with the
predicted translational start site.

The accuracy of different signal peptide prediction
algorithms has been compared on broad groups of
micro-organisms, either using test sets extracted from
protein databases, or by cross-validation methods that are
commonly used during development of the algorithms
(Menne et al., 2000; Bendtsen et al., 2004; Käll et al., 2004;
Zhang & Henzel, 2004; Shen & Chou, 2007; Chou & Shen,
2008).

The unique membrane of the Mycobacteriaceae made us
question how these algorithms would perform on this
group of organisms. Only a limited number of mycobac-
terial proteins have been included in the training sets for
these algorithms, and it is important to note that the
algorithms were developed with the broader purpose of
identifying signal peptides of Gram-positive micro-organ-
isms, and not to identify mycobacterial signal peptides as
such. Against this background, and based on our extended
experimental dataset of secreted mycobacterial proteins, we
have investigated nine signal peptide prediction algorithms
for their ability to predict the presence of a signal peptide
and the respective cleavage sites. We found the hidden
Markov model of SignalP v3.0 to perform best on our
validation sets, and we used this algorithm to predict the
repertoire of secreted proteins in mycobacterial species
with available proteome annotations.

METHODS

Construction of validation sets. A positive validation set was

established, containing 57 proteins with a cleavage site following a

putative signal peptide, based on previously published sequences

(Harboe et al., 1986; Nagai et al., 1991; Sonnenberg & Belisle, 1997;

Olsen et al., 2000; Saleh & Belisle, 2000; Målen et al., 2007; de Souza et

al., 2008) as well as novel data. In order to identify the signal

peptidase cleavage sites of secreted proteins, we constructed a

database for all annotated proteins of M. tuberculosis H37Rv. All N-

terminal peptides created by cleavages between position 15 to 45 were

added at the end of each protein and separated with the letter J, which

does not code for an amino acid. The Mascot engine was

programmed to treat the J as a tryptic site. The length of each added

peptide was limited at the second tryptic site, thus allowing for one

miscleavage. Using this database, we reanalysed our tandem mass

spectrometric experimental data of M. tuberculosis H37Rv culture

filtrates obtained on an LTQ-Orbitrap mass spectrometer (de Souza
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et al., 2008). This culture filtrate is highly enriched for secreted

proteins. We identified peptides that confirmed proteolytic cleavages

for 40 proteins. For six of these proteins, none of the signal peptide

prediction algorithms included in this study reported a signal peptide.

We then analysed our total repertoire of peptides identified in M.

tuberculosis to look for the occurrence of peptides at the N-terminal

side of the identified proteolytic cleavage. In five of these six proteins,

such peptides were identified, and based on a total evaluation we

chose not to include any of these six proteins in our positive

validation set. We also confirmed that no proteomics data identified

peptides contained in the set of signal peptides predicted in the

positive validation set.

We also created a negative set, containing proteins starting at the

annotated translational start site (Muno et al., 1981; De Bruyn et al.,

1987; Nagai et al., 1991; Lee et al., 1992; Harth et al., 1994; Sørensen et

al., 1995; Menozzi et al., 1996; Rosenkrands et al., 2000; Målen et al.,

2007; de Souza et al., 2008). The two sets are shown in Supplementary

Table S1. The N-terminal sequences were taken from a combination

of old and recently published experimentally verified N-terminal

sequences, and we applied the following criteria for inclusion: N-

terminal sequences determined by Edman degradation were included,

and for sequences acquired by modern proteomic methods, only

sequence data obtained with tandem MS were included. Of the latter,

most sequences came from the study performed by de Souza and co-

workers on culture filtrate proteins of M. tuberculosis H37Rv, which

permitted us to extend the positive set from 37 to 53 proteins, and the

negative set from 39 to 61 proteins (de Souza et al., 2008).

Protein sequence data. The M. tuberculosis H37Rv laboratory

strain protein sequences making up the proteome in this study were

retrieved from the genome sequence published in 1998 (Cole et al.,

1998), with the updated annotation from 2002 (Camus et al., 2002),

both from the Wellcome Trust Sanger Institute. In addition, we used

the J. Craig Venter Institute (JCVI) annotation, available at the JCVI

Comprehensive Microbial Resource (http://cmr.jcvi.org/cgi-bin/

CMR/GenomePage.cgi?org=ntmt02). From the Sanger Institute we

also used the proteome annotations of Mycobacterium bovis subsp.

bovis AF2122/97, M. bovis BCG Pasteur 1173P2, Mycobacterium.

leprae and Mycobacterium marinum. JCVI sequencing and annotation

was used for the strains Mycobacterium avium 104 (http://

cmr.jcvi.org/cgi-bin/CMR/GenomePage.cgi?org=gma), Mycobacter-

ium smegmatis MC2 (http://cmr.jcvi.org/cgi-bin/CMR/GenomePage.

cgi?org=gms) and M. tuberculosis CDC1551. Sequences from M.

avium subsp. paratuberculosis were taken from data published by Li et

al. (2005), and sequences of M. tuberculosis H37Ra were made

available by the Beijing Genomic Institute (http://gib.genes.nig.ac.jp/

single/main.php?spid=Mtub_H37RA).

Prediction algorithms. The algorithms used in our analysis included

SIGCLEAVE, PrediSi, SPEPLip, Signal-CF, Signal-3L, and the hidden

Markov model and neural network method from versions 2 and 3 of

SignalP. All are publicly accessible via the respective web interfaces,

with the exception of Signal-CF, Signal-3L and SPEPLip, and allow

the uploading of FASTA files, making them appropriate for large

dataset analyses. It has been found that mycobacterial signal peptides

are most closely related to signal peptides of Gram-positive organisms

(Wiker et al., 2000), so this option was chosen for all programs,

except for SIGCLEAVE, which only features choices for eukaryote and

prokaryote versions.

SIGCLEAVE was previously part of the GCG Sequence Analysis

package, but has been made freely available via EMBOSS since 1999.

We used the web form hosted by the Pasteur Institute (http://

bioweb2.pasteur.fr/) for our analyses. The program is based on the

weight matrix method developed by von Heijne more than 20 years

ago (von Heijne, 1986, 1987). The program was run with default

settings using a minimum scoring weight value of 3.5, and the
cleavage site with the highest score was assumed to be correct.

The PrediSi algorithm is available from the Institute for
Microbiology, Technical University of Braunschweig, Germany
(http://www.predisi.de/). It is based on a position weight matrix,
where amino acid bias has been taken into account. Its training set
was extracted from Swiss-Prot release 42.9.

The newly developed Signal-CF of Chou and Shen is available as a
web server (http://chou.med.harvard.edu/bioinf/Signal-CF/ or http://
www.csbio.sjtu.edu.cn/bioinf/Signal-CF) (Chou & Shen, 2007). Their
dataset was extracted with a set of stringent conditions from release
50.7 of Swiss-Prot, to achieve what they describe as ‘high-quality
benchmark datasets for eukaryotic, Gram-positive, and Gram-
negative proteins’. It first determines whether the input sequence
contains a signal peptide, and if so, employs a flexible scaled window
in conjunction with a voting system to predict the cleavage site, with
the intention of removing prediction bias. The Signal-3L algorithm
(http://chou.med.harvard.edu/bioinf/Signal-3L/) represents a further
development of Signal-CF, adding a third layer to increase prediction
accuracy (Shen & Chou, 2007).

In 1997, Nielsen and co-workers published SignalP v1.0, which
utilizes a machine learning approach based on neural networks for
prediction of signal peptides and their cleavage sites (Nielsen et al.,
1997b). SignalP v2.0 was made available in 1999, and introduced an
additional prediction algorithm, the hidden Markov model (Nielsen
& Krogh, 1998). This version is still accessible, and can be found at
the Centre for Biological Sequence Analysis, Technical University of
Denmark (http://www.cbs.dtu.dk/services/SignalP-2.0/). For version
3 of SignalP (http://www.cbs.dtu.dk/services/SignalP/), the authors
retrained the algorithms on a cleaned-up dataset, where previously
inaccurately defined cleavage sites were removed. Although training
on the improved dataset was the only change to the hidden Markov
model, the neural network has seen an upgrade in its features and the
introduction of a new score, D, for classification of signal peptides
(Bendtsen et al., 2004). We have used versions 2 and 3 in our studies.
For all algorithms from SignalP, the submitted sequences were
truncated at 70 amino acids from the N-terminal.

SPEPlip, created by Fariselli et al. (2003), uses the same neural
network architecture as found in SignalP v2.0, but employs an
updated training set. It searches for a putative signal peptide and
suggests a cleavage site, and additionally searches for a PS00013
PROSITE pattern to determine whether the analysed sequence is a
lipoprotein.

Prediction of transmembrane helices was performed using the
TMHMM Server version 2.0, also found at the Centre for
Biological Sequence Analysis, Technical University of Denmark
(http://www.cbs.dtu.dk/services/TMHMM/) (Krogh et al., 2001).
Proteins predicted to have no transmembrane region, and proteins
predicted to harbour a single transmembrane region within the first
60 amino acids, likely to represent the hydrophobic region of a signal
peptide, were regarded as putative secreted proteins.

RESULTS

Performance of algorithms on validation sets

We used the positive and negative validation sets to
determine how the algorithms performed in terms of
finding the presence of a signal peptide within the protein
sequences, and predicting the observed cleavage sites for
proteins within the positive validation set. The results are
presented in Table 1.

Mycobacterial signal peptide prediction
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SignalP versions 2 and 3. The hidden Markov model of
SignalP v3.0 showed the best overall performance at
predicting signal peptides within mycobacterial proteins.
All proteins within the positive set were predicted to be
secreted, and all proteins in the negative set acquired a
negative prediction. With a cleavage site prediction
concordant with the observed site for 45 of the 57
proteins in the positive validation set, the hidden Markov
model of SignalP v3.0 was also the best algorithm for
predicting cleavage sites in our analyses, and this prediction
was significantly improved compared to version 2 of the
algorithm. Despite being outperformed by the latest
version, SignalP v2.0 of the hidden Markov model was
the second-best algorithm, with 39 of the observed cleavage
sites being predicted. Version 3 of SignalP predicted the
observed cleavage site of six proteins that had a different
prediction in version 2 of the SignalP hidden Markov
model, but there was also one example of a cleavage site
correctly predicted by version 2 but incorrectly by version
3. Fig. 1 illustrates how proteins within the positive and
negative validation sets were divided into two distinct
groups based on their signal peptide probability scores.
Version 3 had been trained with an improved training set
leading to a lowered mean score in the negative set.
However, we also saw examples of proteins in the positive
set that had acquired a lower score in the most recent
version. One protein in particular, Rv0999, acquired a new
score of 0.551, bringing it very close to the cut-off of 0.5,
from 0.797 in version 2 of the algorithm. We also saw an
example of the opposite: the protein Rv0519c was given the
score 0.503 in version 2, a score raised to 0.606 in version 3.

In contrast to the hidden Markov model of SignalP, the
neural network algorithm actually saw a decline in
performance from version 2 to version 3, where the most
significant change was the four false negatives predicted by
version 3, whereas there were none in the former version.
There were nine discordant cleavage site predictions
between SignalP v2.0 and v3.0. Of these, version 2
predicted five sites correctly, while version 3 predicted
four cleavage sites concordant with the observed sites.

Alltogether, version 3 predicted 29 of the 57 observed
cleavage sites, while version 2 faired marginally better with
32 cleavage sites. Compared to the hidden Markov model,
the distribution of scores outputted by the neural network
program divided less markedly the negative and positive
sets into two groups (Fig. 1). Interestingly, the groups were
separated better in neural network version 2 than in
version 3. The figure illustrates well how the stricter criteria
used by the newest version have led to several instances in
which the signal peptide probability score is reduced.
Intriguingly, this seems to have had a greater impact on the
scores of proteins within the positive set, leading to the
inclusion of four false negatives with scores below the cut-
off of 0.45. SignalP provides a separate score for prediction
of cleavage sites, which in version 3 is represented by the Y-
max score for the neural network and C-max for the
hidden Markov model. The score is given regardless of
whether the final prediction is negative or positive, and in
our analysis we decided to include this score from proteins
in the positive validation set that acquired a negative signal
peptide prediction.

The neural network-specific Y-max score is derived from a
combination of two separate scores: the C-score, reflecting
the probability of a position being at the cleavage site; and
the S-score, given to positions towards the end of the signal
peptide. Furthermore, the signal peptide probability score
for the neural network model, D, is an average of the Y-
max and S-mean scores. In contrast, the cleavage site score,
C-max, from the hidden Markov model appears to be
independent of the signal peptide probability score, and
varies greatly within the positive validation set.
Incorporating signal peptide information in the cleavage
site score, Y-max, was done to ensure that the cleavage site
corresponded to the preceding signal peptide. In our set,
we observed four instances where this information clearly
contributed to improved predictions, by ignoring an
alternative cleavage site with a higher cleavage site score,
but whose position did not correspond to the trailing end
of the signal peptide. However, we also observed five
instances where a higher or identical C-score corresponded

Table 1. Signal peptide prediction by various algorithms on a positive and negative validation set

Algorithm Signal peptide prediction Cleavage site prediction; iden-

tified sites in positive set (n557)

Positive predictions in

positive set (n557)

Negative predictions in

negative set (n561)

SignalP v3.0 hidden Markov model 57 (100.0 %) 61 (100.0 %) 45 (78.9 %)

SignalP v2.0 hidden Markov model 57 (100.0 %) 61 (100.0 %) 39 (68.4 %)

Signal-3L 57 (100.0 %) 52 (85.2 %) 39 (68.4 %)

Signal-CF 57 (100.0 %) 52 (85.2 %) 36 (63.2 %)

PrediSi 54 (94.7 %) 59 (96.7 %) 32 (56.1 %)

SignalP v2.0 neural network 57 (100.0 %) 61 (100.0 %) 32 (56.1 %)

SignalP v3.0 neural network 53 (93.0 %) 61 (100.0 %) 29 (50.9 %)

SPEPLip 56 (98.2 %) 61 (100.0 %) 21 (36.8 %)

SIGCLEAVE 55 (96.5 %) 14 (33.0 %) 21 (36.8 %)

N. A. Leversen and others

2378 Microbiology 155



Fig. 1. Scatter diagrams of signal peptide probability scores: the negative set is
displayed on the left-hand half of the x axis, and the positive set on the right-hand half.
The values from each set are sorted in increasing order by their acquired probability
scores. Ideally, the scores should appear in separate ranges without overlap. The
asterisk shows that the SPEPLip program does not output scores for proteins with a
negative signal peptide prediction, and these proteins have therefore been given a
minimum score (0), in order to plot them on the diagram.
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to the experimentally observed cleavage site, but when the
signal peptide score was incorporated into Y-max, the
resulting cleavage site prediction was different.

It was unexpected to see the hidden Markov model
perform better than the neural network algorithm on our
validation sets, as the opposite trend has been described
elsewhere (Menne et al., 2000; Bendtsen et al., 2004; Käll et
al., 2004; Zhang & Henzel, 2004). The difference could be
related to the length of the signal peptides, which were
slightly longer than a typical Gram-positive signal peptide
(von Heijne & Abrahmsen, 1989). The hidden Markov
model predicted more correct cleavage sites for signal
peptides that were shorter, and longer, than the average
length. However, the neural network algorithm performed
particularly poorly on proteins with long signal peptides.
Comparison of two independent annotations of the M.
tuberculosis H37Rv genome showed that there are consid-
erable problems related to correct protein start site
predictions (de Souza et al., 2008). This has an impact
on signal peptide length, which in turn favours an
algorithm that is less prone to errors based on variation
in the length of the signal peptide.

Signal-3L and Signal-CF. In terms of cleavage site
prediction, Signal-3L and Signal-CF were ‘runners up’
behind versions 2 and 3 of the hidden Markov model of
SignalP, with 39 and 36 correct predictions of the
observed sites, respectively. Although neither algorithm
predicted false negatives, both predicted the same nine
false positives from the negative validation set. Overall, we
saw an improved performance for Signal-3L over Signal-
CF. Neither of the two algorithms outputs a prediction
score.

PrediSi. With 32 predicted cleavage sites concordant with
the observed number, PrediSi performed marginally
poorer than Signal-CF, but in turn only predicted two
false positives. However, it did also predict three false
negatives from the positive set. To a higher degree than
the neural network of SignalP, PrediSi did polarize the
scores from the two validation sets (see Fig. 1). A majority
of the negative, and approximately half the positive, were
awarded a minimum score (0) and a maximum score (1),
respectively.

SPEPLip. SPEPLip performed very well in terms of
prediction of the presence of a signal peptide, with only
one false negative and no false positives. However, the
cleavage site prediction algorithm performed relatively
poorly, with only 21 of the cleavage sites correctly
predicted. The program does not output scores for
proteins with a negative signal peptide prediction, nor
does the documentation reveal information about the cut-
off that has been used to discriminate between the two
groups. However, the distribution of the positive scores
indicates that the scores are not clearly separated, unlike
the scores for the hidden Markov model of SignalP (Fig. 1).

SIGCLEAVE. The SIGCLEAVE algorithm performed
poorly on the mycobacterial validation sets. It predicted
only 21 of the 57 observed cleavage sites, but perhaps the
most noteworthy observation was the 47 false-positive
predictions in the negative set. Fig. 1 outlines the
distribution of scores in the negative and positive
validation sets, and a significant overlap of scores can be
observed. By increasing the cut-off to 7.5, the algorithm
would fare better, with only seven false positives. On the
other hand, this would also result in 11 false-negative
predictions.

Prediction of secreted proteins in mycobacterial
proteomes

Taken together, our results showed that the Gram-positive
bacteria-specific hidden Markov model algorithm of
SignalP v3.0 is currently the best program for predicting
the presence of a signal peptide in mycobacterial proteins.

We therefore used this algorithm for a proteome-wide
analysis of 11 available proteome annotations, including
the two annotations of M. tuberculosis H37Rv. We further
used TMHMM v2.0 to identify proteins containing
transmembrane regions, which would suggest that they
are associated with the membrane rather than being
secreted. The results are presented in Table 2. Combining
the two algorithms, between 7.78 and 10.47 % of the
proteins were predicted to be secreted. The highest
percentage of secreted proteins was seen in M. leprae,
although this organism could be considered a special case,
due to the high number of pseudogenes. Interestingly, for
this proteome, only 0.37 % of the proteins were both
predicted to be secreted and to contain transmembrane
regions downstream of the signal peptide.

When analysing signal peptide prediction in mycobacterial
proteomes, we observed a consistent difference in the
percentage of predicted proteins in the annotations
between the Sanger Centre and the JCVI. This is best
exemplified by the annotations for the M. tuberculosis
H37Rv strain, where 9.62 % were predicted as secreted in
the Sanger annotation, while only 7.89 % were predicted in
the JCVI annotation. To better understand the reason for
this discrepancy, we divided the proteins with positive
predictions from the two annotations into three groups:
(1) proteins with identical sequences in both annotations;
(2) proteins that are unique to the specific annotation; and
(3) proteins that share the same stop codon, but that have
been annotated with a different start site. There were 227
proteins predicted to harbour an N-terminal signal
peptide, and that were shared between the annotations.
The Sanger annotation had 90 unique proteins that
obtained a positive prediction, while the JCVI annotation
had 100. The most marked difference was observed for
corresponding proteins with different start codons between
the annotations: from the Sanger annotation, a total of 204
from this group of proteins were predicted to have a signal
peptide, while only 133 proteins from the JCVI annotation

N. A. Leversen and others

2380 Microbiology 155



received a positive prediction. Although this observation in
itself might not be indicative of the quality of the two
annotations, the N-terminal region is a conserved feature
of a significant number of proteins. Thus, the finding of a
higher number of positively predicted proteins within
annotations from the Sanger Institute for the M. tuber-
culosis H37Rv strain could indicate that this annotation has
a higher number of correct annotations for translational
start sites. This is supported by the recent findings of de
Souza and co-workers, who used high-quality MS to verify
experimentally several peptides unique to the Sanger
annotation, while only finding one peptide unique to the
JCVI annotation (de Souza et al., 2008). This is a further
reminder that the output of the signal peptide prediction
algorithms depends not only on the program itself but also
on the quality of the input protein sequences.

DISCUSSION

We have shown that for the proteins in our validation set,
the existing signal peptide-prediction algorithms vary
greatly in their ability to predict N-terminal signal peptides
and the respective cleavage sites for mycobacterial proteins.
Our observations lead us to conclude that the hidden
Markov model of SignalP v3.0 is the best predictor of
mycobacterial signal peptides. This algorithm was tested
against other available programs that we thought to be
relevant and that can be freely accessed via their web
interfaces. We are aware of at least one algorithm available
under a commercial licence, SPScan, that we have not had
the opportunity to test using our validation sets. However,
a comparison of signal peptide-prediction algorithms
published by Menne et al. (2000) showed an overall poorer
performance of this program than that of the SignalP v2.0
neural network method and the hidden Markov model,
when tested on a large trans-species validation set. It did
provide the lowest number of false positives in the negative
set, but this result was marred by its producing the greatest
number of false negatives in the positive set. They also

tested SignalP v1.1 and SIGCLEAVE in their analysis. The
validation sets used in their article grouped together
sequences from eukaryotes and prokaryotes, and the
cleavage site algorithms performed markedly better than
in our study of mycobacterial proteins. Within their
positive validation set, correct cleavage sites were observed
for 82.6 % of the proteins using the SignalP v2.0 hidden
Markov model, and 84.6 % of the proteins using the
SignalP v2.0 neural network approach, which may be
compared to the values observed in our positive validation
set, which were 68.4 and 56.1 %, respectively.

The creators of the SignalP algorithm have observed that
algorithms trained on sequences from species within a
group of organisms, e.g. eukaryotes, Gram-negatives or
Gram-positives, perform better than algorithms trained on
a single organism (Nielsen et al., 1997a). The family
Mycobacteriaceae might be in an exceptional position,
belonging to the group of Gram-positive species, but with a
complex outer membrane that has yet to be fully elucidated
(Zuber et al., 2008). The question therefore is whether the
signal peptides of mycobacteria have features that distin-
guish them from their Gram-positive counterparts, and if
so, whether there is a case for optimizing signal peptide
algorithms by training them on more appropriate protein
sets. Against this, we found the SignalP v3.0 hidden
Markov model to perform reasonably well, and having
been trained on the same protein sequences, it is clearly the
algorithm itself, and not the training set, that differentiates
the hidden Markov model from the neural network
method of SignalP.

The SignalP v3.0 hidden Markov model missed the
observed cleavage sites in the positive validation set in 12
cases. In four of these, the observed cleavage site was
located upstream of the predicted cleavage site. In these
cases the predicted cleavage sites are likely to be incorrect.
In the other seven cases, the observed cleavage sites were
located downstream of the predicted cleavage site. In such
cases it is more difficult to rule out the predicted cleavage
site, as the observed cleavages could be the result of

Table 2. Signal peptide prediction by SignalP v3.0 hidden Markov model for various mycobacterial proteome annotations

Organisms Total number of

proteins

Predicted signal

peptides (percentage

of total)

Predicted signal peptides,

no transmembrane region

(percentage of total)

M. tuberculosis H37Rv (Sanger) 3991 519 (13.0 %) 384 (9.6 %)

M. tuberculosis H37Rv (JCVI) 4219 464 (11.0 %) 333 (7.9 %)

M. tuberculosis H37Ra (Beijing) 3991 526 (13.2 %) 386 (9.7 %)

M. tuberculosis CDC1551 (JCVI) 4189 497 (11.9 %) 363 (8.7 %)

M. bovis subsp. bovis AF2122/97 (Sanger) 3920 515 (13.1 %) 379 (9.7 %)

M. bovis BCG Pasteur 1173P2 (Sanger) 3891 509 (13.1 %) 367 (9.4 %)

M. avium 104 (JCVI) 5245 581 (11.1 %) 413 (7.9 %)

M. avium subsp. paratuberculosis (University of Minnesota) 4350 532 (12.2 %) 378 (8.7 %)

M. marinum (Sanger) 5462 729 (13.3 %) 542 (9.9 %)

M. leprae (Sanger) 1605 174 (10.8 %) 168 (10.5 %)

M. smegmatis mc2 (JCVI) 6880 807 (11.7 %) 535 (7.8 %)

Mycobacterial signal peptide prediction

http://mic.sgmjournals.org 2381



secondary processing by another peptidase. In many cases
the SignalP algorithm also predicted alternative cleavage
sites, in addition to the suggested cleavage site. We found
that of the 12 proteins with an erroneous cleavage site
prediction by version 3 of the hidden Markov model, seven
actually had registered a score for the observed cleavage
site. We also saw seven examples of the observed cleavage
site in close proximity (¡3 aa in either direction) to the
predicted cleavage site. In fact, we have made experimental
observations to show the occurrence of two cleavage sites
in the same protein, Rv2253 (de Souza et al., 2008). These
sites are only one position apart, and both are predicted by
the hidden Markov model of SignalP v3.0. It is possible
that certain sequences in close proximity to the cleavage
site allow for a more liberal positioning of the signal
peptide, which in turn is a source of versions of the mature
protein that differ in length by a small number of amino
acids. It is not known whether the small variation in
protein length has any biological significance.

We chose to include all available secreted proteins with
observed N-terminal mature sequences in the positive
validation. This included nine proteins that also were
predicted to be lipoproteins with a correctly positioned
PS13 lipoprotein consensus motif. However, LipoP, the
lipoprotein prediction algorithm for Gram-negative bac-
teria from the Centre for Biological Sequence Analysis,
Technical University of Denmark (Juncker et al., 2003),
defined six of these proteins as secreted via the general
secretory pathway. Furthermore, the cleavage site of one of
the three proteins predicted to be a lipoprotein was in fact
correctly predicted by all the tested signal peptide
prediction algorithms, with the exception of the SignalP
v2.0 neural network method and SIGCLEAVE.

An advantage of the SignalP algorithm is that the complete
output is available regardless of the prediction outcome,
and it allows for a more rigorous analysis of proteins with
ambiguous cleavage sites. We would certainly encourage
developers of signal peptide prediction algorithms to be
forthcoming with any quantitative information that is
being used to make the final prediction, as it allows for in-
depth analysis using validation sets, and might even lead to
a better understanding of the cleavage and secretion event
itself.

Compared to other studies that have validated signal
peptide-prediction algorithms, our positive validation set
may seem small. These studies have included proteins from
a range of different genera. We have studied a relatively
large number of secreted proteins with verified cleavage
sites from the same organism, and we believe that the
positive validation set is representative not only for
secreted proteins of M. tuberculosis but also for mycobac-
teria in general.

The hidden Markov model of SignalP v3.0 showed the best
overall performance for the mycobacterial protein dataset
constructed in this paper. However, for the signal peptides
in other datasets and of other organisms, a complementary

combination with other powerful predictors such as Signal-
3L and Signal-CF is needed, as indicated by Table 3 of Shen
& Chou (2007). One may use the strategy of running
several signal peptide-prediction algorithms to characterize
a protein, and if many algorithms predict a signal peptide,
one will be more confident about the result.

The secretory pathway represents quantitatively the most
important protein secretion system, and it is essential to
consider it when evaluating proteins that are exposed to,
and interact with, proteins of the host. Furthermore, as
these proteins are cleaved as part of the secretion process,
knowing the exact sequences of the mature proteins is
important for construction of recombinant proteins for
evaluation of immunogenic properties, or when incorp-
orating them into vaccines based on recombinant proteins.
Although the hidden Markov model of SignalP v3.0 also
performed best for cleavage site prediction, a cleavage site
accuracy of 78.9 % shows that there is potential for
improvement. Perhaps the unique structure of the
mycobacterial cell wall is reflected in the signal peptide
sequence of secreted mycobacterial proteins, and as such
will require a more specialized prediction algorithm. On
the other hand, further development of an algorithm for
Gram-positive bacteria might also give better prediction of
mycobacterial proteins.
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