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Ischemic heart disease is the leading cause of deathworldwide.Oxygen-sensing proteins are critical components of the physiological
response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be
cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and
use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these
oxygen-sensing proteins.While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing
scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the
field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role
in cardiac function and disease.We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable
in drug design and therapeutic targets for heart disease.

1. Introduction

Ischemic heart disease is the leading cause of death in the
world, killing an estimated 7.4 million people annually [1].
Currently, in the US alone, more than 5 million people
live with heart failure, primarily due to ischemia [2, 3].
Ischemia starves the heart of vital oxygen, leading to the death
of cardiomyocytes. Because cardiomyocytes are generally
thought of as postmitotic [4, 5], any cell death leads to a
permanent reduction of heart function. Whether gradual,
as seen in atherosclerotic plaque buildup, or acute, as in
myocardial infarction, this oxygen-dependent damage to the
heart is responsible for the vast majority of cardiac-related
mortality. Therefore, the role of oxygen in cardiac function
is essential in understanding how to ameliorate the effects of
heart disease.

Oxygen is to be a centralmediator ofmyriad protein func-
tions and biochemical reactions. One of oxygen’s primary
roles is producing adenosine triphosphate (ATP) through
oxidative phosphorylation during aerobic cellular respira-
tion [6], during which nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FADH

2
) donate

their electrons to oxygen, producing potential energy. This
energy is then utilized by ATP synthase to generate ATP from
ADP via phosphorylation. While this process is amazingly
efficient in its ability to generate energy for the cell, converting
up to 36 ATP molecules per one molecule of glucose [7],
it also has the potential to generate nitric oxide (NO) and
reactive oxygen species (ROS) like superoxide anion (O

2

−)
and hydrogen peroxide (H

2
O
2
) [8]. These products have the

potential to influence many disease states through signaling
pathways and the damaging effects of free radicals on cell
health. Thus, it is important to note that while oxygen
plays a very beneficial role in cell metabolism and global
organismal health, its byproducts can alsomediate detrimen-
tal consequences in heart health including cardiomyocyte
hypertrophy, excitation-contraction coupling, arrhythmia,
and cell viability [9].

Though still under active study, the role of oxygen as a
substrate for enzymatic function has been widely accepted as
yet another regulator of many cellular processes. Currently,
there are over 200 unique enzymes that use oxygen as a
substrate [10] (Tables 1 and 2): these enzymes are typi-
cally broken down into two major categories, oxidases and
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Table 1: List of enzymes, functions, and related chemicals.

Name Function

Ascorbate Also known as vitamin C, typically functions as an enhancer of 2-OG dioxygenases, though its role in vivo is
complex

Cobalt chloride A chemical inducer of hypoxia-like responses in vivo
Desferroxamine An iron chelator that inhibits PHD activity
Dimethyloxalylglycine Broad inhibitor of PHD activity

Dioxygenase Enzyme that catalyzes two oxygen atoms onto a substrate without the reduction of one oxygen atom from
dioxygen into a water molecule, often by using iron as a cofactor in the reaction

Hydroxylase Enzyme that confers a hydroxyl group (–OH) onto a substrate organic compound

Monooxygenase Enzyme that catalyzes one oxygen atom onto a substrate, using coenzymes that use NADPH or FADH2 to
reduce the second oxygen atom from molecular oxygen to water

Oxidase Enzyme that typically uses a metal or flavin coenzyme to catalyze the oxidation of a substrate without
incorporating oxygen into the main product, instead using oxygen as the electron acceptor

Oxygenase Enzyme that incorporates oxygen molecules into the substrate
Prostaglandins Lipid compounds that are catalyzed by COX from fatty acids and arachidonic acid

Prostanoids A class of hormone-like signaling molecules derived from fatty acids, including the prostaglandins and
thromboxanes

Superoxide dismutase Enzyme that protects cells against harmful effects caused by superoxide anion and other free radical ROS
Thromboxanes Lipid compounds that are catalyzed by COX from fatty acids and arachidonic acid

oxygenases.Oxidases typically use ametal or flavin coenzyme
to catalyze the oxidation of a substrate without incorporating
oxygen into the main product, instead using oxygen as the
electron acceptor [11]. In contrast, oxygenases incorporate
oxygenmolecules into the substrate as a hydroxyl or carboxyl
group in a two-step process, (1) the binding of the oxygen
molecule to the catalytic domain of the enzyme and (2) the
subsequent transference of the oxygen to the substrate [12].

As part of the oxygenase supergroup, hydroxylases are
known to be increasingly important in the context of mediat-
ing numerous cellular processes. Collagen is one of the most
well-known proteins whose function is mediated by hydrox-
ylation state, whereby both proline and lysine hydroxylation
enhance the “tightness” of the triple alpha-helix structure
[13, 14]. Other notable hydroxylated proteins are the hypoxia
inducible factors (HIFs), which are described in greater detail
below in the section “Hydroxylases and Hydroxylation in
the Heart”. HIFs play a major role during hypoxia in cell
proliferation [15], angiogenesis [16], and embryonic vascu-
logenesis [17]. Interestingly, HIF-1𝛼 signaling is dictated by
hydroxylation in two ways: via von Hippel-Lindau- (VHL-)
mediated degradation in the proteasome if prolines 402/564
(in humans) are hydroxylated by prolyl hydroxylase domain
protein (PHD) [18–20] or via transactivational inhibition
if asparagine 803 residue is hydroxylated by the factor
inhibiting HIF (FIH) [21–23]. The inactivation of HIF, either
through degradation or transactivational inhibition, directly
impacts over 100 genes with functional consequences such
as angiogenesis, metabolic adaptation, metastasis, apoptosis,
and more [24–27] and indirectly impacts even more, as is
the case for the p53 pathway [28] endothelial transcription
factors [29] and genes regulated by histone methylation [30].
Interestingly, HIF activity can also be enhanced through
proline hydroxylation of its regulator pyruvate kinase M2

(PKM2), which increases the interaction between HIF and
PKM2, increasing HIF transactivation and transcriptional
activity [31]. While HIF signaling dominates the literature
in terms of what is known about hydroxylation signaling in
the heart, other cardiac events mediated by hydroxylation
are becoming more appreciated. Of note, the 𝛽-adrenergic
receptors (𝛽-ARs), similar to HIF, can be hydroxylated
by PHD proteins and subsequently targeted for ubiquitin-
mediated degradation [32]. Other cardiovascular targets of
hydroxylation include inhibitor of 𝜅B kinase 𝛽 (IKK𝛽) [33]
and myogenin [34], though the role of these two proteins is
unclear in regard to hypoxic stimuli. As the list of hydroxy-
lated cardiac proteins grows, so too will our understanding
of how oxygen and hydroxylases dictate signaling events in
response to hypoxia.

2. Oxygen-Sensing Proteins: Functions and
Consequences in the Heart

Theoxygen concentration, both global and cellular, has a pro-
found impact on the development, homeostasis, contractility,
and injury response of the heart, and the effects can be ben-
eficial or detrimental. Oxygen contributes to the formation
of NO, whichmediates cardiac and vascular contractility [35]
through the oxygen concentration-dependent S-nitrosylation
of cysteine residues, which in turn mediate calcium flux
and excitation-contraction coupling [36]. Oxygen is also the
central component in ROS generation. While regarded as
molecules with largely negative consequences, ROS can also
mediate positive outcomes in regard to cell signaling events.
For example, ROS are required for transforming growth fac-
tor beta- (TGF𝛽-) mediated myofibroblast differentiation in
human cells [37], angiotensin II- (ANGII-) mediated bovine
and hamster vascular smooth muscle cell proliferation [38],
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Table 2: List of abbreviations and functions.

Abbreviation Name Function

2-OG 2-oxoglutarate An oxo dicarboxylate obtained by deprotonation of both carboxy groups of
2-oxoglutaric acid

ANGII Angiotensin II A hormone that causes vasoconstriction and a subsequent increase in blood
pressure

ASB4 Ankyrin repeat and SOCS
box containing 4 An E3 ligase hydroxylated by FIH

CaMKK
Calcium/calmodulin-
dependent protein kinase
kinase

A protein plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade
by phosphorylating the downstream kinases CaMK1 and CaMK4

COX Cyclooxygenase An enzyme responsible for the formation of prostanoids

cyclicAMP Cyclic adenosine
monophosphate A derivative of ATP that acts as signaling molecule in many biologic processes

EPO Erythropoietin A downstream gene transcribed by HIF, which increases erythropoiesis
FADH Flavin adenine dinucleotide A redox cofactor involved in several important metabolic reactions
FIH Factor inhibiting HIF A key regulator mediating the cellular response to hypoxia through HIF inhibition
H2O2 Hydrogen peroxide A product of superoxide formation involved in damaging cellular effects
HIF Hypoxia inducible factor Transcription factors that respond to decreasing oxygen concentrations

IKK𝛽 Inhibitor of 𝜅B kinase 𝛽 A protein that leads to the dissociation of the inhibitor/NF-𝜅B complex and
ultimately the degradation of the inhibitor

IPC Ischemic preconditioning The protection conferred to ischemic myocardium by preceding brief periods of
sublethal ischemia

I𝜅B Inhibitor of kappa B Inhibits the signaling of NF-𝜅B by masking its nuclear localization signal

LDL Low density lipoprotein A class of lipoproteins that confer fat to arterial wall and increase risk of
cardiovascular disease

MPO Myeloperoxidase A lysosomal protein that converts hypochlorous acid from hydrogen peroxide

NF-𝜅B
Nuclear factor kappa-light-
chain-enhancer of activated
B cells

A transcription factor that is involved in the immune and inflammatory response

NO Nitric oxide A free radical intermediary molecule involved in ischemia

NSAIDs Nonsteroidal
anti-inflammatory drugs

A group of drugs that inhibit COX activity for analgesic and anti-inflammatory
effects

O
2

− Superoxide anion A highly reactive ROS molecule
PHD Prolyl hydroxylase domain A group of proteins that hydroxylate proline residues on substrate proteins
PKM2 Pyruvate kinase M2 A coactivator of HIF that is itself hydroxylated by PHD3

ROS Reactive oxygen species A class of reactive molecules generated by metabolism that have wide ranging
biological functions

SWOP Second window of
protection A form of delayed ischemic preconditioning that happens 24 hours after initial IPC

TGF𝛽 Transforming growth
factor beta

A secreted protein involved in a wide array of biological functions, notably in cell
differentiation and proliferation

VHL von Hippel-Lindau A tumor suppressor E3 ligase that targets HIF for proteasomal degradation

𝛽-AR 𝛽-adrenergic receptor A group of G-protein coupled receptors that mediate cAMP concentrations and
cardiomyocyte contractility

endothelin-mediated cardiac c-fos expression in ratmyocytes
[39], and other beneficial signaling events [40]. However,
ROS are still canonically regarded as harmful molecules,
especially from the cardiac-centric perspective, which pro-
motes cell death through mitochondrial damage in rat myo-
cytes [41], lipid peroxidation in rat myocytes [42], chromatin
remodeling [43], and protein interactions [44]. In addition to
broad antioxidant competition from superoxide dismutases

[45–47], ROS are also negatively regulated by other signaling
pathways, including the ubiquitin-proteasome system [48],
further demonstrating the diverse role that these molecules
can play.

Oxygen also serves as a molecule in posttranslational
modification. Oxidases are one family of oxygen-conferring
enzymes and are critical components with regard to oxygen
utilization within the cell. One notable oxidase is cytochrome
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P450 oxidase, which is involved in myriad hydroxylation
reactions [49–51]. NADPH oxidase regulates phagocytosis
in neutrophils by generating O

2

−, which in turn produces
the oxidants H

2
O
2
and hypochlorous acid, which itself is

generated by myeloperoxidase (MPO) [52]. The increase of
NADPH oxidase activity also contributes to the progression
of atherosclerosis since its superoxide generation leads to
the oxidation of low density lipoprotein that exacerbates
endothelial dysfunction and foam cell formation [52]. Sim-
ilarly, FADH

2
is oxidized by flavoprotein dehydrogenase

in the peroxisome during fatty acid oxidation to produce
H
2
O
2
, another ROS molecule long known to be central

in cardiac ischemia/reperfusion injury [53]. Interestingly,
MPO is another key mediator of pathological cardiac events,
including atherosclerosis, myocardial injury, and vascular
remodeling in both humans and animal models [54–56],
most notably through its role of increasing the oxidative
potential of its cosubstrate hydrogen peroxide [57]. Elevated
levels of MPO in humans correspond to increased risk of
cardiovascular disease [58, 59], while humanMPOdeficiency
is cardioprotective [60, 61].

Oxygenases, the other group of enzyme utilizing oxygen
as the substrate, can be further divided into two groups
depending on whether they catalyze one atom (monooxyge-
nases) or two oxygen atoms (dioxygenases) of oxygen onto
the substrate. Monooxygenases are widely distributed in the
cell and use coenzymes that use NADPHor FADH

2
to reduce

the second oxygen atom from molecular oxygen to water.
Dioxygenases catalyze the oxidation of a substrate without
the reduction of one oxygen atom from dioxygen into a water
molecule, often by using iron as a cofactor in the reaction.
This reaction is accomplished either by incorporating both
atoms of molecular oxygen into the substrate or catalyz-
ing molecular oxygen onto multiple substrates [62]. The
dioxygenases can further be categorized into three separate
groups: iron-dependent enzymes, cambialistic oxygenases,
and cofactor independent dioxygenases [63–65], which in
turn can be further divided into various superfamilies and
families of enzymes whose functions are just now becoming
understood.

Of the dioxygenases, two are well known to be factors
in cardiovascular disease. The first is cyclooxygenase (COX),
which is responsible for the formation of prostanoids, which
are oxygenated signalingmolecules derived from arachidonic
acid and polyunsaturated long-chain fatty acids [66]. These
prostanoids, which include prostaglandin and thrombox-
anes, are involved in the proinflammatory response [67].
The widely popular nonsteroidal anti-inflammatory drugs
(NSAIDs) target COX activity but also have highly publicized
cardiovascular effects in humans [68]. COX inhibition leads
to atherosclerotic plaque destabilization in human patients
with recent ischemic events [69] and endothelial dysfunc-
tion during hypertension in humans [70] and promotes
atherosclerotic lesion formation in LDL-deficient mice [71].
This COX inhibition is thought to induce cardiovascular
event by increasing the relative thromboxane levels and
decreasing prostacyclin levels in damaged heart tissue [72].

Another well-known subgroup of the dioxygenases is
the 2-oxoglutarate (OG)/Fe(II)-dependent superfamily. Also

known as 𝛼-ketoglutarate, 2-OG is an important interme-
diate and rate-limiting factor of the mitochondrial citric
acid cycle (also known as the Krebs or tricarboxylic acid
cycle). In the context of oxygenases, most 2-OG-dependent
enzymes catalyze the incorporation of one oxygen atom
from molecular oxygen into their alcohol product and one
into the succinate coproduct [73]. These versatile enzymes
are nonheme in character [74], have a double stranded 𝛽-
helix (also referred to as a “jelly-roll”) motif [75], an Fe(II)
center that is coordinated by a conserved HX(D/E)XNH
motif [76], and utilize ascorbate for maximal activity [77],
though more recent studies in humans show that ascorbate
had little effect on HIF-mediated arterial pressure response
to hypoxia [78], making the precise role of ascorbate in
HIF-mediated hydroxylation more unclear. Upon substrate
binding, 2-OG/Fe(II)-dependent enzymes most commonly
catalyze protein hydroxylation [79–81] but are also employed
in H3K36 demethylation [82]. This broad class of enzymes
is involved in wide-ranging functions like DNA repair [83],
metabolism [84], stress response [85], growth factor signaling
[86], and not surprisingly, hypoxic response signaling [87,
88].

3. Hydroxylases and Hydroxylation in
the Heart

One of the best characterized proteins that are modified by
2-OG dependent hydroxylation is HIF. HIF is a heterodimer
consisting of a labile 𝛼-subunit and a stable 𝛽-subunit [89]. In
normoxic conditions, HIF-1𝛼 protein expression is typically
very short lived due to rapid degradation mediated by the
VHL E3 ligase [18–20]. This oxygen-dependent degradation
of HIF-1𝛼 is mediated by PHD (also known as EGLN)
proteins [88, 90].

There are two proline residues modified in HIF-1𝛼,
corresponding to P402 (modified by PHD1 and PHD2) and
P564 (modified by all three PHDs [PHD1/2/3]) [88].Through
the use of siRNA knockdown experiments in mice, PHD2
has been shown to regulate overall HIF-1𝛼 stability [91];
however, the precise function and modifications to each
proline residue seem to be more complex. Chan et al. [92]
demonstrated that residue P564 was hydroxylated prior to
residue P402 and that mutation of P564 significantly reduced
P402 hydroxylation, but P402 mutation had little effect
on P564 hydroxylation state. Additionally, they found that
P402 hydroxylation was much more sensitive to physiologic
oxygen concentrations relative to P564 hydroxylation [92].
These data indicate that PHDs influence the signaling of HIF
under a variety of conditions, demonstrating the divergence
and overall complexity of hydroxyl modifications.

HIF activity impacts an array of cardiac phenotypes.
Many of the downstream events that occur due to HIF
protein stabilization and accumulation (through decreased
PHD-mediated hydroxylation) are cardioprotective and are
thought to serve as adaptive ischemic preconditioning (IPC)
to hypoxia. The IPC phenomenon is thought to protect
the heart against a subsequent myocardial damage through
the exposure to brief episodes of nonlethal myocardial
ischemia and reperfusion [93]. This period of protective
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preconditioning in mice is initially mediated by HIF (and
its corresponding hydroxylation state), possibly through ROS
production, or another, as yet determined, transcriptionally
independent mechanism [94]. A later ICP effect (sometimes
referred to as “SWOP” or Second window of protection) is
also seen 24–74 hours after the initiation of preconditioning
event [95] and is achieved through HIF’s transcriptional
induction of the cardioprotective molecules nitric oxide
synthase, heme oxygenase 1, and erythropoietin [96]. Further,
long-termhypoxia in humans has been shown to significantly
reduce mortality due to ischemic heart disease, though
the role of HIF in this population was not addressed in
this report [97]. Conversely, chronic HIF accumulation has
also been shown to be detrimental to cardiac physiology
by impairing cardiac metabolism and calcium handling,
which are thought to promote cardiac decompensation and
premature heart failure in aging mice [98]. Interestingly,
PHD proteins in cardiomyocytes are known to interact with
the calcium/calmodulin-dependent protein kinase kinase
(CaMKK) in rat cardiomyocytes, demonstrating the role of
PHDs in cardiac calcium signaling pathways [99]. Further
PHD hydroxylases also regulate metabolic activity during
stress. Specifically, glucose transporter 1 increases in response
to PHD activation, leading to increase in glucose handling
[100]. In another report, PHD activation increased glycogen
and ATP levels in metabolically stressed mouse cardiomy-
ocytes [101]. Adding yet another layer of complexity, HIF-
1𝛼 has been recently shown to impact cardiac conduction in
zebrafish. In Breakdance mutant fish, it is hypothesized that
the accumulation of HIF-1𝛼 may partially explain the unex-
pected longevity and continued development of these fish,
even with their characteristic cardiac arrhythmia phenotype
[102]. Likewise, PHDs are known to mediate 𝛽

2
-AR signaling

in mice [32], which is responsible for cardiac arrhythmias
[103].While direct evidence is scant, these similarities inHIF-
and PHD-mediated cardiac homeostasis may be due to their
respective hydroxylation state and enzymatic activity.

In addition to PHD-mediated hydroxylation, HIF-1𝛼 is
also hydroxylated by factor inhibiting HIF (FIH) on asparag-
ine 803 in humans [21].This hydroxylation event on the trans-
activation domain of HIF-1𝛼 prevents its translocation and
transcriptional activity by inhibiting p300/CREB-binding
protein coactivators binding to HIF-1𝛼 [21]. Knockdown of
FIH in mice has been shown to improve angiogenesis and
stem cell mobility post-MI, though this was in addition to
simultaneous PHDknockdown [107]. Similarly, FIHhas been
shown to be an antiangiogenic factor through its association
with the E3 ligase Mindbomb in zebrafish [108]. Adding to
the complexity of FIH-mediated hydroxylation is its ability to
hydroxylatemembers of the ankyrin repeat family of proteins
including the NF-𝜅B inhibitor I𝜅B [104], the receptor protein
Notch [105], and the vascular E3 ligase ankyrin repeat and
SOCS box containing 6 4 (ASB4) [106], which appears to
regulate the angiogenic properties of these proteins in mouse
models, possibly in conjunction with NF-𝜅B [109, 110].

The field of cardiac-specific hydroxylation is still emerg-
ing. Contributing to this gap is our poor understanding of the
hydroxylation event itself. That is, little is known about the
role of endogenous hydroxlylase inhibitors, hydroxylases and

their target signaling in hypoxia versus normoxia, or putative
hydroxylation-site motifs. For example, while many other
enzymatic reactions (ubiquitination, acetylation, methyla-
tion, etc.) have “counteracting” enzymes that reverse the spe-
cific modification (deubiquitinases [111], deacetylases [112],
and demethylases [82], resp.), no specific dehydroxylase has
been uncovered yet, though speculation of its/their existence
has been postulated [113]. Though only just now emerging,
there is evidence for the role of HIF-1𝛼 in nonhypoxic
conditions; that is, ANGII, thrombin, various interleukins,
cyclicAMP, and other hormones stimulate the accumulation
of HIF-1𝛼 in normoxia (reviewed in [114]). Additionally,
glucose is known to stimulate HIF-1𝛼-mediated signal trans-
duction in a diabetic mouse model [115]. In addition, HIF-1𝛼
accumulates in mouse cardiomyocytes during normoxia in
response to miR-199a knockdown, increasing HIF-mediated
IPC [116]. Though not directly indicative of cardiovascular
disease, these pathways and models may yield potential
insights into the role of HIF-1𝛼 in its unhydroxylated state.
Another scenario of divergent signaling based on hydroxyla-
tion state is with the E3 ligase ASB4. Specifically, ASB4 has
been shown to be hydroxylated by FIH [106] and is expressed
in the adult heart and brain [106, 117] but is also expressed in
hypoxic milieus and functions in placental development and
vasculogenesis [106, 118].This may partially explain instances
of a single hydroxylation substrate whose functional role
is mediated by the hydroxylation state, independent of
other factors such as oxygen availability. Certainly further
investigation is warranted into the putative phenomenon of
reversible hydroxylation.

Another aspect of hydroxylation that has yet to be fully
elucidated is the occurrence and requirement of a hydroxyl-
binding site motif. Recent advances in bioinformatics has
yielded insights into the amino acid sequencemotifs for other
enzymatic reactions [119–121], but, while hydroxyl-sitemotifs
have been proposed [122], it remains to be rigorously and
empirically determined whether this site (or sites) is required
for hydroxylase binding or is a function of happenstance, as
other PHD-modified proteins do not contain this sequence
[123]. Similarly, unlike ubiquitination, which can seemingly
occur on any lysine residue within a protein (though often
times with vastly different outcomes) [124], prolyl hydroxyla-
tion only occurs on specific proline residues, without any sort
of predictability.With the advent of the “-omics” revolution, it
stands to reason that hydroxyl modifications are an apropos
candidate for high throughput amino acid sequence screen
now that better detection methods are available [125] for
expanding the discovery of both hydroxylase enzymes and
hydroxylated substrates.

4. Discussion

The current works demonstrating oxygen-mediated cardiac
events highlight the fact that, while we know that these
enzymatic reactions are critical for cardiac homeostasis and
disease, we are just beginning to realize the impact and scope
of such events. The first hydroxylase was discovered in the
1940s [126], but we are only beginning to see the far reaching
effect of these enzymes. While the list of substrates is small
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at present compared to other posttranslationally modifying
enzymes, this literature is expanding. From this, we glean
the fact that these enzymes are not only important from a
basic research standpoint but from a therapeutic and clinical
perspective.

Clinically, hydroxylases and hydroxylated proteins such
as HIF present a challenging but uniquely rewarding target
for drug therapies; that is, while other enzymes require
the availability of their modification molecule (ubiquitin
for ubiquitination, phosphate for phosphorylation, etc.), the
rate limiting factor for hydroxylation is typically the oxygen
itself. Therefore, small molecule inhibition/activation, lig-
and agonism/antagonism, and lipid permeabilization would
not be required for changes in hydroxylase efficacy. To
increase hydroxylase activity, simple exogenous introduction
of recombinant protein would suffice. If accumulating HIF
for IPC was desired, via PHD repression, then there is a wide
assortment of effective, available treatments. These include
cobalt chloride, which can protect the heart in mice by
reducing infarct size [127], desferroxamine, an iron chelator
that scavenges free radicals and inhibits PHD hydroxylation
in rat cardiomyocytes [128], and dimethyloxalylglycine, a
broad hydroxylase inhibitor, which also reduced infarct size
in rat, mouse, and rabbit animal models due to HIF stabi-
lization [129–131]. HIF itself can be directly targeted as well
as a therapeutic intervention; that is, several investigations
demonstrate that HIF polymorphisms directly contribute to
the pathology of the coronary arteries [132, 133] in human
patients. However, HIF has been successfully reintroduced
as an adenoviral vector into patients with advanced coronary
artery disease as part of a small phase 1 safety study [134].

Over the past decade or so, there have been a growing
number of clinical trials of human disease that have focused
on PHD proteins and HIF. Small molecule PHD inhibitors
have been investigated in their ability to activate HIF and
its downstream target genes. Fibrogen, a biotechnology com-
pany in California, has designed and implemented several
PHD-specific smallmolecule inhibitors.One compound, FG-
2216, has been shown to increase EPO levels [135] in patients
with end-stage renal disease, while another compound from
the company, FG-4592, has been shown to correct anemia in
patients with peritoneal dialysis [136] and patients undergo-
ing dialysis without iron supplementation [137]. While none
of these studies are cardiac in nature, these trials serve as a
useful proof of principal that these compounds are safe and
effective in stabilizing HIF in human patients.

In summary, the oxygen-sensing proteins are an impor-
tant addition to the complete cardiovascular landscape. Fur-
thering our understanding of the enzymes, substrates, and
cofactors involved with oxygen-mediated reactions will not
only provide additional knowledge of how heart tissue func-
tions in different oxygen concentrations but also may yield
therapeutic interventions for protecting the heart against
ischemic injury.
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