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The M2 isoform of pyruvate kinase (PKM2) is one isoform of pyruvate kinase (PK). PKM2 is expressed at high levels during
embryonic development and tumor progression and is subject to complex allosteric regulation. PKM2 is a special glycolytic
enzyme that regulates the final step of glycolysis; the role of PKM2 in the metabolism, survival, and apoptosis of cancer cells
has received increasing attention. Mitochondria are directly or indirectly involved in the regulation of energy metabolism,
susceptibility to oxidative stress, and cell death; however, the role of PKM2 in mitochondrial functions remains unclear.
Herein, we review the related mechanisms of the role of PKM2 in the regulation of mitochondrial functions from the aspects
of metabolism, reactive oxygen species (ROS), dynamic, and apoptosis, which can be highlighted as a target for the clinical
management of cardiovascular and metabolic diseases.

1. Introduction

Pyruvate kinase (PK) is one of the key enzymes of glycolysis.
PK can catalyze the transphosphorylation from phosphoenol-
pyruvate (PEP) to ADP as the last step of glycolysis to generate
ATP [1]. The M2 isoform of pyruvate kinase (PKM2) is dis-
tributed in tissues such as the brain, liver, and tumor tissues
[2, 3]. PKM2 has two different forms: a dimeric form and a tet-
rameric form [4]. The tetrameric form of PKM2 has a higher
PK enzymatic activity to catalyze the production of pyruvate
[2]. The dimer form of PKM2 has a low PK activity and is
closely related to biosyntheses such as energy metabolism
andmaterial synthesis [5]. PKM2 expression is associated with
several biological activities, including regulation of tumor
growth [6], embryogenesis [7], tissue regeneration [8], and
inflammatory regulation [9]. Some scholars have suggested
that PKM2 can attach to the mitochondrial outer membrane

to maintain mitochondrial function; the involvement of
PKM2 in the regulation of mitochondrial functions has
received increasing attention [10–12].

Mitochondria are important organelles that play a piv-
otal role in cell life and cell death. Mitochondria are dynamic
organelles that consistently migrate, fuse, and divide to mod-
ulate their number, size, and shape [13]. In addition, mito-
chondria play a crucial role in different physiological
processes, especially in energy production, the generation
of reactive oxygen species, and calcium signaling [14]. Thus,
mitochondrial dysfunction leads to various diseases, such as
metabolic diseases and cancer [15]. Accumulating evidence
suggests that PKM2 may participate in the regulation of
the mitochondrial physiological process [10–12]. Therefore,
this review focuses on the role of PKM2 in mitochondrial
physiological function with respect to metabolism, oxidative
stress, dynamic, and apoptosis.
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2. PKM2 Expression and Its
Biological Functions

There are four tissue-specific isoforms of PK in mammals,
including PKM1, PKM2, PKL, and PKR [16]. PKL and
PKR are predominantly expressed in the liver and erythro-
cytes, respectively. PKM1 is abundantly expressed in high-
energy demanding organs such as the heart, brain, and mus-
cle, while PKM2 is highly expressed in various proliferating
cells, especially embryonic and tumor tissues [3]. PKM1
and PKM2 are produced through alternative splicing under
the regulation of several splicing factors, such as heteroge-
neous nuclear ribonucleoproteins (hnRNPs) and
polypyrimidine-tract binding (PTB) [17]. PTBP1 leads to
the expression of PKM2 through blocking the inclusion of
exon 9 and inducing the inclusion of exon 10 [18].

PKM2, existing as tetrameric and dimeric forms, has
been found in the nucleus, mitochondria, and extracellular
secretion [19]. The dimeric PKM2 can enter the nucleus,
and PKM2 in the nucleus functions as a co-activator of the
transcription factor to activate the transcription of target
genes that are involved in mitochondrial biogenesis [20].
The subcellular PKM2 can be regulated by multiple signaling
pathways, including the phosphorylation of PKM2 at tyro-
sine, serine, and threonine residues [21], acetylation of
PKM2 at K305 [3] succinylation [11], and O-
GlcNAcylation [22].

PKM2 exerts several biological functions [20]. PKM2 is
highly expressed and shifts the glucose metabolism from
mitochondrial respiration to lactate production in tumor
cells; therefore, PKM2 may serve as a potential diagnostic
marker in cancer [23]. The inhibitors and activators of
PKM2 can be promising anti-cancer drugs. Exerting a simi-
lar role, PKM2 may also act as a key protein kinase in other
diseases [9, 17, 24]. PKM2 is a requisite for Th1 and Th17
differentiation and may be a therapeutic target for T cell–
dependent autoimmune diseases [25]. PKM2 is also involved
in renal inflammation in type 2 diabetic nephropathy by
promoting the phosphorylation of STAT3 and NF-κB [24].

3. Mitochondrial Function

Mitochondria are essential components of eukaryotic life
[26]. Mitochondria are comprised of two separate and func-
tionally distinct outer membranes (OMs) and inner mem-
branes (IMs), that encapsulate the intermembrane space
(IMS) and matrix compartments [27]. Mitochondria contain
a circular genome, mitochondrial DNA (mtDNA), which
qualify mitochondria for the function of semi-conservative
replication, transcription, and translation [28].

Mitochondria are the energy-producing organelles of the
cell; they can generate the majority of a cell’s ATP via oxida-
tive phosphorylation (OXPHOS) [29]. Glucose is metabo-
lized to ATP for energy supply via two types of reactions,
OXPHOS in mitochondria and aerobic glycolysis in the
cytosol [30, 31]. Mitochondria are the major intracellular
source of reactive oxygen species (ROS); mitochondrial
ROS originates from respiratory chain complexes, particu-
larly at the level of complex III and complex I [32]. ROS

can cause cumulative damage to mitochondria and mtDNA,
leading to mitochondrial dysfunction, which further causes
ROS production and mtDNA damage [33].

Mitochondria are dynamic organelles that undergo a
dynamic cycle of transport, fission, and fusion. The mito-
chondrial dynamics maintain the shape, distribution, and
size of mitochondria [34]. In mammals, mitochondrial
fusion is mediated by mitofusion (Mfn1 and Mfn2, located
in the OMs) and optic atrophy gene 1 (Opa1, located in
the IMs) [35]. Meanwhile, mitochondrial fission is mediated
by fission 1 protein (Fis1, located in the OMs) and dynamin-
related protein 1 (Drp1, which is mostly cytosolic and trans-
locates to the OMs during fission) [36]. Imbalanced mito-
chondrial dynamics lead to mitochondrial dysfunction.

Mitochondria exert multiple functions in the life process,
including the control of stress responses, cell signal regula-
tion, and cell apoptosis [37]. The molecular mechanisms
underlying function regulation of mitochondria remain elu-
sive, but numerous investigations have documented that
PKM2 may be involved in the regulation of the mitochon-
drial functions.

4. The Effect of PKM2 on
Mitochondrial Function

4.1. PKM2 and the Regulation of Mitochondrial Metabolism.
PKM2 favors aerobic glycolysis, where glucose is primarily
catabolized to lactate, rather than fully metabolized to car-
bon dioxide using mitochondrial OXPHOS [38]. This phe-
nomenon is termed as the Warburg effect [39, 40].

The function of PKM2 as a metabolic switch can be reg-
ulated via three pathways. First, the expression of PKM2 is
closely associated with cell metabolism [41, 42]; increased
PKM2/PKM1 ratio has been reported to promote aerobic
glycolysis. Several factors, such as never in mitosis
(NIMA)-related kinase 2 (NEK2) [43], Sam68 [44], Fenofi-
brate [45], and SNHG6 [46], have been proven to affect gly-
colysis pathway by regulating the proportion of PKM2/
PKM1. Second, the forms of PKM2 can also affect cell
metabolism. Tetrameric PKM2 exhibits high catalytic activ-
ity to catalyze the production of pyruvate by PEP, promoting
the flux of glucose-derived carbons to OXPHOS [19], while
dimeric PKM2 is the less active state of PKM2 that facilitates
the glycolytic intermediates for aerobic glycolysis pathways
[47]. Third, some factors can also affect the glycolysis path-
way by regulating the transport of PKM2 mRNA. T cells
upregulate PKM2 expression through the mTOR1-HIF1 sig-
naling [48], and the nuclear translocation of dimeric PKM2
is improved to increase the STAT3 phosphorylation in T
cells [49], which further enhances Th1 and Th17 differenti-
ation by promoting the glycolysis metabolism, representing
as a therapeutic target for T cell–dependent autoimmune
diseases [25].

With insights into the mechanisms underlying the effect
of PKM2 on mitochondrial metabolism, several signaling
pathways are involved [50]. First, PKM2 leads to a reduction
of TCA intermediates. PKM2 can activate the transcriptions
of HIF-1 and subsequently pyruvate dehydrogenase kinase 1
(PDK1) [51], and Bcl2-interacting protein 3 (BNIP3) [52].
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PDK1 inhibits the mitochondrial PDH to inhibit the conver-
sion of pyruvate to acetyl-CoA [53]. BNIP3 reduces the
levels of mitochondrial-encoded proteins involved in
OXPHOS [52]. Second, PKM2 reduces mitochondrial activ-
ity without damaging the mitochondria. PKM2 induces the
phosphorylation of AMP-activated protein kinase (AMPK),
a known inducer of mitochondrial activity [54]. Collectively,
PKM2 shifts the glucose metabolism from mitochondrial
OXPHOS to aerobic glycolysis, thereby acting as a potential
diagnostic marker for tumors (Figure 1).

4.2. PKM2 and the Regulation of Mitochondrial ROS
Signaling. PKM2 expression and the PKM2/PKM1 ratio
are associated with the production of ROS [38–40]. How-
ever, no agreement has been reached about the positive or
negative effect of PKM2 on ROS production. Some studies
have reported that higher PKM2 expression leads to the
decreased ROS production. PKM2 activation by TEPP-46
can decrease ROS production induced by either high-
glucose [41] or inflammasome activation [42]. Another
activator of PKM2, DASA-58, has also been proven to
maintain ROS at a low level [43]. Besides, inhibition of
the expression level of PKM2 by the PKM2-siRNA inter-
ference significantly stimulated ROS overproduction [44].
In contrast, some other studies came to the opposite con-
clusions [45–48]. Shuvalov et al. [46] have reported that
the overexpression of PKM2 causes elevation of the mem-
brane mitochondrial potential (MMP), subsequently lead-
ing to an increase in ROS production. Song et al. [47]
have also proven that PCB126-increased ROS production
is associated with activation of PKM2/STAT3/Snail1 cas-
cades. It has been reported that PKM2 knockdown effec-
tively relieved the increased ROS level in pancreatic
cancer [48].

While PKM2 is involved in ROS regulation, several stud-
ies have proven that ROS exerts a negative effect on PKM2
[49–53]. The ROS inhibition of PKM2 may be involved in
several signaling. ROS can oxidize PKM2 Cys358, further
decrease the active tetramer and promote the phosphoryla-
tion of PKM2, thereby causing the inhibition of PKM2 activ-
ity [44, 54]. Xiangyun et al. [55] have also reported that high
concentrations of ROS can decrease both the succinylation
and activity of PKM2 by increasing its binding to SIRT5.
Furthermore, ROS can not only affect the expression level
and localization of PKM2 but also mediate the crosstalk
between PKM2 and other enzymes, including apurinic/apyr-
imidinic endonuclease (APE1) and ectonucleotide pyropho-
sphatase/phosphodiesterase 2 (ENPP2) [56, 57]. While
another study has shown that the PKM2 mRNA is not
inhibited by ROS, the decrease of PKM2 expression is
caused by PKM2 degradation. The interaction of PKM2
and ROS can also increase the cell sensitivity to ROS [58].
The increased level of ROS induces mitochondrial transloca-
tion of PKM2, and mitochondrial PKM2 interacts with and
phosphorylates Bcl2, which inhibits ROS-induced apoptosis
[10]. Besides, ROS-dependent inhibition of PKM2 may pro-
mote glucose influx into the pentose phosphate pathway
(PPP), which contributes to a metabolic response that can
deplete ROS [59].

4.3. PKM2 and Mitochondrial Dynamic. Overexpression of
PKM2 can regulate mitochondrial dynamics, including
decreasing the numbers and increasing the sizes of mito-
chondria [41] (Figure 2). PKM2 can translocate to mito-
chondria and inhibit mitochondria fission by
downregulating the expression of Drp1 [60]. Drp1 activity
relates to its binding partners on the OMs, including mito-
chondrial fission factor (MFF), Fis1, and mitochondrial
dynamics proteins of 49 and 51 kDa (MiD49 and MiD51).
PKM2 can inhibit the expression of Fis1 [43], and future
studies can be conducted to explore the relationship of
PKM2 with MFF, MiD51, and MiD49.

PKM2 promotes mitochondrial fusion by triggering the
Mfn2 expression [61, 62]. The interaction of PKM2 and
Mfn2 can be increased by mammalian target of rapamycin
(mTOR)-mediated phosphorylation of Mfn2 at Ser200
[12]. Several microRNAs are involved in this process;
smiR-106b is associated with the down-regulation of Mfn2
expression and the PKM2 mediation of mitochondrial
fusion [63]. Besides, miR-214 targets Mfn2 by impairing its
binding with PKM2 [64]. Others like mitochondrial
MiD51 [65] and mitochondrial calcium uniporter complex
(MCUC) [66] may be the potential mechanism linking
PKM2 and mitochondrial dynamics.

The effect of PKM2 on mitochondrial autophagy still
requires validation with additional experiments. On the
one hand, PKM2 contributes to mitochondrial autophagy
via the HIF-1/BNIP3 pathway in hypoxic and some cancer
cells [67, 68]. PKM2 activates the transcription of BNIP3
by inducing HIF-1α; BNIP3 can induce mitochondrial
membrane permeabilization via Bax/Bak1 or via the opening
of the mPTP, which leads to release of mitochondrial pro-
death proteins and activation of cell death [67, 69]. On the
other hand, PKM2 inhibits autophagy by activating the
mTOR [70, 71]. PKM2 activates mTORC1 via the PI3K-
Akt signaling pathways to inhibit autophagy in Hela,
HEK293T, and HCT116 cells [71]. PKM2 overexpression
may phosphorylate S202/203 of AKT1S1 and their phos-
phorylation activates mTORC1 [72]. Besides, PKM2 may
reduce the ratio of AMP/ATP and the inhibition of AMP
to mTORC1 kinase activity and autophagy in A549 cells [73].

4.4. PKM2 and Mitochondrial Apoptosis Pathway. PKM2
plays a crucial role in cell apoptosis progression [74, 75]
(Figure 3). The silencing of PKM2 expression with shRNA
or microRNA promotes cell apoptosis in multiple cancer
cells [76–79]; the phosphorylation of PKM2 by the dysregu-
lation of microRNAs (miR) has also been reported to regu-
late cell apoptosis [80–82].

A possible mechanism underlying the effect of PKM2 on
mitochondrial apoptosis is that the metabolic function of
PKM2 is involved in modulating mitochondrial apoptosis
of cancer cells [66, 83, 84]; the enhanced glycolysis by
PKM2 can attenuate cell apoptosis in cancer cells [85–87].
Several studies have proven that HIF-1α/PKM2 pathway-
associated metabolic changes may facilitate apoptosis resis-
tance in cancer cells [88, 89]. The use of metabolic regulation
by PKM2 to interfere with cell apoptosis is a new strategy for
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cancer treatment [90]. PKM2 can also regulate apoptosis via
modulation of mitochondrial dynamics. Wu et al. [60] have
reported that PKM2-mediated mitochondrial dynamic dis-
orders participate in cell apoptosis. Mitochondrial metabolic
and dynamics work together to promote the apoptosis resis-
tance in several cells [66, 81].

On the other hand, PKM2 regulates mitochondrial pro-
teins that are involved in cell apoptosis. PKM2 translocates
to the outer membrane of mitochondria under oxidative
stress [10]. In the mitochondria, tetrameric PKM2 sup-

presses the p53 transcriptional activity and p53-related apo-
ptotic pathway in a high oxidation state [78, 91, 92]. Except
for the p53-related apoptotic pathway, mitochondrial PKM2
can interact with Bcl2 and phosphorylates Bcl2 at T69, thus
sustaining Bcl2 protein stability and controlling mitochon-
drial membrane permeability [89, 93, 94]. Besides, PKM2
can also enhance the stability of NF-κB p65 subunit, pro-
moting the binding of NF-κB p65 subunit to Bcl-xL pro-
moter, thereby up-regulating the expression of Bcl-xL
protein (an anti-apoptotic member of Bcl-2 protein family)
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[95]. Some studies have reported that PKM2 exerts its effects
on apoptosis via the caspase-dependent pathway, including
the expression of cleaved caspase 3, caspase 7, and caspase
9 [96–101]. Meanwhile, some other studies have reported
that the nuclear translocation of PKM2 is responsible for
regulating cell apoptosis, which is caspase-independent, iso-
form-specific, and independent of its enzymatic activity
[102–104].

In summary, this review concerns the related mecha-
nisms of the role of PKM2 in the regulation of mitochon-
drial functions from the aspects of metabolism, reactive
oxygen species (ROS), dynamic, and apoptosis (Figure 4).
They may be potentially used in diagnosis and as indicators
of disease progression. These findings have increased our

understanding of the signaling pathways of PKM2-related
mitochondrial functions and indicated that PKM2 may serve
as a potential therapeutic intervention for cardiovascular
and metabolic diseases [9, 105, 106]. Therefore, the role of
PKM2 in mitochondrial functions can be highlighted as a
target for the clinical management of cardiovascular and
metabolic diseases [17, 20, 107].

5. Conclusions

PKM2, known as a key rate-limiting enzyme in glycolysis,
is widely involved in the regulation of mitochondrial func-
tion, including mitochondrial respiration, reducing ROS
damage to mitochondria, mitochondrial morphology, and
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mitochondrial-dependent apoptosis (Figure 4). Mitochon-
drial dysfunction plays an important role in the progress
of several diseases, especially in cancers. PKM2 can be a
potential target for therapeutic intervention in these dis-
eases. However, the current research on the relationship
between PKM2 and mitochondrial function is not enough;
the specific mechanism of the relationship remains
unclear. Further deciphering the functions of PKM2 on
mitochondrial function might lead to successful
mitochondria-related disease prevention and therapy.
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