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ABSTRACT Antimicrobial resistance (AMR) poses a threat to global health and the econ-
omy. Rifampicin-resistant Mycobacterium tuberculosis accounts for a third of the global AMR
burden. Gaining the upper hand on AMR requires a deeper understanding of the physiol-
ogy of resistance. AMR often results in a fitness cost in the absence of drug. Identifying the
molecular mechanisms underpinning this cost could help strengthen future treatment regi-
mens. Here, we used a collection of M. tuberculosis strains that provide an evolutionary and
phylogenetic snapshot of rifampicin resistance and subjected them to genome-wide tran-
scriptomic and proteomic profiling to identify key perturbations of normal physiology. We
found that the clinically most common rifampicin resistance-conferring mutation, RpoB
Ser450Leu, imparts considerable gene expression changes, many of which are mitigated by
the compensatory mutation in RpoC Leu516Pro. However, our data also provide evidence
for pervasive epistasis—the same resistance mutation imposed a different fitness cost and
functionally distinct changes to gene expression in genetically unrelated clinical strains.
Finally, we report a likely posttranscriptional modulation of gene expression that is shared
in most of the tested strains carrying RpoB Ser450Leu, resulting in an increased abundance
of proteins involved in central carbon metabolism. These changes contribute to a more
general trend in which the disruption of the composition of the proteome correlates with
the fitness cost of the RpoB Ser450Leu mutation in different strains.
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Antimicrobials are one of the cornerstones of modern medicine (1). The global increase
of antimicrobial resistance (AMR) is claiming an increasing number of lives and resour-

ces (2). We currently have access to a wide array of antibiotics, but their efficacy is waning,
making safeguarding current and future drugs a high priority. Understanding the mecha-
nisms and drivers of AMR will be key to that process (3).

Antibiotics target essential bacterial functions. Modification of those targets is an
important mechanism through which AMR emerges. It is therefore not surprising that
AMR is often associated with a decreased bacterial growth rate in vitro, and in the case of
pathogens, a decreased ability to cause disease or transmit in the clinic. These phenomena are
commonly referred to as a “fitness cost of drug resistance” (4). The physiological basis for the
cost of drug resistance depends on the antibiotic, the bacterial species, and the environment
(5) and is thus often unknown and likely to be multifaceted. One of the better studied exam-
ples is the cost of rifampicin resistance (6). Rifampicin targets the bacterial RNA polymerase
(RNAP), and resistance to rifampicin is usually mediated by mutations in the b subunit of
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RNAP encoded by rpoB (7). Due to its position at the root of gene expression, mutations in
RNAP affect which genes are transcribed and their level of expression. Several studies point to
the rate of transcription as an important mediator of bacterial growth rate in culture (8, 9). The
relative contribution of lower transcriptional efficiency, as opposed to a pleiotropic disruption
of gene expression, was therefore suggested as the most likely explanation for the cost of
rifampicin resistance (8–10). The mechanism linking RNAP activity to ribosome biosynthesis,
and more broadly to the rate of transcription, provides a compelling explanation for the cost
of rifampicin resistance in rapidly dividing bacteria grown in optimal conditions, such as
Escherichia coli and Pseudomonas aeruginosa, whose growth relies on the rapid replenishment
of biosynthetic machinery lost through cell division (11). However, the pressure to replenish
ribosomes and proteins essential for rapid growth may be less severe in slow-growing organ-
isms such as Mycobacterium tuberculosis. Thus, alternatively, indirect effects linked to broader
changes in gene expression might be responsible for the fitness cost of rifampicin resistance
in this organism (6, 12).

Rifampicin-resistant M. tuberculosis is one of the major causes of AMR-associated mortality
globally, claiming an estimated 240,000 lives in 2019 (13). As with E. coli or P. aeruginosa, rpoB
mutations confer resistance and modify the structural and biochemical properties of M. tuber-
culosis RNAP (14, 15). Importantly, these biochemical changes can be mitigated through the
acquisition of secondary, compensatory mutations in the a, b , and b9 subunits of RNAP (8,
10, 15). However, unlike in fast-growing bacteria, the rate of transcription does not seem to
reflect the fitness cost of resistance-conferring rpoBmutations (see Fig. S1 in the supplemental
material), measured either by growth rate in vitro or prevalence in the clinic (15–17). Instead,
aberrant production of the soleM. tuberculosis siderophore, mycobactin (18), and modification
of virulence-modulating lipid phthiocerol dimycocerosate (PDIM) (19) and structural mycolic
acids (20) have all been reported in rifampicin-resistant M. tuberculosis, potentially impacting
its virulence (21). While these changes suggest that dysregulation of gene expression might
be an important consequence of rpoB mutations, it remains unclear whether such changes
also impart the fitness cost associated with rifampicin resistance inM. tuberculosis.

We used the known ability of mutations in the b barrel double c (BBDP) domain of the
b9 subunit of RNAP to compensate for the fitness cost of resistance mutations occurring in
the b subunit in M. tuberculosis as a starting point (10, 14, 15). Compensatory mutations
improve patient-to-patient transmission of rifampicin-resistant strains (22–24) and partially
reverse biochemical changes imparted on RNAP by rifampicin-resistance mutations (10, 15).
We hypothesized that the same would be true for gene expression differences (12, 25).
Leveraging the knowledge of the role of RpoC mutations, we used transcriptomic and pro-
teomic expression profiling to identify the signature of compensation and therefore to infer
the likely mediators of fitness cost in a collection of strains derived from a drug-susceptible
clinical isolate (Fig. 1). Our findings point to the idiosyncratic consequences of expressional
dysregulation as a key factor in reducing the growth rate of M. tuberculosis in culture, result-
ing in what we define as the fitness cost of rifampicin resistance in M. tuberculosis. Given
that RNAP is largely conserved across M. tuberculosis lineages (26), we posited that the same
rpoB mutation should have comparable effects in different genetic contexts. We tested the
potential generalized mechanism by profiling the expression signature of rifampicin resist-
ance in a panel of genetically diverse clinical strains sharing the same rifampicin resistance-
conferring mutation, RpoB Ser450Leu. We found little evidence of a shared transcriptional
signature of rifampicin resistance across strains, indicating a strong influence of strain geno-
types on the phenotype. In contrast, we observed an association between the fitness cost of
the rifampicin resistance-conferring mutation and the extent to which its presence imparted
a deviation from the proteome composition of the wild-type strain. While the causality of
these changes remains to be established, our findings highlight the importance of gene
expression dysregulation as a modulator of normal RNAP andM. tuberculosis physiology.

RESULTS
Compensatory mutations mitigate resistance-imposed expression changes.

Physiological changes manifesting as a fitness cost are likely to stem from deviations in
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gene expression. Since mutations in the BBDP domain of the b9 subunit of RNAP miti-
gate the fitness cost of rifampicin-resistance mutations in M. tuberculosis (10, 14, 15),
they should also impact, and therefore, highlight expression changes that are relevant
to the understanding of fitness cost of rifampicin resistance. Indeed, reversal of expres-
sion changes in the course of evolutionary adaptation has been shown before (12, 25).

We previously reported the results of a directed evolution experiment in which we iden-
tified a mutation in the BBDP domain, RpoC Leu516Pro, as a putative compensatory mecha-
nism for the fitness cost of the rifampicin-resistance conferring mutation RpoB Ser450Leu in
a clinical isolate of M. tuberculosis (17, 27). The strains generated by that study comprised
the original drug-susceptible isolate (DS), its laboratory-derived rifampicin-resistant mutant
(RpoB Ser450Leu) (RifR), and the resulting evolved strains obtained by serial passage in the
absence of rifampicin for 200 generations (DSevo and RifRevo), respectively (Fig. 1A).
Together, these strains offer a representative snapshot of the evolutionary process prevalent
in the clinic that passes through the initial emergence of (costly) drug resistance and leads
to the establishment of a mature drug-resistant strain whose fitness is indistinguishable
from that of its drug-susceptible ancestor (27). We therefore hypothesized that comparative
transcriptomic and proteomic expression profiling of these strains will allow us to determine
the expression signature of the fitness cost associated with rifampicin resistance. Based on
previous reports, we expected expression changes to fall into two groups. Specifically, we
expected to see either an increased expression of RNAP with limited pleiotropic changes, as
has been highlighted for E. coli and P. aeruginosa (8, 9), or a shift toward different biosynthetic
programs, as reported by studies inM. tuberculosis and Streptomyces (6, 18, 19).

FIG 1 Conceptual workflow. (A) Two complementary strain sets used for the experiments. Strains comprising the “evolutionary
trajectory of rifampicin resistance” set were derived from a single clinical isolate (N0155 [DS]) by isolation of a Ser450Leu mutant in
the laboratory and subsequent passage for 200 generations in the absence of rifampicin. These strains were used to identify
expression changes that are reversed by compensation, the “signature of compensation.” The robustness of our findings was checked
using the “genetic diversity strain set,” which contained five independent clinical isolates and their rifampicin-resistant derivatives. All
rifampicin-resistant strains shared the same resistance mutation, RpoB Ser450Leu. (B) Experimental outline for sampling and analyses.
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First, we determined the relative fitness of the RifR strain. Using a mixed-effects linear
regression model to analyze growth assays, we noted a 26.4% decrease (95% confidence
interval [CI], 21.5 to 31.0%; P, 0.001) in the growth rate of RifR compared to that of the DS
strain. The comparison of their evolved counterparts, DSevo and RifRevo, showed no signifi-
cant differences (21.2%; 95% CI, 210.8 to 7.1%; P=0.814), illustrating the fact that RpoC
Leu516Pro does indeed compensate the fitness cost of rifampicin resistance.

We aimed to identify differences in the baseline, unperturbed, gene expression as a
proxy for describing the biological basis for reduced fitness in RifR. We sampled
actively growing bacterial cultures of each of the four strains, extracting total RNA and
protein to be profiled using RNA sequencing (RNAseq) and sequential window acquisi-
tion of all theoretical mass spectra (SWATH-MS), respectively (Fig. 1B). In total, we were
able to obtain RNA transcript counts for all regions of the M. tuberculosis genome and
reliably quantify 2,886 proteins across our samples (see Fig. S2 and S3 in the supple-
mental material). We used differential expression analysis to test our hypothesis that
the compensatory mutation RpoC Leu516Pro had the net effect of reversing, at least
partially, the expression changes brought about by the rifampicin resistance mutation
RpoB Ser450Leu. To address this question, we chose an inclusive definition of differen-
tial expression, namely, a P value of less than 0.05 after adjusting for multiple testing
(see Materials and Methods). In keeping with our inclusive approach, we also deliber-
ately did not use an effect size threshold (e.g., minimum log fold change).

First, we compared RifR expression to that of its ancestor DS. We found no evidence
of changes in the expression of RNAP components (RpoA/B/C) at the level of tran-
scripts or proteins (Fig. 2). Instead, we identified 744/3,976 differentially expressed
transcripts, corresponding to 18.7% of the transcriptome, with a median expression
change of 47% (interquartile range [IQR] 37 to 63%). Of these, 73 genes showed a dys-
regulation of 2-fold or more. We observed the disruption of a greater proportion of the
proteome in RifR, namely, 998/2,886 differentially expressed proteins (34.6%) showing
a similar median expression difference of 45% (IQR, 29 to 78%). Consistently, a greater
number of proteins (N=176) exhibited an expression disruption of more than 2-fold.
Comparing RifR and RifRevo, we conclude that the RpoC Leu516Pro mutation reversed
the dysregulation of 229/744 transcripts (30.8%) and 217/998 proteins (21.7%). Using
linear regression to compare the magnitude of gene dysregulation (25), we found that
the overall impact of compensation was as expected—to mitigate the changes in normal
expression. RpoC Leu516Pro restored, on average, 43% (ordinary least-squares [OLS] linear
regression; P, 0.001) of the transcriptional and 30% (OLS linear regression, P, 0.001) of the
knock-on proteomic differences imparted by RpoB Ser450Leu. The smaller magnitude of the
latter is reflected in the fact that the proteome of RifRevo is closer to that of RifR than those
of DSevo or DS (see Fig. S4 in the supplemental material). Nonetheless, while compensation
significantly affected only a minority of the aberrantly expressed genes, it restored 60% (OLS
linear regression; P, 0.001) of the normal expression in compensated transcripts and 72%
(OLS linear regression; P, 0.001) of affected proteins (see supplemental material for a more
detailed explanation).

Expression dysregulation as a mediator of fitness cost. Since RifRevo no longer
had a growth defect, despite only partially restoring normal expression, we sought to
identify which expression changes were most likely to impart a growth defect on RifR.
To this end, we identified genes that were uniquely differentially expressed in RifR
compared to the other three strains in our data set and collectively labeled them a
“signature of compensation.” Gene set enrichment analysis of the transcriptomic data
pointed to iron homeostasis being significantly affected. Specifically, it indicated a
higher expression, in RifR, of genes that were repressed by the iron-dependent regula-
tor (IdeR, Rv2711) under iron-replete conditions (Fisher’s exact test; odds ratio = 4.27;
P=8.20� 1027). Among them, there was a significant enrichment of genes involved in
polyketide and nonribosomal peptide synthesis (Fisher’s exact test; odds ratio = 3.19;
P=2.30� 1024), which included the biosynthetic machinery for the sole M. tuberculosis
siderophore: mycobactin. We found a similar pattern, albeit less pronounced, in the
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proteomic data (see supplemental note and Fig. S5 in the supplemental material).
Together, these changes recapitulate published data (18) and suggest that RifR faced a
shortage of iron under our experimental conditions.

The availability of iron is an essential requirement forM. tuberculosis growth, both in culture
and during infection, and iron acquisition systems are therefore key virulence factors (28–30).
Hence, an increased requirement for iron could manifest itself as a loss of relative fitness. The
fact that RpoB Ser450Leu led to a modification of the expression of genes involved in iron ho-
meostasis, and that RpoC Leu516Pro reversed the effect, provides a compelling alternative
mechanism underpinning the fitness cost of rifampicin resistance. If the disruption of iron ho-
meostasis drives fitness cost (decreases bacterial growth rates), we would expect that iron sup-
plementation should mitigate the relative cost of RpoB Ser450Leu. Furthermore, based on the

FIG 2 Signature of compensation. (A) Expression changes in RifR and their compensation. Gray dots, all data;
red dots, signature of compensation; black diamonds, RNAP genes; black squares, mycobactin genes. The gray
line shows a linear regression model fit for all data (slope= 0.43 for RNA and 0.30 for protein; P, 0.001 for
both). The red line shows a linear regression model fit for “signature of compensation” genes (slope= 0.72 for
RNA and 0.60 for protein; P, 0.001 for both). (B) The relative fitness of drug-resistant (DR) strains is expected
to be lower than that of wild-type (DS) strains at first, but then is expected to increase due to compensatory
evolution. The phenotypic equivalent of this trend is illustrated as an increase/decrease in a measurable trait
upon the emergence of resistance, which is then returned to its previous level through compensation. We refer
to this dynamic as the signature of compensation. (C) Plot of transcript counts per million bases (TPM) and
label-free quantifications (LFQ) of cellular proteins for genes whose expression was perturbed by the Ser450Leu
mutation in RpoB and returned to the wild type in the presence of the compensating Leu516Pro mutation. All
results were standardized across measurements for a single gene to allow comparison between strains. Gray
traces show transcripts (left) and proteins (right) of RNAP components (rpoA, rpoB, and rpoC); blue traces show
transcripts (left) and proteins (right) of components of the mycobactin biosynthesis cluster. The bold black lines
show the mean of the sample.
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expression profile, we expected that RifR should produce more mycobactin at baseline than
DS, potentially influencing the overall growth rate of the mutant.

We addressed the first hypothesis by comparing the growth rates of RifR and DS in
the presence or absence of 10mM hemin, an additional source of iron that is by itself
sufficient to support the growth of a mutant defective in mycobactin biosynthesis (28).
Importantly, hemin and mycobactin provide two separate routes of iron uptake, which
allows us to sidestep issues that might emerge from deficient iron transport (28). The
presence of hemin did not change the cost of RifR, which we calculated to be 18.6% in the
absence and 20.9% in the presence of hemin for this experiment (mixed effects linear
model; P=0.737). Similarly, hemin did not impact the growth rate of DS (24.7%; 95%CI,
216.3 to 2.3%; P=0.128). In summary, iron did not appear to limit the growth of RifR under
our conditions.

Next, we addressed the production of mycobactin. We prepared whole-cell extracts
from DS and RifR grown in both normal medium and medium supplemented with 10mM
hemin. We found that, on average RifR, produced more mycobactin than DS (Fig. 3A), cor-
roborating the physiological relevance of the increased baseline expression of mycobactin
biosynthesis genes. We also observed a slight decrease in the production of mycobactin in

FIG 3 RifR had a higher baseline level of mycobactin biosynthesis than DS. (A) Relative mycobactin levels in DS and RifR in normal medium (gray dots) and
iron-supplemented medium (10 mM hemin; red dots). White circles represent the mean of the observations. The highest measurement (RifR, no iron
supplementation) was used as the reference value. (B) Subset of the gene regulatory network (33) containing iron-responsive genes. Circles represent IdeR-
regulated genes that are either induced (black inner circle) or repressed (white inner circle) under low-iron conditions. Hexagons represent IdeR-
independent iron responsive genes that are induced (white inner hexagons) or repressed (black inner hexagons) under low-iron conditions. We used blue
and red to indicate significantly lower or higher RNA expression in RifR, respectively. Diamonds represent transcriptional modules as defined by Petersen et
al. (33); black diamonds indicate modules that contain at least 3 IdeR-responsive genes. Edges connect gene nodes with the module nodes they belong to.
Labels 1 to 7 refer to module 502 (no. 1), module 525 (no. 2), module 267 (no. 3), module 446 (no. 4), module 231 (no. 5), module 086 (no. 6), and module
295 (no. 7) from the original publication.
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bacteria grown in the hemin-supplemented medium, pointing to a modification of the
expression of mycobactin biosynthesis cluster in response to iron (Fig. 3A). Given that the
growth rate was not affected by the presence of hemin, these findings suggest that iron
availability itself does not limit the growth rate of the mutant. It is therefore possible that
the higher level of expression of the mycobactin biosynthetic cluster itself might impart a fit-
ness cost.

Interestingly, while significantly enriched, only half of the transcripts reported to be
repressed by IdeR (31) under iron-replete conditions were part of the signature of com-
pensation (22 out of 40 genes). This prompted us to take a closer look at the IdeR regu-
lon and its regulation. We took advantage of the availability of studies modeling the
global gene regulation in M. tuberculosis (32–34). We reconstructed the genome-wide
gene regulatory network and extracted the immediate neighbors of IdeR and iron-re-
sponsive genes (33). There were 7 expression modules that contained at least 3 genes
that are part of the IdeR regulon (Fig. 3B, black diamonds). Together, these modules
covered 82.5% of all the IdeR-repressed genes, and, with the exception of module 4
(Fig. 3B), none of the modules included IdeR-independent iron-responsive genes. All of
the genes that we identified as candidates for compensation belonged to modules 1
to 4, while none of the genes included in the other modules were found to be differen-
tially expressed in RifR. A key difference among modules was that IdeR-regulated
genes represented more than half of all the genes in modules affected by compensa-
tion but fewer than half in those that were not part of the signature of compensation.
Mapping proteomic data onto the same expression network produced similar results
(see Fig. S6A in the supplemental material). Interestingly, few of the IdeR-independent
iron-responsive genes were part of the signature of compensation. This pattern implies
a modulation of the canonical function of IdeR, either through regulatory inputs from
other transcription factors or via some other mechanism.

These results supported our hypothesis that mutations in rpoB impart changes to the
baseline expression profile of M. tuberculosis that could be reversed in the presence of a
compensatory mutation in rpoC. Combining the expression data with our findings that iron
supplementation and mycobactin levels did not affect RifR growth rates, we concluded that
the transcriptional changes were not driven by the demand for iron. Instead, these changes
might be a reflection of a dysfunction of RNAP, e.g., differences in promoter specificity or
modified interaction with IdeR, whose downstream consequences may impose a fitness
effect. For example, as the mycobactin biosynthesis cluster comprises several large proteins,
their excessive production could represent a drain on the cell’s resources. If true, we would
expect such effects to be universal across all M. tuberculosis strains carrying this rpoB muta-
tion. Indeed, mycobactin overproduction has been reported for rifampicin-resistant strains
from multiple different genetic backgrounds (18).

Mycobactin dysregulation is shaped by epistasis.We wanted to test the hypoth-
esis that higher expression of the mycobactin biosynthetic cluster is a general feature
of rifampicin resistance in M. tuberculosis and therefore is the underlying cause of its fitness
cost both in the laboratory and the clinic. To do so, we generated RpoB Ser450Leu mutants
in five genetically diverse clinical isolates belonging to two different M. tuberculosis lineages
and profiled them. Globally, M. tuberculosis can be grouped into nine distinct genetic line-
ages, each with a specific geographic distribution (35–37). M. tuberculosis lineages can differ
in their interaction with the human host, the dynamics of disease progression, and also in
their apparent propensity to acquire drug resistance (38, 39). We chose strains belonging to
lineages 1 and 2 because of their large phylogenetic separation (see Fig. S7 in the supple-
mental material) and, more importantly, because drug resistance is often associated with lin-
eage 2 and is relatively rare in lineage 1 (26). We expected that the comparison of the tran-
scriptome and proteome between the Ser450Leu mutants and their cognate wild-type
ancestor would allow us to identify general patterns of fitness cost linked to this mutation,
such as mycobactin biosynthesis.

It is important to note that this comparison did not include any compensated
strains, i.e., strains carrying mutations in the BBDP domain. We were therefore unable
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to focus our analysis exclusively on genes whose expression was corrected by the pres-
ence of an rpoC mutation. Nonetheless, direct comparison of RifR and DS is virtually
indistinguishable from the signature of compensation when considering IdeR-regu-
lated genes and therefore serves as a reasonable proxy for our analyses (Fig. S6B).

We started by measuring the growth characteristics of the wild-type isolates and the rela-
tive cost of the RpoB Ser450Leu mutation in the different strain backgrounds. The genera-
tion time varied from 22.7 h (95% CI, 20.8 to 25.0 h) to 31.0 h (95% CI, 29.3 to 35.1 h). The rel-
ative fitness cost of the RpoB Ser450Leu mutation differed as well, from a modest 2%
(mixed-effects linear regression; P=0.71) to a pronounced 27% (mixed-effects linear regres-
sion; P=5.6� 1026) (see Table S1 in the supplemental material).

We obtained the expression profiles for each strain to check whether the pattern
we identified for IdeR-repressed genes was a universal phenotype for RpoB Ser450Leu
mutants. When we analyzed the transcriptomic data by performing a single compari-
son across the five strain pairs, we found that only 17.5% (7/40) of the IdeR-repressed
genes were significantly differentially expressed. A single gene belonging to the myco-
bactin biosynthesis cluster was included in that number. Proteomic analysis revealed a
similar result; 17.1% (6/35) of detected proteins, none of which belonged to the myco-
bactin biosynthesis cluster, were found to be significantly differentially expressed
across all strains. None of the iron homeostasis gene sets highlighted in the signature of
compensation were significantly differentially expressed across all strains. Since these find-
ings were contrary to our expectations, we stratified the analysis and mapped the differen-
tial expression results for each strain onto the IdeR and iron-responsive gene network we
collated earlier. These results echoed our combined analysis, namely, the signature of com-
pensation was not universal across the tested strains. N0155, which corresponds to DS, is
the only strain to show a transcriptional profile consistent with the signature of compensa-
tion (Fig. 4). Proteomic data corroborated this finding (see Fig. S8 in the supplemental mate-
rial). It is important to note that these data represent an independent replication of the
experiments from which we derived the signature of compensation, showing that our origi-
nal results are robust and reproducible. However, the absence of a coherent IdeR-responsive
phenotype in the other strains was clear evidence that mycobactin dysregulation is not a
universal feature of rifampicin resistance, but rather is shaped by the genetic makeup of
each strain—in other words, epistasis. The fact that mycobactin dysregulation was not gen-
eralizable raised a broader question: are there any commonalities in the phenotypic manifes-
tation of the RpoB Ser450Leu mutation among our set of strains?

Correlates of rifampicin resistance-related fitness cost. Our profiling of RifR
(N0155) provided compelling evidence that the dysregulation of gene expression mediated
the cost of rifampicin resistance. The data generated to expand on this observation, while not
supportive of a general role of mycobactin dysregulation, indicated that fitness costs differ
across genetic backgrounds. We reasoned that this gradient could be exploited to identify cor-
relates of rifampicin resistance-related fitness cost and therefore to generate new hypotheses
to be explored in the future. Before we could proceed, we needed to account for the possibil-
ity that expression differences might be driven by the genetic relatedness of strains, therefore
limiting our inferences about the impact of RpoB Ser450Leu. To do so, we performed a pair-
wise comparison based on genetic and expression relatedness (see supplemental material).
We found that the impact of resistance on the expression profile of any two strains was inde-
pendent of the genetic distance between them (see Fig. S9 in the supplemental material). We
surmised that the specific phenotypic manifestation of resistance was therefore dependent on
genetic variation that defined strains rather than lineages. As a result, our data could be used
to find correlates of the differing fitness costs of RpoB Ser450Leu.

Overall, we were able to detect a wealth of gene expression changes in our samples; as
many as 958 transcripts and 1,914 proteins were observed to be differentially expressed in
at least one comparison across our samples. The effect on individual strains differed, ranging
from a few genes for N0145 to almost half of the genome in N0157. Our attempt to identify
common patterns resulted in two contrasting lines of evidence. On the transcriptional level,
each strain was perturbed in its own private way (Fig. 5A), manifesting as the drug resistance

Trauner et al. Antimicrobial Agents and Chemotherapy

September 2021 Volume 65 Issue 9 e00504-21 aac.asm.org 8

https://aac.asm.org


iteration of the Anna Karenina principle (40). Of the 958 transcriptional changes, none
affected all five tested strain pairs, and only seven were shared by four strain pairs. This het-
erogeneity was also supported by analyses focused on transcriptional modules and the
comparison of the magnitude of differential expression. While we were able to identify indi-
vidual transcriptional modules as dysregulated in individual backgrounds, there were no
commonalities across strains (Fig. 4B). Furthermore, we saw almost no association between
the relative fitness of RpoB Ser450Leu mutants and the magnitude of global transcriptional

FIG 4 The prominent role of mycobactin biosynthesis in the signature of compensation was not universal. (A) Iron-responsive subset the of gene
regulatory network, as shown in Fig. 3, colored based on transcriptional differential expression data from pairwise comparison of genetically distinct
rifampicin-susceptible clinical isolates and their cognate RpoB Ser450Leu mutants. RifR and N0155 refer to an independent sampling of the same strain
pair. See Fig. S7 in the supplemental material for the proteome counterpart of this plot. (B) Representation of the enrichment of significantly differentially
expressed genes within individual transcriptional modules, as defined by Peterson et al. (33). The columns alternate proteomic (P) and transcriptomic data
(R). “ALL” refers to the global differential expression analysis of all rifampicin-susceptible against all rifampicin-resistant strains. The remaining column
annotations refer to individual pairwise comparisons in different genetic backgrounds. Black squares represent no significant enrichment, and mauve
squares and yellow squares show enrichment at 0.01 , P, 0.05 and P, 0.01 using Fisher’s exact test. These P values are not adjusted for multiple testing.
Modules covering the DosR regulon and IdeR iron-repressed regulon are highlighted separately.
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disruption (R2 = 0.39; P=0.258; ordinary least-squares linear regression; see Fig. S10 in the
supplemental material). The fact that the same mutation, RpoB Ser450Leu, can have such
profoundly different outcomes depending on the genetic context in which it occurs is further
evidence of the epistasis we observed in the regulation of mycobactin described above. It also
shows that natural genetic variation across strains can fundamentally impact the physiological
consequences, and by extension, the evolution of drug resistance inM. tuberculosis.

In contrast to the transcriptional changes, the pattern of proteome disruption was
more coherent across strains. While there was clear evidence for idiosyncratic strain-
dependent differences, with only one shared differentially expressed protein across all
strain pairs, the level of 480 proteins (17% of the measured proteins) was significantly
altered in four rifampicin-resistant strains compared those in to their ancestors (Fig. 5B).
This overlap points to a more consistent impact of RpoB Ser450Leu than that suggested
by the transcriptome and hints at a broader posttranscriptional readjustment of expression.
Moreover, we found a correlation between the relative fitness cost of the RpoB mutation
and the extent of proteome disruption caused by this mutation in the different backgrounds
(R2 = 0.86; P=0.022; ordinary least-squares linear regression; see Fig. S10).

We used our proteomic data to identify which metabolic pathways were most affected by
a change in the relative abundance of their constitutive proteins. We found that RpoB
Ser450Leu imparted a broad recalibration of central carbon metabolism, with an upregulation
of proteins involved in glycolysis/gluconeogenesis, the citric acid cycle, and amino acid metab-
olisms (see Fig. S11 and supplemental note in the supplemental material). Interestingly, the
majority of the differentially expressed proteins showed an increase in baseline levels of pro-
tein abundance, hinting at a greater investment in the protein compartment. Indeed, account-
ing for the amino acid composition and size of individual proteins suggested that the pro-
teome of rpoBmutants seemed to require a larger investment of biomass than their wild-type
ancestors (see Fig. S12 in the supplemental material).

Whether these changes are the cause or consequence of the fitness cost of RpoB
Ser450Leu remains to be determined. Nonetheless, the study of growth rate-dependent
gene expression by itself, and of how it pertains to RNA polymerase mutations, might
point to new physiological vulnerabilities of rifampicin-resistantM. tuberculosis.

FIG 5 The impact of RpoB Ser450Leu on gene expression varied across strains and cellular compartments. (A) Venn diagram of differentially expressed
transcripts (P, 0.05 after adjustment for multiple testing; RNAseq) between clinical strains and their cognate RpoB Ser450Leu mutant. (B) Venn diagram of
differentially expressed proteins (P, 0.05 after adjustment for multiple testing; SWATH-MS) between clinical strains and their cognate RpoB Ser450Leu
mutant.
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DISCUSSION

We show that RpoB Ser450Leu imparts a measurable physiological perturbation in
addition to conferring rifampicin resistance. Consistent with the suggested role of compen-
satory mutation (10, 14, 15, 27), we confirmed that in one strain, RpoC Leu516Pro reduced
both the apparent fitness cost of rifampicin resistance, defined as reduced growth rate in
the absence of drug, and the magnitude of the expression changes arising from it. However,
we also found that the nature of the perturbation was not consistent across different genetic
backgrounds. Higher expression of the mycobactin biosynthetic cluster correlated with the
cost of rifampicin resistance in one clinical strain, but remained unperturbed in the other
four unrelated strains. Instead, we observed a strain-specific response to the RpoB mutation,
in terms of both the relative impact on growth and the rearrangement of gene expression.
A general mechanism of fitness cost for even a single rifampicin resistance-conferring muta-
tion remains elusive and is subject to modulation by the particular genomic context. Using
the data presented in this study, we propose a hypothesis for how the gain-of-resistance-
conferring mutation, changes in gene expression, and relative fitness of rifampicin-resistant
mutants might operate (Fig. 6).

One of our main assertions emerging from this work is that the fitness cost of rifampicin
resistance and its compensation are mediated by expression differences. This claim is based
on the fact that the presence of the compensatory Leu516Pro substitution in RpoC partially
restores many of the expression changes observed in RifR while reducing the cost of drug
resistance. Among these, dysregulation of mycobactin biosynthesis provided the strongest
reproducible functional signal, affecting both transcripts and proteins. Iron homeostasis is
essential for optimal growth, both in culture and during infection, and its disruption could
impair the ability of M. tuberculosis to proliferate and cause disease. Expression of the myco-
bactin cluster is repressed under iron-replete conditions by IdeR (31), and its upregulation in

FIG 6 Fitness cost of rifampicin resistance as a function of the dysregulation of gene expression.
Based on our observations, we propose that the gain of a rifampicin-resistance conferring mutation
(r ) turns a drug-susceptible (DS) strain into a drug-resistant (DR) strain. However, it also imparts a
global change in gene expression (d ). The extent of this change determines the fitness cost (« ) of
the rifampicin resistance-conferring mutation. Consider the fitness landscape comprising two strains
(strain A and strain B). According to our hypothesis, if the acquisition of the same rifampicin
resistance-conferring mutation in both strains (rA = r B) imparts a larger disruption of gene
expression in strain A than in strain B (d A . d B), we would expect a greater loss of reproductive
fitness in strain A than in strain B («A . « B). Consequently, therapeutic agents (“drug”) that would
result in the de facto movement of strain B across the fitness landscape could increase the fitness
cost of drug resistance in strain B.
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RifR indicates insufficient access to iron. Nonetheless, we found no association between iron
supplementation and the growth rate of RifR. Furthermore, we observed incoherent expres-
sion of the IdeR regulon, which indicates aberrant expression rather than a physiologically
accurate response to iron. Together, these observations point to the expression of the myco-
bactin biosynthetic cluster, rather than insufficient iron, as a most likely cause for slower
growth. However, it is possible that the growth rate differences were mediated by a different
signal—either the modified expression of a different protein, or group of proteins or, alter-
natively, a small-molecule signal such as cAMP (41). While we cannot exclude this possibility,
it is unlikely that other coherent expression differences account for the impact of resistance,
as illustrated by the disparity in expression profiles among strains. An important caveat to
this is that our “signature of compensation” was based on a single strain background.
Ideally, we would validate our findings in a separate “isogenic” strain set; however, we did
not have access to such strains. We attempted to address the issue of generalizability by
analyzing additional rpoB mutants from different genetic backgrounds. Similarly, we only
explored the effects of a single—albeit the clinically most relevant—RpoB mutation,
Ser450Leu. While this choice was intentional to control for the disparate consequences that
different mutations might have on RNAP (8, 15, 42), our observations may not hold true for
other RpoB mutations. Finally, we did not attempt to quantify in vivo transcriptional effi-
ciency using reporter systems (8, 9). Instead, we assumed that the transcriptional properties
determined in vitro (15) were applicable to and comparable in different strains. An indirect line
of evidence supporting the validity of this assumption is provided by the fact that RNAP and
ribosomal protein levels, both linked to transcriptional efficiency (8, 43, 44), were mostly unal-
tered among the strains we analyzed (see Fig. S13 and S14 in the supplemental material).

Keeping these considerations in mind, there are two striking features to emerge
from our results. The first is the pervasive epistasis modulating the impact of RpoB
Ser450Leu; the same mutation had markedly different effects on the physiology of different
M. tuberculosis strains. The second is the apparent mechanism through which modulation of
gene expression is propagated across the levels of bacterial physiology. Modification in
RNAP function seems to have pleiotropic effects that transcend the disruption of any single
group of genes and impart instead a global perturbation of gene expression.

One question that remains open is that of what sits at the heart of the disparity in
phenotypes. The sequence of RNAP is effectively the same in all strains (26) and, by
extension, so should be all the biochemical changes that arise from resistance. Namely,
RNA polymerase with a Ser450Leu substitution exhibits lower transcriptional initiation
efficiency, lower elongation rates, and a higher efficiency of transcriptional termination
(15). All of these phenotypes are mitigated by the presence of mutations in the BBDP
domain in RpoC (15). If these defects are intrinsic to the enzyme and therefore should
have a coherent impact, what gives rise to the observed phenotype heterogeneity? We
envisage that part of the answer lays in differences in underlying robustness—a strain’s
capacity to buffer perturbation. One possible candidate for this is DnaJ2, a chaperone
that was recently reported to be important for the stabilization of the Ser450Leu sub-
stitution in RpoB of mycobacteria (45). For example, differing physiological levels of
this protein could provide a rationale for our observations. Unfortunately, we did not
find a statistically significant correlation between DnaJ2 levels and the relative fitness
of RpoB mutants (see Fig. S15 in the supplemental material). On the other hand, we
can consider our data set a window into the evolutionary adaptation of each strain,
and a sign of how different their physiologies really are. The amalgamation of muta-
tional differences that effectively makes up a strain’s genetic background weaves a
baseline phenotype that allow different M. tuberculosis strains to be successful patho-
gens despite differences in their underlying physiology (46). These differences are
unmasked by the presence of a mutation that sits at the core of gene expression and
reveals idiosyncratic transcriptional responses to rifampicin resistance that are poorly
conserved across phylogenetic distances. This observation implies that further investi-
gation of positive selection of compensation of resistance-related traits should be per-
formed in genetically very closely related strains, as results could differ considerably when
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comparing across larger phylogenetic distances. In the case of our study, even two relatively
similar strains (N0145 and N0155, 207 single-nucleotide polymorphisms apart) were found
to have considerably different physiological consequences of the same mutation. Indeed,
most studies that attempted to identify signatures of drug resistance-driven positive selec-
tion of traits have generated diffuse signals (47–49).

The strain-specific nature of resistance-related expression perturbations provides a
tractable link to disparate growth rate modulation. There is a growing body of litera-
ture exploring how proteome composition influences growth rate (50–52). Such stud-
ies have led to the formulation of a collection of “growth laws” that link growth rates
to the partitioning of the proteome between ribosomes and the proteins carrying out
other cellular functions (51). Growth on different carbon sources impacts this balance,
with “poorer” carbon sources requiring a greater investment into the functional pro-
teome, presumably because of the need for anabolic reactions that increase the reli-
ance on biosynthetic enzymes. A similar relationship has been observed in a wide
range of microbial species (53). An elaboration of these growth relationships also led
to the conclusion that the efficiency of proteome allocation can impact growth rates
and cell physiology (54). Our finding that the increase in the biomass investment into
the proteome brought about by the gain of an RpoB mutation correlates with the rela-
tive fitness of that mutation is consistent with these reports. However, before we can
claim that proteome allocation drives growth rate in M. tuberculosis in a way that is
analogous to that in E. coli, we will first have to establish what limits the growth rate of
an M. tuberculosis cell. In E. coli, proteins make up at least half of the dry weight of the
cell (51), while in M. tuberculosis this fraction is considerably lower, around 20% (55).
While the relationship is not impossible, there are other components that represent siz-
able investment into biomass in M. tuberculosis. For example, both lipids and cell wall
may act as a sink for growth-limiting resources in M. tuberculosis, as they can account
for more than half of the dry mass of actively growing cells (55). As mentioned earlier,
lipidomic analysis pointed to differences in mycobactin biosynthesis as one of the big-
gest discrepancies between rifampicin-resistant mutants and their susceptible ances-
tors (18). While echoing a key observation from our quest for determining the cost of
resistance, we saw no evidence that mycobactin levels themselves change the rate of
bacterial growth. The virulence-associated phthiocerol dimycocerosates (PDIM) have
also been implicated in the cost of rifampicin resistance (19), as have other changes in
lipid composition (20). The full exploration of the role of lipids in the physiology of
rifampicin-resistant M. tuberculosis is beyond the scope of this study. Nonetheless, it
would provide an interesting new and complementary avenue to pursue, especially
when correlated with the expression of the pertinent biosynthetic proteins. Moreover,
the physiological aspects of growth rate determination in M. tuberculosis remain poorly
defined, and such studies could provide important insights.

In conclusion, the observed differential cost of rifampicin resistance across M. tuber-
culosis strains provides a lens through which we can better understand the emergence
of drug resistance in clinical tuberculosis. Such considerations illuminate a new avenue
to pursue in the fight against rifampicin-resistant M. tuberculosis and perhaps to
uncover a new paradigm for chemotherapeutic intervention. If the disruption of pro-
teome composition indeed disproportionally impacts rpoB mutants, then agents that
impart a considerable shock to the expression equilibrium of bacteria could exhibit
potent activity against rifampicin-resistant strains due to collateral sensitivity (56)—
provided, of course that the strains have not yet been compensated. For example, the
caseinolytic protease and the proteasome both play an essential role in protein home-
ostasis in M. tuberculosis (57, 58) and, as such, represent interesting intervention points.
Indeed, both have garnered considerable attention as underexplored antibiotic targets
(58). As a consequence, when given in combination with rifampicin, such agents may
act to suppress the emergence of resistance by imposing a physiological barrier, a val-
uable attribute for lengthening the shelf life of rifampicin. Exploring the causality of
the relationship between proteome disruption and the cost of rifampicin resistance,
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and the impact of growth rate on M. tuberculosis gene expression, could provide a
framework for enabling collateral sensitivity approaches in M. tuberculosis (56).

MATERIALS ANDMETHODS
Strains and culture conditions. We used four strains described previously (27), namely, the wild

type, clinical isolate T85 (N0155 [DS]), a rifampicin-resistant mutant of T85 carrying the Ser450Leu muta-
tion (N1981 [RifR]), a derivative of T85 that was evolved by serial passage (200 generations) in the ab-
sence of rifampicin (N1588 [DSevo]), and an evolved derivative of the rifampicin-resistant strains carrying
an additional mutation in RpoC, Leu516Pro (N1589 [RifRevo]).

In addition to these strains, we used four clinical isolates that are part of a reference set ofM. tuberculo-
sis clinical strains covering the genetic diversity of M. tuberculosis (26). Two strains belonged to lineage 1
(N0072 and N0157) and two to lineage 2 (N0052 and N0145). We plated each of these strains on 7H10
plates containing 5mg/ml rifampicin and picked colonies of spontaneous mutants. We checked the rifam-
picin resistance-conferring mutations using Sanger sequencing of the amplified RRDR region (forward primer,
TCGGCGAGCTGATCCAAAACCA; reverse primer, ACGTCCATGTAGTCCACCTCAG; product size, 601bp), and kept
a Ser450Leu derivative of each respective clinical strain (N2027, N2030, N2495, and N1888).

Bacteria were cultured in 1-liter bottles containing large glass beads to avoid clumping and 100ml
of medium, incubated at 37°C and rotated continuously on a roller. Unless otherwise, stated we used a
modified 7H9 medium supplemented with 0.5% wt/vol pyruvate, 0.05% vol/vol tyloxapol, 0.2% wt/vol
glucose, 0.5% bovine serum albumin (Fraction V; Roche), and 14.5mM NaCl. Compared to the usual
composition of 7H9, we omitted glycerol, Tween 80, oleic acid, and catalase from the medium. We
added 10mM hemin (Sigma) when supplementing growth medium with iron. We followed growth by
measuring optical density at 600 nm (OD600).

Data analysis. Unless otherwise stated, we preformed the analyses using Python 3.5.2 augmented
with the following modules to provide additional functionality: Matplotlib (v2.0.0), Numpy (v1.12.1),
Scipy (v0.19.0), Pandas (v0.20.1), statsmodels (v0.8.0), sklearn (v0.18.1), and netwrokX (v2.5.1).

Fitness determination. M. tuberculosis fitness was determined by comparative growth rate estima-
tion. We grew bacteria as described and followed their growth by measuring OD600. We transformed the
optical density measurements using logarithm base 2 and trimmed all early and late data points that
deviated from the linear correlation expected for exponential growth. Next, we fitted a linear mixed-
effects regression model to the data. Fitness cost was calculated as the resistance-imposed deviation
from wild-type growth dynamics.

Transcriptional analysis with RNAseq. We transferred a 40-ml aliquot of bacterial culture in the
mid-log phase (OD600 = 0.56 0.1) into a 50-ml Falcon conical tube containing 10ml ice. We harvested
the cells by centrifugation (3,000� g, 7min, 4°C), resuspended the pellet in 1ml of RNApro solution (MP
Biomedicals), and transferred the suspension to a lysing matrix B tube (MP Biomedicals). We disrupted
the bacterial cells using a FastPrep24 homogenizer (40 s, intensity setting of 6.0; MP Biomedicals). We
clarified the lysate by centrifugation (12,000� g, 5min, 4°C), transferred the supernatant to a clean tube
and added chloroform. We separated the phases by centrifugation (12,000� g, 5min, 4°C) and precipi-
tated the nucleic acids from the aqueous phase by adding ethanol and incubating at 220C overnight.
We performed a second acid-phenol extraction to enrich for RNA. We treated our samples with DNase I
Turbo (Ambion), and removed stable RNAs by using the RiboZero Gram-positive rRNA depletion kit
(Epicentre). We prepared the sequencing libraries using the TruSeq stranded total RNA kit (Illumina) and
sequenced on a HiSeq 2500 high-output run (50 cycles, single end).

Illumina short reads were mapped to the M. tuberculosis H37Rv reference genome using Burrows-
Wheeler Aligner (BWA; v0.7.13); the resulting mapping files were processed with SAMtools (v1.3.1). Per-
feature read counts were performed using the Python module htseq-count (v0.6.1p1) and Python
(v2.7.11). We performed differential expression analysis using the R package DESeq2 (v1.16.1) (59) and R
(v3.4.0). In the case of the identification of the signature of compensation we performed a comparison
of RifR versus DS plus DSevo plus RifRevo. For the follow-up experiments, we performed two separate
comparisons, (DRN0072 1 DRN0157 1 DRN0052 1 DRN0145 1 DRN0155) versus (DSN0072 1 DSN0157 1 DSN0052 1
DSN0145 1 DSN0155), as well as individual DR versus DS comparisons for each strain.

Gene set enrichment analysis was based on functional annotation from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and a custom collation of curated gene sets based on published reports.
The overrepresentation analysis was based on Fisher’s exact test as the discriminating test.

In addition, we transformed per-feature counts into transcript counts per million bases (TPM). TPM
for each feature for each sample were calculated using the following formula:

TPMi ¼
countsi
sizeiXn

j

countsj
sizej

where countsi refers to the number of reads that map to a feature i and sizei refers to the length (in
bp) of feature i. This ratio was normalized by dividing by the sum of all the ratios across all the features.

Proteomic analysis with SWATH-MS. We harvested 20 OD600 equivalents from mid-log phase
(OD600 = 0.56 0.1) bacterial cultures by centrifugation (3,000� g, 7min, 4°C). We washed the bacterial
pellet twice with phosphate-buffered saline (PBS) to remove residues of tyloxapol. We resuspended the bacte-
rial pellet in 500ml of protein lysis buffer (8 M urea, 0.1 M ammonium bicarbonate, and 0.1% RapiGest; Waters)
and transferred the suspension to a lysing matrix B tube (MP Biomedicals). We disrupted the bacterial cells
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using a FastPrep24 homogenizer (40 s, intensity setting of 6.0; MP Biomedicals). We clarified the lysate by cen-
trifugation (12,000� g, 5min, 4°C), and sterilized the supernatant by passing it twice through 0.22-mm syringe
filters (Millipore).

Following protein extraction for each sample, we used trypsin to digest proteins into peptides and then
desalted them using C18 columns (The Nest Group). The cleaned-up peptides were resuspended in mass
spectrometry buffer (2% [vol/vol] acetonitrile and 0.1% [vol/vol] formic acid). Finally, index Retention Time
(iRT) kit (Biognosis) containing 11 iRT retention time normalization peptides was spiked into every sample.

We measured every sample in sequential window acquisition of all theoretical mass spectra (SWATH)
mode, a data-independent acquisition implementation, on a TripleTOF 5600 mass spectrometer (AB Sciex)
coupled to a nanoflow high-performance liquid chromatography (HPLC) system with a gradient of 1 h (60).
The raw files acquired through a 64 variable-width-window precursor isolation scheme were centroid normal-
ized using ProteoWizard msconvert. We used a M. tuberculosis spectral library described previously (61) to
extract data using the OpenSWATH workflow (60, 62, 63). The processed data were filtered by MAYU to 1%
protein false-discovery rate (FDR) (63). The R packages aLFQ and MSstats were used for protein quantification
(top 3 peptides and top 5 fragment ions [64]) and differential expression analysis, respectively (65, 66).

Mycobactin determination. We harvested 5 OD600 equivalents from mid-log phase (OD600=0.56 0.1)
bacterial cultures by centrifugation (3,000� g, 7min, 4°C). We washed the bacterial pellet three times with
15ml of cold, sterile 7H9 medium base devoid of additives (BD) to remove residues of tyloxapol. After washing,
we resuspended the pellets in 80ml of cold, sterile 7H9 medium base and added 750ml of 1:2 chloroform-
methanol. We vortexed the samples for 5 min at top speed and added 750ml of chloroform. The samples
were shaken for 1.5 h at room temperature and clarified by centrifugation (16,000� g, 10min). We transferred
the organic phase to a fresh tube, dried the samples in a SpeedVac vacuum concentrator, and resuspended
each sample in 120ml of 44:44:2 (vol/vol/vol) acetonitrile-methanol-H2O.

Chromatographic separation and analysis by mass spectrometry was done using a 1200 series HPLC
system with a Kinetex column (1.7ml� 100mm� 2.1mm; Phenomenex) with a SecurityGuard Ultra col-
umn guard (part no. AJ-9000) coupled to a 6550 accurate-mass Q-TOF instrument (Agilent
Technologies). Solvent A consisted of H2O and 10mM ammonium acetate; solvent B consisted of aceto-
nitrile and 10mM ammonium acetate. A 10-ml aliquot of extract was injected, and the column (C18) was
eluted at 1.125ml/min. Initial conditions were 60% solvent B, followed by 0 to 2min at 95% B, 2 to 4min
at 60% B, and 4 to 5min at initial conditions. Spectra were collected in negative-ion mode from 50 to
3,200 m/z. Continuous infusion of calibrants (compounds HP-321, HP-921, and HP-1821; Agilent) ensured
exact masses over the whole mass range.

We converted the raw data files to the mzML format using msConvert and processed them in R
using XCMS (67) (v3.0.2). We extracted targeted ion chromatograms with CAMERA (v1.34.0).

Transcriptional module analysis. The iron-responsive subgraph of the global gene regulation net-
work published by Peterson et al. (33), was generated by using all expression modules and all iron-re-
sponsive genes as nodes, with edges connecting them representing module membership. All other gene
nodes were discarded, keeping only the information pertinent to the number of genes present in each module
(its degree). We focused explicitly on modules with at least 3 IdeR-dependent iron-responsive genes within
them. Finally, we marked significant differential expression of the gene nodes in every comparison.

For the purposes of contextualizing the expressional profiling of RpoB Ser450Leu, we selected a sub-
set of expression modules as follows. First, we collated all of the genes that were differentially expressed
in at least one genetic background, as determined by pairwise comparisons. We then scored each
expression module for enrichment of membership by differentially expressed genes using a binomial
test. We retained all modules for which the test pointed to an excess of differentially regulated genes
(P, 0.05). We constructed a new subgraph of the global regulatory network using all enriched modules
and their constituent genes, irrespective of whether or not individual genes were significantly differen-
tially expressed. Edges reflected module membership. We added expression information in the form of
log fold changes of abundance to each subgraph based on pairwise analyses.

Calculation of genetic distance between clinical isolates. Genetic distance between strains was
defined as the number of single-nucleotide variants (SNV) that separate two strains. The numeric value
of this parameter was extracted from a phylogeny published elsewhere (26).

Quantification of the relative impact of the rpoB mutation on gene expression in different
clinical isolates. We define the dissimilarity in the expressional response to the presence of the rpoB
mutation using the following three metrics: the absolute number of shared significantly differentially
expressed genes, the fraction of both the shared significantly differentially expressed genes and shared
nonaffected genes (Hamming distance), and the Euclidean distance between ratios of TPM. The first is
simply the number of shared genes that were found to be significantly affected by the presence of the rpoB
mutation in two different genetic backgrounds. For the second, we used the same input to calculate the
Hamming distance between the patterns of genes significantly affected by the mutation in rpoB in two differ-
ent genetic backgrounds. In the third case, we first calculated the TPM. We then calculated the mean TPM for
each gene across the biological replicates, as well as the ratio of mutant to wild-type mean TPM for every
gene. This gave us a vector containing 4,000 ratios for each mutant-wild type pair. Finally, we calculated the
Euclidean distance between these vectors for the different genetic backgrounds. We plotted each of these
metrics against genetic distance and calculated the Spearman correlation and the coefficient of variance as fol-
lows: standard deviation over mean multiplied by 100 (s /m � 100%).

Quantification of the degree of compensation from global expression data. We first extracted
the log fold change for each gene calculated with DESeq2 and MSstats in the comparison between ei-
ther DS-RifR or RirR-RifRevo. We then performed an ordinary least-squares linear regression either on the
complete complement of quantified genes for each compartment (RNA or protein) or exclusively on

Expression Dysregulation and Cost of Resistance Antimicrobial Agents and Chemotherapy

September 2021 Volume 65 Issue 9 e00504-21 aac.asm.org 15

https://aac.asm.org


genes that we consider to be part of the signature of compensation. The assumption of this analysis was
that the slope should fall in the range between 0 (no compensation) and 1 (perfect compensation).
Furthermore, the slope estimated from fitting to all quantified genes provides an estimate of the overall degree
of compensation, while focusing only on the signature of compensation provides us with an estimate for the
genes that we deem to be more relevant to the fitness cost of rifampicin resistance-conferring mutations.

Proteome allocation changes.We determined the cumulative change in the abundance of proteins
belonging to a metabolic pathway by using the label-free quantification (LFQ) data derived from SWATH-MS
and combining them using metabolic pathways defined by the Kyoto Encyclopedia of Genes and Genomes.
We first calculated the mean proportion (m) of the total proteome (P) that a given protein (pi) represented in
strain j across N samples (j1 to jN), as follows:

mpi;j¼

XN

j¼1

pLFQi;jXk

n¼1
PLFQn;j

N

We then calculated the mean difference in the protein allocation (d ) for protein i across the X differ-
ent tested M. tuberculosis genotypes (j1 to jX) when comparing the different wild-type (WT) strains to
their cognate RpoBSer450Leu using the formula below.

d i ¼

XX

j¼1
ðmWT

pi;j 2m
RpoBSer450Leu

pi;j Þ
X

Finally, we calculated the difference in the fractional allocation to a metabolic pathway (C) by summing all
the mean differences in the protein allocation for each protein (i, 1 to k) in that pathway as defined by KEGG.

DC ¼
Xk

i¼1

d i

The results of this analysis were visualized using FuncTree (https://bioviz.tokyo/functree/).
Data availability. All RNAseq data were deposited in the ArrayExpress repository of the European

Bioinformatics Institute under accession no. E-MTAB-7359. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE (68) partner repository with the
data set identifier PXD011568. Processed data and the record of the analysis were deposited on Zenodo
(http://dx.doi.org/10.5281/zenodo.4903635) and GitHub as Jupyter notebooks (https://github.com/SwissTPH/
TBRU_RIFcost).
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