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Equilibrium within the immune system can often determine the fate of its host. Severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible

for the coronavirus disease 2019 (COVID-19) pandemic. Immune dysregulation remains

one of the main pathophysiological components of SARS-CoV-2-associated organ injury,

with over-activation of the innate immune system, and induced apoptosis of adaptive

immune cells. Here, we provide an overview of the innate immune system, both in general

and relating to COVID-19. We specifically discuss “NETosis,” the process of neutrophil

release of their extracellular traps, which may be a more recently described form of cell

death that is different from apoptosis, and how this may propagate organ dysfunction

in COVID-19. We complete this review by discussing Stem Cell Therapies in COVID-19

and emerging COVID-19 phenotypes, which may allow for more targeted therapy in the

future. Finally, we consider the array of potential therapeutic targets in COVID-19, and

associated therapeutics.
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INTRODUCTION

Equilibrium within the immune system can often determine the fate of its host. In sepsis, and many
other inflammatory syndromes, the host’s immune system performs a balancing act between the
protection it offers through eradication of the offending pathogen, vs. the constant threat of an
immune-mediated pathophysiological maelstrom.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for
the coronavirus disease 2019 (COVID-19) pandemic (1).

SARS-CoV-2 breaches the alveolar epithelial membrane after binding to the human
angiotensin-converting enzyme (ACE) 2 receptor. Subsequent viral RNAs serve as pathogen-
associated molecular patterns (PAMPs), which are then sensed by Toll-like receptors (TLRs)
(2). This results in epithelial cell activation, initiating a cascade of innate immune cell
chemoattraction (Figure 1) (3). This immune cell infiltration causes acute respiratory distress
syndrome (ARDS) locally in the lungs, and septic shock, coagulation dysfunction, and
multiple organ dysfunction syndrome beyond the lungs (2). The mechanisms behind this
distal organ injury are multiple, but immune dysregulation remains one of the main
pathophysiological aetiologies. Neutrophil migration is affected with SARS-CoV-2 sepsis.
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This review will focus on the innate immune system in
COVID-19-induced sepsis and subsequently discusses stem
cell therapies, emerging COVID-19 phenotypes and potential
therapeutic targets.

THE INNATE IMMUNE SYSTEM

Once a pathogen enters the body, the innate immune system
must recognise this as foreign and initiate an immune response,
with a view to the pathogen’s destruction or elimination. Cells
of innate immunity originate largely from the common myeloid
progenitor cells in the bone marrow before differentiating into
cells such as macrophages, dendritic cells, and granulocytes,
including neutrophils (4). These cells, amongst others, recognise
PAMPs, which are then sensed by pathogen recognition receptors
(PRRs) such as TLRs (2). This discriminates non-self from self
and allows for phagocytosis, degradation and pro-inflammatory
cytokine signalling to alert cells downstream to the invader.

One of the major weapons of the innate immune response
is the macrophage, differentiated from the monocyte (5).
Macrophages have a role in immune surveillance, phagocytosis
of pathogens and clearance of cell debris or apoptotic cells
(efferocytosis), as well as tissue remodelling after insult (6). They
are activated through PAMPs or self-derived damage-associated
molecular patterns (DAMPs) binding to PRRs like TLRs, NOD-
like receptors (NLR), and RIG-I-like helicases. Macrophages
then initiate signal transduction pathways, via mediators like
myeloid differentiation primary response 88 (MyD88), that
culminate in the production of pro-inflammatory cytokines and
chemokines (7). Macrophages can be broadly separated into
two opposing phenotypes, pro-inflammatory (M1) and anti-
inflammatory (M2) (8). Originally, macrophages were thought to
share their monocyte precursor with dendritic cells, displaying
different cell surface markers like CD11b which aid their primary
functions (6). However, more recent findings challenge this and
suggest a lymphoid origin for dendritic cells (9). Dendritic cells
(marked by CD11c) specialise in antigen presentation via major
histocompatibility complex (MHC) molecules and serve as a
link between the innate and adaptive immune system, recruiting
lymphocytes (10).

Neutrophil maturation in the bone marrow, under the
regulation of granulocyte colony stimulating factor (G-CSF),
results in circulating short-lived mature neutrophils. PAMPs
in infected tissue bind to PRRs, initiating a cascade of events,
generating chemotactic, and haplotactic gradients (e.g., CXCL-2)
that recruit activated neutrophils to the affected area (11).
M2-like macrophages increase targeted neutrophil recruitment
to injured tissue via CXCL-2 secretion. Corresponding CXCR-
2 receptors on neutrophils bind CXCL-2, and appropriate
transendothelial neutrophil migration occurs to the injured
tissue (12). Once at the designated tissue, neutrophils have a
variety of anti-microbial effector functions like phagocytosis,
degranulation of toxic substances such as nitric oxide and
reactive oxygen species, and the release of neutrophil
extracellular traps (NETs) (11). Elimination of the invading
organism can then successfully be achieved (13).

THE COMPLEMENT SYSTEM

Another component of the innate immune system is the
complement system. It is an auxiliary defence mechanism of
innate immunity. It was discovered in 1896 by Bordet and
named for its ability to “complement” antibodies in their
antimicrobial defence (14). It comprises of over 30 soluble
serum proteins, mostly proteases, which are cleaved and activated
in sequence to elicit an effect. Low-level complement system
activity maintains homeostasis, with ability for rapid activation
in response to trauma or infectious insults (15). Cellular
invasion by SARS-CoV-2, and the subsequent “cytokine storm”
results in an excessive and unsustainable complement system
activation (16), with C3 activation resulting in the production
of proinflammatory mediators and opsonisation of the pathogen,
and the formation of themembrane attack complex (MAC)made
up of C5–C9 (14).

Three pathways exist—the classical, lectin, and alternative
pathways. They differ in their initial steps, with the classical
pathway requiring C1q and an antibody-antigen interaction
(17). The lectin pathway is immunoglobulin-independent, using
PRRs like mannose-binding lectin to recognise foreign molecules
(17). The alternative pathway is continuously activated by
spontaneous hydrolysis of C3 and can be upregulated by bacterial
endotoxins, yeasts and immunoglobulins (18). The pathways
converge on C3 convertases, resulting in the production of
proinflammatory mediators, opsonisation of the pathogen’s
surface with markers such as C3b and lastly, the formation of
the membrane attack complex (MAC) made up of C5–C9 (14).
The MAC inserts into the lipid bilayer, allowing the dysregulated
transmembrane movement of water and ions and subsequent
lysis of the target cell.

In COVID-19 infection, JAK-STAT signalling induces the
expression of C3 and Factor B resulting in alternative pathway
activation, and intracellular processing of complement proteins
(19), while in the extracellular space SARS-CoV-2 activates the
lectin pathway (20). Complement hyperactivation is key to the
detrimental effects of COVID-19, shown in two recent studies
where higher complement activation products correlated with
increased disease severity (19, 21). Factor D, upregulated by
COVID-19 and involved in the alternative pathway, is correlated
with markers of endothelial cell injury (e.g., angiotensin 2) and
coagulation (e.g., vWF), possibly contributing to the association
between COVID-19 and coagulopathy (21). Potential therapeutic
mechanisms to reduce or prevent complement-mediated damage
in COVID-19 are discussed below.

SEPSIS AND COVID-19 CROSSTALK

There has been much advancement in the understanding of the
host response to infectious disease in the last decade. It is now
well accepted that the mechanisms of damage of pathogens are
not limited to their direct virulence, but also the host’s immune
response to the pathogen. These secondary reactions can range
from localised to systemic, and manifest in the form of sepsis
— “a severe, potentially fatal, organic dysfunction caused by an
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FIGURE 1 | NETosis in the lung. SARS-CoV-2 virus invades alveolar epithelial cells, activating them, along with local macrophage populations (1). This causes a surge

in the production and systemic release of cytokines and chemokines (cytokine storm) (2), with subsequent neutrophil recruitment (3). Activated endothelial cells

exocytose Von Willebrand Factor, which allows neutrophil and neutrophil extracellular trap adherence to the vascular wall. CCL2 and IL-6 encourage “NETosis” (4).

Negative feedback loops may be inhibited, through reduced CXCL-14 and IL-33, allowing sustained and enhanced immune cell recruitment (5). Complement C3 is

also released from NETs, further propagating “NETosis,” and allowing opsonisation of surrounding tissue, which will ultimately necrose. NETs downregulate

ADAMTS13, allowing VWF multimer development (6). Subsequent fibrinogen and platelet trapping occurs, which, along with red blood cells, encourages fibrin

cross-linking, and ultimate vessel thrombosis.

inadequate or dysregulated host response to infection (sepsis-
3)” (22). There were 48.9 million cases of sepsis worldwide in
2017, accounting for 20% of all deaths (23), marking this as an
extremely important disease to better understand and manage.

The emergence of SARS-CoV-2 has dramatically changed
the landscape of communicable disease. The most common
causes of death in these patients are sepsis and respiratory
failure. A relatively new phenomenon of viral sepsis is being
widely seen (24) and is similar to the well-characterised bacterial
sepsis in the literature. Scientific efforts are underway to
understand the disease’s effects on the body and immune
system to repurpose and develop therapies to improve
outcomes and save lives. The overlap between COVID-
19 and sepsis for individual aspects of innate immunity is
discussed below.

Cytokine Storm
Sepsis is a complex combination of various dysregulated
immune response mechanisms. The cytokine storm occurs in
the early phase (hours to days) of sepsis where PAMPs are
recognised by PRRs on innate immune cells causing a “hyper-
inflammatory” innate immune response (25). Influenza, a disease
similar to SARS-CoV-2, was the first infectious disease where
the cytokine storm was characterised in 2003 (26). Activated
PRRs initiate signalling pathways, resulting in the production
of proinflammatory cytokines like TNF-α, IL-1β, interferon
regulatory factor 3 (IRF3), IRF7, or adaptor-protein 1 (AP-1),
under the regulation of the transcription factor NF-κB (27).
The activation of PRRs by SARS-COV-2 viral RNA (specifically
TLR3, TLR7, TLR8, and TLR9) results in epithelial cell activation,
and the production of numerous proinflammatory molecules
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including TNF-α, IL-1α, IL-1β, IL-2, IL-6, IL-8 (CXCL-8), IFN-
γ, and CCL-2 (Figure 1) (2). This cytokine milieu is involved
in ARDS pathological propagation in COVID-19 populations
(3, 28).

The result is the increased activation, proliferation, or
migration of immune cells (Figure 1). In sepsis, PRR expression
is dysregulated with higher levels of TLR4 mRNA and TLR2
receptors (29). Levels of IL-1β, amongst other pro-inflammatory
cytokines, were found to be higher in patients who died
of sepsis than in those who survived (30). Similarly, IL-6
overexpression has been associated with more severe sepsis and
worse outcomes (31), potentially due to complement activation
(32). In COVID-19, IL-6 becomes upregulated (TLR-8-induced
in neutrophils, C5a-induced in monocytes/macrophages),
enhancing neutrophil superoxide production, and delaying
apoptosis (3). IL-6 production is thought to be a major initiator
of the “cytokine storm” in COVID-19 (2) leading to repeated
attempts to modulate IL-6 activity in sepsis, and more recently in
COVID-19, with varying success (33, 34).

Cell death, caused by microbes as well as the host
inflammatory response, releases endogenous DAMPs, further
activating PRRs, auto-amplifying the cytokine storm (35) and
initiating a cascade of innate immune cell chemoattraction
(3). Chemokines also play a major role in immune cell
chemoattraction in sepsis. They are small molecules specialised
in the recruitment of leukocytes and their release from the
bone marrow or spleen. C-X-C chemokine secretion from
tissue-resident macrophages is also upregulated in COVID-19.
Recruited neutrophils release CCL20, which via CCL6 attracts
dendritic cells, memory T and B cells, and macrophages to the
site of inflammation. A lack of chemokines, or their receptors,
leads to an immunosuppressed state where the host is more
susceptible to sepsis-induced death (36). Conversely, CXCL-14
potently inhibits epithelial cell chemotaxis, and is downregulated
in COVID-19 allowing sustained and enhanced immune cell
recruitment (3).

As detailed above, SARS-CoV-2 breaches the alveolar
epithelial membrane after binding to the human ACE-2 receptor.
The protein transmembrane protease serine 2 (TMPRSS2)
is an essential facilitator of SARS-CoV-2 viral cell entry,
in conjunction with ACE-2 (37). The SARS-CoV-2 spike
protein subsequently interacts with ACE-2, downregulating
it (38). Without ACE2, angiotensin-II concentrations and
signalling potential increase, upregulating the activation of
inflammatory pathways in epithelial and endothelial cells,
particularly the p38/MAPK pathway (39). This intracellular
inflammatory upregulation, combined with a downregulation
of cytokine-release checkpoints (CXCL-14) contributes to the
“Cytokine Release Syndrome” which is now well-described
in COVID-19, and likely highly pathological. As described
in a prior review (40), it is established that the severity
of sepsis may be more linked to the host’s response to
the pathogen, rather than the virulence. Another study
discusses the link between clinical manifestations and host
gene transcription patterns in staphylococcal infection (41),
and noted a significant link between pattern of cytokine gene
expression and disease severity, regardless of the causative

pathogen (42). This could be relevant in the study of COVID-
19, where researchers hypothesise how a single pathogen can
have such a varied effect on different individuals ranging from
asymptomatic to devastating ARDS andmulti-organ dysfunction
syndrome (MODS).

The Inflammasome
The importance of the NOD-like receptor pyrin containing-
domain 3 (NLRP3) inflammasome is becoming better
understood in sepsis. This macromolecular protein complex
converts pro-caspases to their mature form, inducing the
release of pro-inflammatory cytokines like IL-1β (43). In sepsis,
activation of TLRs primes the inflammasome through NF-κB,
and it is activated by ROS release and mitochondrial damage by
phagocytic cells, having a widespread effect on various systems
(44). It is active in patients with COVID-19 and higher levels of
IL-18 and Casp1p20 are correlated with COVID-19 severity and
poor clinical outcome (45).

Mitochondria
Mitochondria also have a pivotal role in sepsis, well beyond their
classical role in oxidative phosphorylation and ATP production.
Research has shown sepsis-induced mitochondrial dysfunction
may play a pathophysiological role in major organ dysfunction
and death (46). For example, in sepsis, mitochondria increase
free radical production, propagating the cytokine storm from
Kupffer cells in the liver (47), and inducing caspase-mediated
apoptosis in the heart causing cardiac dysfunction (48). There
is also a dysregulated electron transport chain that may cause a
rise in lactate (49). There is evidence of reduced mitochondrial
gene expression in individuals who die of sepsis, signifying a
loss of function in mitochondria (50). In COVID-19, there is
widespread mitochondrial dysfunction caused by inflammation,
cytokine storm, oxidative stress, microbiota dysregulation, iron
overload, and ROS accumulation (51).

Immunosuppression
Equilibrium of the host’s immune response to an offending
pathogen is important. A balance must be struck between
pro- and anti-inflammatory responses to effectively create an
immune response to recognise and eliminate the microbial
threat and prevent secondary infection, without excess damage
to host cells and organs and to allow full resolution of
inflammation. If a patient survives the initial cytokine storm,
long-lasting immunosuppressionmay increase the complications
of secondary infection, potentially leading to their death. It
has been reported in the literature, agreeing with our clinical
observations, that 15% of hospitalised COVID-19 patients, and
50% of those who subsequently die, acquire a secondary infection
(52). The incidence of ventilatory-associated lower respiratory
tract infections in SARS-CoV-2 patients is significantly higher
than in patients with influenza (53). This is likely also the
case for COVID-19 associated pulmonary aspergillosis (54).
Through genome-wide transcription profiling, it has been
possible to quantify downregulation of antigen presentation and
suppression of T cell activation to a much greater degree in those
who died from sepsis (55). We also know that much mechanistic
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immunological research has demonstrated that an intact T cell
mediated immune response is required for eliminating and
suppressing viral infections (56).

Lymphopenia has consistently correlated with disease severity
throughout COVID-19. It is rare in children, in whom COVID-
19 mortality is very low, and much more common in the elderly,
where highermortality rates are seen (57). It is also seen that there
is a consistent andmarked reduction in T cell counts, which is not
always the case with B cell counts (58), which may question the
necessity of B cell involvement in mounting a successful response
to COVID-19.

Several possible mechanisms exist for this lymphocyte
depletion in COVID-19. The cytokine release syndrome, detailed
above, especially cytokines IL-6 and TNF-α, may lead to massive
lymphocyte death. Regulatory T cells seem to be spared however.
These cytokines may also reduce the toxicity of T cells and
NK cells (59). COVID-19 can also result in T cell exhaustion.
This may be a result of neutrophils-induced apoptosis. There is
upregulation of programmed death ligand 1 (PD-L1) and T cell
immunoglobulin and mucin domain 3 (Tim-3), molecules that
promotes the death of the target cell, which interacts with CD4+

and CD8+ lymphocytes to induce apoptosis (59, 60). SARS-CoV-
2 may also infect T cells (61). Finally, SARS-CoV-2 may interfere
with T cell expansion. MAP2K7 and SOS1, genes involved in
T cell activation and function, may be downregulated in severe
COVID-19 disease (62).

The subsequent alteration of the neutrophil-lymphocyte ratio
is associated with increased nosocomial infection and mortality
in severe sepsis (63).

Interestingly in sepsis, these pro- and anti-inflammatory
phases appear to happen simultaneously as one response, and
not as a distinct two-phase temporal relationship between
pro- then anti-inflammatory immunity (55). Therefore,
attempts to quantify patients into “hyperinflammatory” or
“immunosuppressed” phenotypes may be an over-simplification
of the host response, and a theranostic therapeutic approach may
prove more difficult than initially proposed.

Monocytes
In sepsis, there is downregulation of the human leukocyte antigen
(HLA)-DR molecule on the monocyte, necessary for antigen
presentation (64). There is also a reduction in LPS-induced
TNF-α secretion from monocytes in sepsis, and these patients
may benefit more from an immune adjuvant therapy such as
G-CSF (65). This “immunoparalysis” correlates with increased
risk of septic complications and death (66). The monocyte’s
lifespan, like the neutrophil’s, is significantly prolonged in sepsis
(67). Interestingly, in sepsis, hepatocytes release large amounts
of high mobility group box 1 (HMGB-1) (a potent DAMP)
which is transported to the cytoplasm of macrophages where
it induces pyroptosis (a lytic form of cell death) resulting in
depletion of the macrophage population, shock, multiple organ
failure, and death (68). The phenotypic switch from M1 to anti-
inflammatory M2 macrophages in sepsis also likely contributes
to an immune suppressed state (69). Dendritic cells are also
decreased in patients with septic shock, and their depletion is

associated with increased mortality and health care associated
infection (70, 71).

Neutrophils
During septic shock, which may occur with COVID-19,
neutrophils are systemically stimulated, which leads to
impaired neutrophil migration to the infection focus. Bacterial
components present in the blood activate TLRs expressed on
neutrophils, leading to the upregulation of G protein-coupled
receptor kinase 2 (GRK2), which induces internalisation of
CXCR2 receptors on the neutrophil surface. Additionally, TLR
activation induces the expression of TNF-α and iNOS (inducible
nitric oxide synthase), the latter of which might also be activated
by intracellular phosphatidylinositol-3-kinase (PI3K). Both
TNF-α and NO (nitric oxide) can lead to upregulation of GRK2,
exacerbating the downregulation of CXCR2 on the neutrophil
surface. As a consequence, neutrophil trafficking is impaired in
sepsis (72), reducing targeted microbial clearance. Furthermore,
activation of TLRs also induces the expression of CCR2 on the
surface of neutrophils. These activated neutrophils can migrate
from inflamed tissues to other, non-infected, tissue and organ
systems producing CCL2 (termed “reverse migration”), causing
widespread host injury and organ dysfunction, potentially
culminating in MODS (73, 74). It has been demonstrated
that IL-33 can prevent the upregulation of GRK2 expression
induced by TLR overactivation and consequently prevent the
failure of neutrophil migration to the site of infection (73).
This has not been described specifically in the novel disease
process of COVID-19 but may outline the pathophysiologic
mechanisms at play in this illness, and its propensity to induce
distal organ injury.

Sepsis fundamentally alters the transcriptional profile of the
innate immune system’s key mediators—the macrophage and
neutrophil. Upregulation of genes involved in inflammation and
inhibition of apoptosis are seen in neutrophils in human subjects
challenged with administration of endotoxins (75) as a model for
bacterial sepsis. This response is similar to that seen in multi-
trauma patients (76). In a non-septic patient, rapid apoptosis
is seen within 24 h in 50% of neutrophils. A core difference
in neutrophil activity consistently seen in sepsis is their ability
to resist apoptosis with only 5–10% of neutrophils undergoing
apoptosis in the first 24 h (77). This prolonged survival is
mediated through alterations in gene expression with increases in
keymolecules like NF-κB (77), IL-1β (78), and PBEF/Nampt (79).

NEUTROPHIL EXTRACELLULAR TRAPS

Neutrophil extracellular traps (NETs) were first described
by Brinkmann in 2004 (80). NETs (Figure 1) are structures
released from neutrophils comprising a core of chromatin
DNA and histones, surrounded by specific antimicrobial
proteins (lactoferrin, cathepsin G, defensins, LL-37, and bacterial
permeability increasing protein), proteases (neutrophil elastase,
proteinase-3, and gelatinase), and reactive oxygen species-
generating enzymes (myeloperoxidase) (81). NETs are extremely
efficient in pathogen trapping, killing, and prevention of
pathogen dissemination. “NETosis,” the process of release of
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these extracellular traps, may be a new form of cell death that is
different from apoptosis (3). CCL2, as well as recruiting immune
cells, also signals for extracellular trap release (from neutrophils,
mast cells, monocytes/macrophages, and eosinophils) (3), as
does IL-6, CXCL-8, TNF-α, and IL-1β (associated with mast
cell extracellular trap release). Activated endothelial cells may
also encourage NETosis, which will ultimately kill these cells.
“NETotic” neutrophils do not release apoptotic signals, do not
undergo membrane blebbing, or perform nuclear chromatin
condensation (3).

Dysregulated NETosis may lead to the development and
exacerbation of several autoimmune and chronic infectious or
inflammatory diseases (82). NETS have also been associated
with multiple types of neoplastic processes (83). NETs can
be released in a process of suicidal NETosis, where the
neutrophil ruptures, or vitalNETosis, whereNETs are exocytosed
from neutrophils in vesicles (84). In suicidal NETosis, several
gramme-negative bacteria activate NADPH oxidase 2, which
induces NETosis via reactive oxygen species production, while
a NADPH-independent pathway for suicidal NETosis also exists,
involving TLR-4-platelet-neutrophil interaction (85). This TLR-
4-platelet-neutrophil interaction may be especially important in
the pathogenesis of NET-induced “immunothrombosis.” Vital
NETosis, however, also requires the presence of complement
receptor-3 and TLR-2 (86). A recent paper highlights the
key role that certain regulatory mitogen-activated protein
kinases (MAPK), namely stress-activated protein kinase/c-Jun
N-terminal Kinase (SAPK/JNK), play in regulating neutrophil
survival. Specifically, a TLR-4/JNK activation axis exists,
determining a neutrophil as NETotic or not (85).

Von Willebrand Factor (VWF) is exocytosed by activated
endothelial cells onto their apical/luminal cell membrane, where
the plasma glycoproteins then bind NETs via electrostatic
bonds (84). VWF thrombogenic potential is tightly regulated
in health by the metalloprotease ADAMTS13 (a disintegrin and
metalloproteinase with thrombospondin type 1 motifs, member
13). NETs downregulate ADAMTS13 activity, promoting the
formation, or inhibiting the degradation, of VWF multimers
(84). NETs can be a significant source of enzymatic activity that
may accelerate the formation of thrombi in blood vessels during
infection (87, 88). As well as adhering NETs, VWF will also trap
passing platelets and fibrinogen, allowing fibrin deposition and
cross-linking, and ultimately vessel thrombosis (84). NETs also
ultimately lead to alternative complement pathway activation,
through neutrophil secretion of complement factor P, B, and C3,
compounding the prothrombotic nature of NETs (Figure 1) (3,
89). This vicious cycle can potentially self-propagate unopposed
in septic shock.

This process is supported by laboratory studies, where released
NETs have been shown to disrupt alveolar epithelium and
endothelium, and also degrade the thin alveolar basement
membrane, culminating in epithelial necrosis, denudation of
epithelial lining, vascular damage, pulmonary oedema, and
haemorrhage in lethal influenza-infected mice (90). In humans,
NETs have been shown to contribute to the development of
ARDS in other severe viral respiratory infections, including
H1N1 influenza (90). In COVID-19 pathogenesis, lung infection

may accelerate local thromboembolic events, with neutrophils
being a major contributor (91, 92). Mechanical ventilation may
contribute however to an increased level of NETs markers in
the alveoli of critically ill patients (93), compounding an already
inflamed microenvironment. Another reason, perhaps, to be
cautious regarding initiation of ventilation in COVID-19.

Extra-pulmonary injury from NETs has also been reported in
COVID-19. Histone-induced tubular epithelial cell death results
in acute kidney injury. Renal injury may be exacerbated with
renal thrombosis due to NETs release. NETs may interact with
hepatocytes via TLR2 and TLR4. Hepatocyte necrosis may occur
secondary to damage from histones and C3a. Liver involvement
also increases the propensity for thrombosis due to NETs (3).

STEM CELL THERAPIES

Stem cells (regardless of age of donor or source tissue) are
undifferentiated cells with capacity to self-renew and/or generate
more than one differentiated functional daughter cell type.
Mesenchymal stem cells (MSCs) are a specific population
of stem cells with much therapeutic potential for sepsis.
They are relatively immune privileged, avoiding the need for
immunosuppression during use. MSCs may re-programme the
immune system to reduce host tissue damage while preserving
a strengthened immune response to microorganisms. They
have also been shown to enhance tissue and endothelial repair
following sepsis and have an extensive and growing safety profile
in clinical trials (13).

Multiple pre-clinical septic animal models demonstrate the
potential for MSCs therapy to reprogram neutrophil function
to reduce host injury while maintaining bactericidal function
(94, 95). MSCs reduce the infiltration of neutrophils to target
organs, including liver, lung, intestine, and kidney, reducing
injury and improving the function of these organs in preclinical
sepsis models (94–99). MSCs also enhance neutrophil-mediated
phagocytosis, making them more effective in the clearance of
bacteria (95). Neutrophil depletion, using anti-Ly6G antibody,
completely abrogated the protective effect of MSCs in systemic
sepsis (95), highlighting the pivotal MSC-neutrophil interaction
to the resolution of sepsis.

The Cellular Immunotherapy for Septic Shock (CISS) Trial,
an open label phase 1 dose escalation trial for early septic shock,
has led to the phase 2 CISS Trial, assessing safety and efficacy.
Other trials include French (CHOCMSC [NCT02883803]) and
Russian (100) studies. One clinical trial using cell-based therapies
has been completed in COVID-19, using exosomes (extracellular
vesicles derived from MSCs) (101). It demonstrated safety of
MSC-derived exosome use in COVID-19, and potential as a
therapeutic for this disease. At least 17 other clinical trials are
in progress assessing MSCs in COVID-19-induced ARDS, as
recently reviewed by Gonzalez et al. (102).

PHENOTYPES

Phenotypic characterisation of illnesses may allow significant
therapeutic advancement. In this regard, the identification of
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sub-phenotypes or “endotypes” within the sepsis population has
been undertaken in patients with ARDS by Calfee et al. (103).
A related approach, termed “Theranostics,” involves identifying
biomarkers of therapeutic responsiveness. Man et al. (104) used
this approach to identify potential subgroups of patients in the
PROWESS-shock trial that may have benefited from activated
Protein-C therapy (105). Similarly, Wong et al. (106) identified
a paediatric septic shock subgroup that had a higher mortality
from corticosteroid administration. Recently, Reddy et al. (107)
published a review addressing subphenotypes in critical care, and
how these can be translated into clinical practise.

IFN-γ and TNF-α drive a CXCL10/CCL2/macrophage
phenotype seen in Crohns Disease and Rheumatoid Arthritis.
Therefore, anti-TNF-α and janus kinase (JAK) inhibitors may
be potentially successful therapeutic targets for COVID-19
(108). COVID-19 inflammatory phenotypes present in more
severe illness progressing to mechanical ventilation have been
described by Chua et al. (109). Several other authors have
proposed clinical COVID-19 phenotypes (110–112), but themost
extensive phenotypical characterisation to date is fromRodriguez
et al. (113). Using unsupervised clustering analysis, Rodriguez
characterised three novel clinical phenotypes. They associated
the phenotypes with comorbidities and clinical outcome, using
routinely available clinical and laboratory values, which may
allow for easier and more economical future applicability of
this model.

Septic patient populations can be divided into clinical
or biomarker-driven subphenotypes, the latter focusing on
more mechanistic and biologic categorisation. Translation
of subphenotypes into clinical practise requires a better
understanding of sepsis pathophysiology; how stable the
subphenotypes are over time, how quickly, easily, and affordably
we can diagnose them, and understanding the effect that
multimorbidity has on these patient cohorts and their response
to therapy. A theranostic approach may already have proven
successful, by treating a specific subgroup of patients requiring
oxygen in the first 24–48 h with anti-IL-6 therapy, leading to
reduced mortality in a large trial by the REMAP-CAP group
(33). However, this benefit in survival was not shared by the
EMPACTA trial, investigating the same treatment with slightly
different inclusion criteria (114).

POTENTIAL THERAPEUTIC TARGETS

Immune system disequilibrium is difficult to treat. To date,
no specific anti-inflammatory treatment has been consistently
successful in reducing morbidity or mortality in sepsis (115).
Corticosteroids have shown much promise and act to inhibit NF-
κB andAP-1 (116). Initially, low-dose corticosteroids were shown
to reduce mortality in severe sepsis and septic shock by Annane
et al. (117) but this was unable to be replicated in the larger
CORTICUS randomised control trial, which showed no benefit
(118). More specific blockade of proinflammatory molecules
like TNF-α has also failed to show consistent success. A meta-
analysis in 2013 showed a modest reduction in death in sepsis in
patients given anti-TNF medications but concluded that larger

trials with over 10,000 patients were needed to fully demonstrate
this benefit (119). The benefit of immunomodulators in sepsis has
been difficult to demonstrate for a variety of reasons, including
difficulty with timing treatments, heterogeneity of the patient
cohort, and variation of the underlying causes of sepsis (35).
Many of these issues are not as prominent in COVID-19, with
the disease course being more predictable, the typical patient
cohort being slightly more homogenous, and the cause of the
dysregulated inflammatory response being consistent. This may
spell greater success for upcoming trials of immunomodulation
in improving outcomes in COVID-19, many of which are
discussed below.

With SARS-CoV-2 infection and immune system activation,
many therapeutic targets exist. A theranostic approaches to
finding a solution to the problems we have highlighted above
may therefore succeed. Some old, yet rejuvenated, therapies, and
some novel.

Approaches to altering the “Cytokine Release Syndrome”
are 2-fold; block the action of a known cytokine propagator
or increase the effects of an inflammatory down-regulator.
Inhibition of the effects of IL-6, through blockade of its receptor
(IL-6R) with Tocilizumab has received considerable attention,
as IL-6 is thought to be a major initiator of the “cytokine
storm” in COVID-19 (2). Initial trials in minority, non-ventilated
populations failed (114), but more recent work by the REMAP-
CAP (33) and RECOVERY (120) investigators in more critically
ill patients has shown promise.

IL-17, produced by Th17 T-cells, is another proinflammatory
cytokine (2). It is also produced by mast cells and NETs, and
may play a role in thrombosis (3), as well as upregulating
the production of other cytokines, most notably IL-6. Two
monoclonal antibodies against IL-17, and one targeting
the IL-17R have been successfully used in rheumatoid
arthritis and psoriasis (2). The CXCL10-CXCR3 axis may
also be a therapeutic target, especially blocking CXCL10
(eldelumab/MDX-1100) (121).

Corticosteroids have also been shown to reduce CXCL10 levels
in COVID-19 (121), while separately, dexamethasone (122) and
hydrocortisone (123) have been shown to reduce (rate ratio 0.83),
and likely reduce (with a 93% probability) mortality, respectively.
CXCL-14 potently inhibits epithelial cell chemotaxis, and is
downregulated in COVID-19 allowing sustained and enhanced
immune cell recruitment (3). This is, as yet an untargeted
potential therapeutic.

Modulation of this overactive complement system has
been attempted. Complement inhibition via AMY-101 (C3) or
Eculizumab (C5) significantly reduced immune hyperactivation
in severe COVID-19 (16). NLR was significantly altered by C3
inhibition, with reduced neutrophils and increased lymphocytes
at day 7 compared to C5 inhibition. C3 inhibition resolved
thrombocytopenia quicker than C5, and NETosis (via MPO-
DNA levels) was reduced more profoundly, but not significantly,
with C3 inhibition in both intubated and non-intubated patients.
Ultimately, C3 inhibition may be better, preventing immune
cell activation (via C3a–C3aR blockade), C3 opsonisation of
epithelial or alveolar cells, and also the associated effects of
C5 cleavage to C5a (C5a–C5aR inflammatory upregulation)
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and C5b (C5b–C9 MAC and cell lysis). Reduced neutrophil
and T-cell recruitment via reduced C3a and C5a was also
seen. C5a induction of monocytes and macrophages upregulates
IL-6 production (3). Therefore, the viability of targeting the
complement system seems more profitable than targeting
a single cytokine or its receptor, due to the multi-layered
effects of activating this system (C3, C5, inflammatory cell
activation, and the MAC). More clinical trials may shed light
on this [NCT04346797]. In a lung epithelial cell line study,
ruxolitinib, a JAK1/2 inhibitor normalised interferon gene and
complement gene signals induced by SARS-CoV-2, and reduced
C3a production (19), showing potential to move into clinical
trials. Another JAK1/2 inhibitor, Baricitinib, in combination with
the antiviral agent Remdesivir, has shown benefit in hospitalised
patients with COVID-19 (124).

Several therapeutics targeting innate immune cell
recruitment, effector-memory T cells, or their phagocytic
products are under assessment. A study assessing Vitamin C and
its effects on COVID-19 patients by reducing neutrophil influx,
activation and NET-associated alveolar capillary damage was
abandoned due to difficulty in recruitment [NCT04264533]. The
CXCR2 antagonists AZD5069 (blocks neutrophil trafficking but
preserves neutrophil-mediated host immunity) and Danirixin
and SCH527123 (both reduce neutrophil influx/migration) may
be of benefit here (2). Neutrophil Elastase antagonists are either
in clinical trial or approved for clinical use as treatments of
ARDS pre-COVID-19 (2). Melatonin, a chronobiotic hormone,
rejuvenates exhausted glutathione redox system in neutrophils
during infection (125). Melatonin [NCT04409522], along with
colchicine [NCT04350320] may also induce blockade of the
inflammasome, offering other potential therapeutic targets
in COVID-19.

Augmentation of the adaptive immune system is of particular
interest in COVID-19, given the marked lymphopenia seen,
potentially via upregulation of PD-L1 that induces lymphocyte
apoptosis (60, 126). Its blockade may be a potential target
in COVID-19 to improve outcomes (127) [NCT04356508,
NCT04413838, and NCT04268537].

PAD (peptidylarginine deiminase) 4 inhibitors block
NETs formation and release in murine sepsis models (128).
Dipyridamole can inhibit NETs by activation of adenosine A2A

receptors (129), blocking adenosine reuptake and being a non-
selective PDE4 inhibitor. Disulfaram as a therapy for COVID-19
is in clinical trial as a gasdermin D inhibitor, also inhibiting
NETs formation [NCT04485130]. Hydroxychloroquine and
Azithromycin can inhibit IL-1β and NET formation, but have
not been shown to improve patient outcome in COVID-19 (130).
The peptide-based agent Lupuzor/P140, trialled successfully in
Systemic Lupus Erythematosus, may be of benefit in COVID-19
by blocking NET release but hasn’t been trialled (131). Other
NET-inhibitors include GSK-484 and BMS-P5, which have not
been used in vivo as of yet (2).

Finally, dornase alfa (Pulmozyme, recombinant human
deoxyribonuclease I) may improve ARDS in patients with severe
COVID-19 through reduced mucus accumulation, lung injury,
and improved gas exchange (132). However, the fragmented
DNA may risk spreading inflammation beyond the area of viral
invasion. Nine clinical trials are currently in progress for this
therapeutic in COVID-19 (132).

CONCLUSION

At the date of writing, global case incidence and related
mortality of COVID-19 had surpassed 160 and 3.34 million,
respectively. New, more transmissible strains of SARS-CoV-
2 are now driving further waves of infection globally, and
overwhelming health systems (133), with an inevitable surge
in critically ill COVID-19 patients. With this, the vicious
cycle of pulmonary epithelial cell infection and activation,
cytokine and chemoattractant over-production, immune-cell
recruitment, uncontrolled hyper-inflammation, and MODS
continues. NETosis, while attempting to eradicate SARS-
CoV-2, compounds this uncontrolled inflammation, with
secondary “immunothrombosis” detrimental to the organ
systems involved. Mechanical ventilation may compound this
(93), and such support should be judiciously implemented.
Emerging COVID-19 phenotypes may allow for more targeted
therapy in the future. Currently, corticosteroids (122, 123), IL-
6R antagonists (33, 120), and JAK inhibitors (124) are the
only therapies showing promise for critically ill COVID-19
patients. Many hundreds of other clinical trials in COVID-19
maintain recruitment.

While vaccines against SARS-CoV-2 are being rolled
out (134), further global pandemics are predicted (135).
Future therapies against invasive pathogens revolve not
only around their eradication but understanding better the
deleterious effects they have on the human immune system,
and how to regain and retain physiology over pathology.
Perhaps trials using stem-cell-based therapies may shed
some light.
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