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Simple Summary: Colorectal cancer (CRC) is a frequently lethal disease with heterogenous outcomes.
Alterations in the Wnt signaling pathways have been shown to promote activation of signaling
pathways such as MAPK and PI3K-Akt. Consensus molecular subtyping (CMS) provides a cohesive
structure to classify the heterogeneity of CRC using gene expression analysis. CMS is categorized
into four subtypes: CMS1, immune; CMS2, canonical; CMS3, metabolic; and CMS4, mesenchymal.
Here, we identify co-expressed gene networks associated with CMS1. Our findings distinguish
co-expressed gene networks that play a pivotal role in key features specific for CMS1, such as
immune infiltration and activation. The co-expressed gene networks for CMS1 were significantly
and positively correlated with the TNF, WNT, and ERK1 and ERK2 signaling pathways. This
study highlights the relevance of CMS1 gene networks relating to oncogenic signaling cascades, cell
activation, and positive regulation of immune responses, promoting CRC progressiveness.

Abstract: Colorectal cancer (CRC) is driven in part by dysregulated Wnt, Ras-Raf-MAPK, TGF-β,
and PI3K-Akt signaling. The progression of CRC is also promoted by molecular alterations and
heterogeneous—yet interconnected—gene mutations, chromosomal instability, transcriptomic sub-
types, and immune signatures. Genomic alterations of CRC progression lead to changes in RNA
expression, which support CRC metastasis. An RNA-based classification system used for CRC,
known as consensus molecular subtyping (CMS), has four classes. CMS1 has the lowest survival after
relapse of the four CRC CMS phenotypes. Here, we identify gene signatures and associated coding
mRNAs that are co-expressed during CMS1 CRC progression. Using RNA-seq data from CRC pri-
mary tumor samples, acquired from The Cancer Genome Atlas (TCGA), we identified co-expression
gene networks significantly correlated with CMS1 CRC progression. CXCL13, CXCR5, IL10, PIK3R5,
PIK3AP1, CCL19, and other co-expressed genes were identified to be positively correlated with CMS1.
The co-expressed eigengene networks for CMS1 were significantly and positively correlated with the
TNF, WNT, and ERK1 and ERK2 signaling pathways, which together promote cell proliferation and
survival. This network was also aligned with biological characteristics of CMS1 CRC, being positively
correlated to right-sided tumors, microsatellite instability, chemokine-mediated signaling pathways,
and immune responses. CMS1 also differentially expressed genes involved in PI3K-Akt signaling.
Our findings reveal CRC gene networks related to oncogenic signaling cascades, cell activation, and
positive regulation of immune responses distinguishing CMS1 from other CRC subtypes.

Keywords: colorectal cancer (CRC); consensus molecular subtype (CMS); microsatellite stability
(MSI); weighted gene co-expression network analysis (WGCNA); mitogen-activated protein kinase
(MAPK); Integromics
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1. Introduction

Colorectal cancer (CRC) is characterized by uncontrolled cell growth in the colon or
the rectum. CRC is the second most common cancer in the United States. The progression
of CRC is promoted by molecular alterations and interconnectivity among gene mutations,
chromosomal instability, transcriptomic subtypes, and immune signatures [1]. For the
purpose of this manuscript, we define CRC progression as the activation of molecular
pathways that regulate several biological processes such as cell proliferation and survival.
Chromosomal instability in CRC represents about 80–85% of all cases, and it includes
changes in essential genes such as APC, KRAS, and PI3K [2]. Deregulation of these path-
ways leads to an upregulation of proliferative and survival signals from the abnormal
tumor microenvironment [3]. Mutations in APC, a key negative regulator of canonical Wnt
signaling, lead to uncontrolled cell proliferation [4]. KRAS and PI3K mutations also pro-
mote uncontrolled cell proliferation through constitutive activation of mitogen-activated
protein kinase (MAPK) signaling. MAPK signaling contributes to CRC progression by
multiple means: differentiation regulation, cell proliferation, and gene transcription ac-
tivation [5]. The MAPK pathway is reported to be vital to treating advanced cancers, as
new MAPK inhibitors are improving survival for CRC [6]. First-line treatments of CRC
were used in combination with second-line therapies such as cetuximab and panitumumab,
which target EGFR [7].

There have been recent advances in novel therapies for CRC. Researchers are working
on ways to better detect, classify, and predict outcomes for CRC. CRC is a heterogeneous
disease; thus, characterizing molecular phenotypes is crucial for improving treatment
efficacy and prognosis. Many approaches have been developed to create a classification
for CRC based on gene expression heterogeneity; however, these were not successful in
their clinical application. Studies have shown that conventional mutation-centered clas-
sification strategies do not fully explain the diversity in patient outcomes. For CRC, a
more systematic, gene-based classification stratifies CRC patients better [8]. Since 2012,
several research teams have employed bioinformatics methods for molecular subtyping;
one of the largest international collaborative communities on CRC research is called the
CRC Subtyping Consortium (CRCSC) [8]. Since their establishment in 2014, their work
has led to a current consensus of a CRC classification system, consisting of six CRC sub-
typing systems derived from a single-omic research strategy [8]. This system identified
four gene expression consensus molecular subtypes (CMS)—CMS1, CMS2, CMS3, and
CMS4—using RNA-seq and multiple microarray datasets that included primary tumor
samples from CRC patients [9]. Recently, an international effort of large-scale data sharing
and analytics coordination compared six independent transcriptome-based CRC subtyp-
ing systems, which created four consensus molecular subtypes (CMS1-4) [1,9]. There are
several challenges and emerging opportunities in using the CRC subtyping system in the
clinical management of patients [10]. CRC subtypes CMS2 (37%) and CMS4 (23%) are more
prevalent compared to CMS1 (14%) and CMS3 (13%). The most common subtypes are
characterized by increased WNT and MYC signaling activation (CMS2) and TGFβ activa-
tion and angiogenesis (CMS4), whereas the least common are characterized by immune
infiltration, hypermethylation, and microsatellite instability (CMS1) and epithelial and
metabolic dysregulation (CMS2) [9]. Patients with microsatellite instability (MSI) tumors
(mostly CMS1 tumors) do not benefit from single-agent treatments such as fluorouracil,
but rather combination adjuvant therapy with fluorouracil, leucovarin, and oxaliplatin
(FOLFOX) at stage III [11]. Further, stage III tumors at the time of diagnosis respond better
to standard adjuvant therapy for CMS2 tumors [11], whereas CMS3 tumors do not benefit
from therapeutic gene targets, but rather metabolic phenotypes, and CMS4 tumors are
reported to not benefit from systemic adjuvant treatments and are resistant to anti-EGFR
therapy when not associated with KRAS mutations [11]. In addition, the five-year overall
survival rates for all stages differ amongst CMS types, with reported percentages of 77%
for CMS2 and 73%, 75%, and 62% for CMS1, 3, and 4, respectively [11]. CMS2, having
the highest five-year survival rate, is more commonly associated with left-sided tumors,



Cancers 2021, 13, 5824 3 of 14

unlike CMS1 tumors that are frequently associated with right-sided tumors and exhibit
poor survival after relapse [11].

CMS1 patients have a worse prognosis due to having increased microsatellite instabil-
ity and BRAF mutations [9]. Microsatellites are short tandem repeats that occur throughout
both the coding and non-coding regions of the genome. These repetitive structures give
rise to replication errors caused by DNA polymerase during replication. Four major repair
proteins (MLH1, MSH2, MSH6, and PMS2) excise microsatellites. If any of these proteins
lose function, loss of fidelity will occur. This loss in fidelity will lead to errors in the
genome not being corrected, which accumulate to cause a deficiency in the mismatch repair
system [12,13]. MSI, or deficiency of the DNA mismatch repair system (dMMR), occurs
in about 15% of CRCs. CMS1 tumors are characterized by the overexpression of DNA
damage repair, microsatellite instability, and immune response proteins and is associated
with higher prevalence of BRAF mutations, young and female patients, and right-sided
tumors [9,14]. This manuscript aims to improve understanding of the molecular and
genomic features associated with CMS1. Herein, we characterize the gene expression
signatures and associated co-expressed gene networks during CMS1 CRC progression.
Using RNA sequencing data from CRC primary tumor samples, acquired from The Cancer
Genome Atlas (TCGA), we identified co-expression gene networks using weighted gene
co-expression network analysis (WGCNA) correlated with CMS1 CRC progression.

2. Materials and Methods
2.1. Data Collection and Gene Network Analysis

TCGA CRC patient RNA-seq data were acquired from GDC via the TCGA data portal
(https://portal.gdc.cancer.gov, accessed on 4 November 2021). Download date for network
analysis was on or before 5 October 2018. FPKM (fragments per kilobase of exon per
million mapped fragments) data were downloaded for each participant along with clinical
data. Network analysis was completed via the data mining method WGCNA (Weighted
Gene co-expression Network Analysis) r package (version v1.70.3). Methods for data
normalization, removal of outliers, batch effect correction, co-expression network analysis,
differential expression analysis, and gene ontology (GO) enrichment analysis were adapted
from “Transcriptome Network Analysis Identifies CXCL13-CXCR5 Signaling Modules in
the Prostate Tumor Immune Microenvironment”, accessible at https://doi.org/10.1038/s4
1598-019-46491-3 (accessed on 4 November 2021) [15–17].

2.2. Pathway Analysis

Pathview is an online package toolset, accessible at pathview.uncc.edu, for pathway-
based data integration and visualization. This tool maps and renders imported data on
relevant pathway graphs that are automatically downloaded and mapped to a pathway.
This tool integrates pathways and gene set enrichment analysis [18,19].

2.3. Gene Expression Analysis

Genome-Scale Integrated Analysis of Networks in Tissues (GIANT) is an online tool,
accessible at hb.flatironinstitute.org, or predictions of tissue-specific gene expressions and
detections based on a gene list. Genes within a cluster share a local network neighborhood
and form a specific functional module [20].

3. Results

Four hundred and seventy-eight primary CRC tumor transcriptomes were acquired
from The Genomic Data Commons (GDC). The CRC patient-specific RNA-seq data ob-
tained from GDC are a Cancer Genome Atlas (TCGA) dataset. The gene expression data,
from each patient, were used to determine the co-expressed gene networks that are posi-
tively correlated with CMS1 versus non-CMS1 subtypes of CRC, and how they correlate
with clinical and biological traits of CRC cases, and patient demographics. Weighted Gene
Co-expression Network Analysis (WGCNA) was utilized to define gene co-expression

https://portal.gdc.cancer.gov
https://doi.org/10.1038/s41598-019-46491-3
https://doi.org/10.1038/s41598-019-46491-3
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networks and then these were correlated with clinical outcomes such as CMS, microsatel-
lite instability (MSI), and tumor region. This established clustering and dimensionality
reduction method defined 10 modules, which were assessed for association with qualita-
tive patient characteristics including gender and race. Genes with statistically significant
correlations to relevant traits. Particular attention was paid to determining the role of
co-expressed gene networks positively correlated with CMS1 genes in CRC. First, we
characterized gene co-expression networks in CRC. Overall, 10 gene network modules
were formed from applying WGCNA to the 456 CRC primary tumor samples (Figure 1).
We have reported stages for all 456 patients as a supplementary table in Table S2. Of the
456 patients, 18 patients had stage 0 CRC, defined as in situ; 72 patients had stage 1; stage
174 patients had stage 2; 128 patients had stage 3; and 64 patients had stage 4 CRC. A total
of 78% of TCGA CMS1 patients had stage 2–4 CRC.
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Clinical trait relationships were assessed for each color-coded module. Bypassing the default Pearson correlation method 
in WGCNA, we applied biweight mid-correlation as a robust alternative implemented in the WGCNA function (bicor). 
Module color bicor color scale (−1, blue; 0, white; +1, red) represents modules with significant student’s p cluster. 

To identify clinical associations, module expression was correlated (bicor-rho) with 
quantitative and qualitative clinical traits. Co-expression modules M6 (red), M8 (pink), 
and M4 (yellow) were significantly and positively associated with CMS1, as depicted in 
Figure 2. 

Figure 1. Gene dendrogram of clustered dissimilarity and module colors, based on consensus topological overlap. The
gene dendrogram was obtained by average linkage hierarchical clustering. The module colors underneath the dendrogram
show 10 module assignments determined by the Dynamic Tree Cut, which contains a group of highly connected genes.
Clinical trait relationships were assessed for each color-coded module. Bypassing the default Pearson correlation method
in WGCNA, we applied biweight mid-correlation as a robust alternative implemented in the WGCNA function (bicor).
Module color bicor color scale (−1, blue; 0, white; +1, red) represents modules with significant student’s p cluster.

To identify clinical associations, module expression was correlated (bicor-rho) with
quantitative and qualitative clinical traits. Co-expression modules M6 (red), M8 (pink),
and M4 (yellow) were significantly and positively associated with CMS1, as depicted in
Figure 2.

WGCNA modules M6 (red), M8 (pink), and M4 (yellow) were significantly and
positively associated with CMS1. Genes within modules M6, M8, and M4 are differentially
expressed and upregulated in CMS1 compared to other subtypes (Figure 3).

The co-expressed genes within modules M6, M8, and M4 were positively associated
with lymphocyte activation, T-cell receptor signaling, TNF signaling pathways, and positive
regulation of cytokines (Table 1).
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Table 1. Biological processes of module associations for CMS1. Gene Ontology (GO) elite analysis was used to determine
the top 5 biological processes of each module positively associated with CMS1 compared to modules that were negatively
associated with CMS1.

Module Top 5 Biological Processes False Discovery Rate

Po
si

ti
ve

ly
co

rr
el

at
ed

w
it

h
C

M
S1

Yellow
p-value = 0.004

• Immune system process
• Immune response
• Regulation of immune system process
• Lymphocyte activation
• Regulation of immune response

• 5.19 × 10−170

• 3.83 × 10−163

• 1.19 × 10−121

• 9.75 × 10−115

• 2.21 × 10−101

Red
p-value = 0.02

• Cellular nitrogen compound
metabolic process

• Cellular metabolic process
• Cell cycle
• Metabolic process
• Cell cycle process

• 2.61 × 10−34

• 2.61 × 10−34

• 1.25 × 10−31

• 5.87 × 10−30

• 3.40 × 10−26

Pink
p-value = 0.03

• Cellular macromolecule
metabolic process

• Macromolecule metabolic process
• Regulation of nucleobase-containing

compound metabolic process
• T cell receptor signaling
• Regulation of cellular macromolecule

biosynthetic process

• 9.43 × 10−38

• 1.38 × 10−34

• 5.40 × 10−30

• 5.40 × 10−30

• 2.69 × 10−29

N
eg

at
iv

el
y

co
rr

el
at

ed
w

it
h

C
M

S1

Black
p-value = 1 × 10−21

• Transcription, DNA-templated
• Metabolic process
• Biosynthetic process
• Heterocycle biosynthetic process
• Aromatic compound

biosynthetic process

• 0.0084
• 0.0084
• 0.0084
• 0.0084
• 0.0084

Magenta
p-value = 3 × 10−8

• Nucleic acid metabolic process
• RNA metabolic process
• Cellular nitrogen compound

metabolic process
• Nucleobase-containing compound

metabolic process
• Macromolecule metabolic process

• 1.96 × 10−12
• 1.77 × 10−10
• 1.77 × 10−10
• 2.69 × 10−10
• 2.73 × 10−10

The genes identified in the CMS1 TCGA positively correlated modules included
CCL19, CXCL13, FCRN1, IFNG, IL-17A, TNFRSF17, and XCL1. These genes are associated
with immunoregulatory interactions between lymphoid and non-lymphoid cells, B cell
receptor signaling, and tertiary lymphoid structures (TLS). The development of conven-
tional lymph nodes (LN) depends on interaction between CD4− CD3− lymphoid tissue
inducer (LTi) cells. This leads to expression of CCL19 and CXCL13, which as a localized
concentration gradient attracts additional LTi cells, and the recruitment and positioning of
T and B cells. CCL19 plays an important role in the trafficking of T cells in the thymus, and
in T cell and B cell migration to secondary lymphoid organs.

Pivotal studies have shown that a lymphocytic reaction to CRC is associated with
MSI [21], a significant characteristic of CMS1. CMS1 is enriched for MSI and is defined
by the overexpression of genes associated with cytotoxic lymphocytes [21]. Infiltrating
lymphocyte markers such as CD80, CD8, CD4, and CD68 were found in the CMS1 associ-
ated modules. Infiltrating lymphocyte markers, found within CMS1 positively correlated
modules, were co-expressed with genes associated with high T and B cell infiltration. In-
deed, the highly expressed genes included lymphocyte-attracting chemokines, e.g., CXCR6,



Cancers 2021, 13, 5824 7 of 14

CXCL9, CXCL10, CX3CL1 (for T cells), and CXCL13 (for B cells). We identified a plethora
of chemokine receptors in CMS1 TCGA positively correlated modules (CCR1, CCR2, CCR3,
CCR5, CCR8, CXCR1, CXCR2, and CXCR4), each of which plays a significant role in
recruiting leukocytes to inflammatory sites [22].

Inflammation in CRC is thought to involve cross-talk between immune cells, pro-
inflammatory mediators, chemokines, and cytokines that leads to the activation of certain
pathways such as NF-κβ and the JAK-STAT pathway leading to tumor cell proliferation
and growth [23]. IL6, IL10, IL1β, and TNFRSF10A were positively correlated with CMS1
and are associated with T helper cell activation through the NF- κβ pathway [24]. Most
CRC tumors have constitutive activation of transcription factors that activate inflammatory
pathways, such as NF-κβ and the JAK-STAT pathway [25]. The JAK-STAT pathway is a
major transducer of cytokine-signaling regulating inflammation and immune responses in
CRC [26]. The JAK-STAT pathway is made of eight STAT proteins; primarily STAT-1 and
-2 are involved in immune responses [26]. JAK-STAT activation is a notable characteristic
of CMS1 as it displays strong immune activation [9]. MAPK signaling has also been
reported to be induced by hypermutated CMS1 [9,27]. Constitutive activation of MAPK
leads to CRC progression by regulating CRC cellular proliferation and differentiation,
causing chemotherapy resistance, and activating STAT-1 [27,28]. MAPK is one of the most
prominent pathways for cellular proliferation and communicates with other pathways
such as PI3K-Akt [29].

To independently validate this CMS1-elevated cytokine gene signature found in the
TCGA dataset, we used a microarray dataset of 278 individual tumor sample transcrip-
tomes, called Integromics, acquired from the MD Anderson Cancer Center. Stages for our
Integromics cohort is provided as supplementary material in Table S2. All Integromics
CMS1 patients had stage 3 or 4 CRC. WGCNA CMS1 Integromics modules M7 and M4
were positively correlated with CMS1 status of distinct individuals’ tumors (Figure 4).
These modules were also positively correlated with right-sided tumors and MSI. It was
previously reported that right-sided tumors are characterized by high MSI, and BRAF
mutations [30,31], key features of CMS1.

Right-sided tumors in CRC have been significantly associated with poorer survival
of patients. Previous reports validated a strong association between BRAF mutant CRC
and MSI, having poorer survival and a greater propensity for metastatic spread [32]. BRAF
was found in our TA WGCNA M8 module, which was also positively associated with
immune-driven CMS1, as well as CMS4, which represents higher chromosomal instability,
and within African-American race. Of our three CMS1-positive TCGA modules, only M8
showed a strong correlation to African-American race. Evidence has shown that African-
Americans tend to present more right-sided tumors compared to non-Hispanic whites [33],
but this tendency arises through a chromosomal instability-associated molecular pathway
rather than through MSI or hypermethylation. A strong correlation to CMS4, with inherent
chromosomal instability, could in part explain why the immune-driven TCGA CMS1-
associated M8, but not M6 or M4 is associated with African-American race. CMS1 and
CMS4 tumor subgroups have high expression of lymphoid and myeloid signatures, in
addition to displaying a strong immune and strong inflammatory profile compared to the
relative expression of this module in CMS2 and CMS3 tumor subgroups, as previously
reported [34].
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The TCGA M4, M6, and M8 modules included 555 genes overlapping with members
of the Integromics M4 and M7 modules, associated with CMS1 (Figure 5). These 555 genes
were considered as a loosely defined CMS1 gene signature, we report these genes in our
supplementary material in Table S1. Genome-Scale Integrated Analysis of Networks in
Tissues (GIANT) analysis was used to group these genes into smaller clusters to better
understand their function and potential interactions (Figure 6). This CMS1 gene signature
was shown to be associated with leukocyte activation, positive regulation of adaptive
immune response, and positive regulation of cytokine production. We used Pathview to
identify the CRC pathways associated with the 555 overlapping CMS1 gene signature
(Figure 7). The signature list of genes is enriched with members of the MAPK, TGFβ, MSI,
and PI3K-AKT pathways. Interestingly, the PI3K-AKT pathway has not been associated
with the CMS1 phenotype until now. Several mutations in CRC have been reported to
occur upstream of EGFR and downstream of MAPK [29]. Several key gene products of the
MAPK pathway were found to be associated with several immune-response-activating
genes from the 555 overlapping CMS1 gene signature (Figure 8).
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Mitogen-activated protein kinases (MAPKs) are a family of protein Ser/Thr pro-
tein kinases that convert extracellular stimuli into a wide range of cellular responses.
MAPKs function to regulate survival, cell proliferation, motility, and differentiation. The
MAPK pathway is critical in CRC, typically activated by cytokines and chemokines. Once
this pathway is activated, the MAPK involved phosphorylates different substrates in the
cytosol and nucleus to execute a biological response. This biological response often in-
volves cell survival. Cascade of ERK1 or ERK2 (MAPK2 or MAPK1, respectively), each
phosphorylation-dependently activated downstream in the MAPK pathway, is upstream
of the phosphorylation of different cytoskeletal proteins that affect cell movement and cell
adhesion [35].
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4. Discussion

The transmembrane protein EGFR belongs to the ErbB family of receptors of tyrosine
kinases and is one of the most significant upstream receptors to activate the MAPK path-
way. The 555-overlapping CMS1 gene signature contains a plethora of G protein-coupled
receptors (GPCRs), cytokines and integrins, listed in Figure 7, all of which are critical
for EGFR activation. In turn, these factors promote transcription and CRC cell prolifera-
tion [5,28]. MAPK positive regulators TRIBS, DUSP1, MAP3K8, CRK, PTPN7, CMKLR1,
CNDP2, MAPK11, GPR31, FCRL3, and CARD9 were found in the 555-overlapping CMS1
gene signature. Stimulation of these MAPK regulators within our CMS1 signature leads
to the activation of the JNK (MAPK8 or MAPK9) and ERK1/ERK2 pathways. These
regulators promote B cell proliferation, and cell adhesion, and are they critical for pro-
ducing TNF-α during immune responses. These MAPK regulators are also co-expressed
with pro-inflammatory cytokines such as IL-1β (TCGA M4) that are known for causing
resistance to EGFR-targeted therapies [36]. Activation of this ErbB receptor leads to auto-
phosphorylation and release of the Grb2/SOS complex, which in turn activates the RAS
and PI3K pathways [34]. Within this context, we have shown that MAPK regulators are
positively correlated with the CMS1 phenotype.

PI3K regulators PIK3C3, PPP1R16B, CMKLR1, PIK3AP1, PIK3CG, and PIK3CD were
also positively correlated with CMS1 in our dataset. These PI3K regulators activate signal-
ing cascades involved in cell growth, morphology, motility, survival, and proliferation. The
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PI3K-Akt pathway is a critical pathway in CRC as it has been reported that phosphorylation
of Akt in CRC correlates with cell death inhibition and cell proliferation [37]. In addition
to PI3K regulators causing activation of this pathway, interleukins and chemokines play
a major role as well. Within the 555-overlapping CMS1 gene signature, we found IL6
and IL6R, which have been previously reported to activate PI3K-Akt. Transient phos-
phorylation of STAT3Tyr705 is caused by IL-6 signaling, which leads to phosphorylation of
AktSer473 and ERK1/2Thr202/tyr204 [38]. IL-6 also leads to the release of the pro-inflammatory
chemokine CCL2 [38] which is meditated via JAK-STAT3, a pathway attributable to CMS1,
and PI3K-Akt, a pathway atypical of CMS1 subgroup assignment. Several chemokines
have been shown to activate MAPK and PI3K signaling pathways leading to cell growth,
migration, and transcription activation [39]. Signaling via the CMS1-associated CXCL13,
and its receptor CXCR5, has been shown to induce cancer progression through PI3K, Akt,
ERK 1/2, and Jun [40,41]. Indeed, others have shown that CXCL13 stimulates PI3K-Akt ac-
tivation and increases the secretion of MMP-13 in CRC [42]. Upon activation of chemokine
receptor-mediated signaling, the PI3K molecules serve as central signaling molecules:
chemokine receptors are coupled to heterothermic G proteins α,β,γ, activating Class1A
and 1B PI3Ks [39,41]. Our analysis shows a 555-overlapping CMS1 gene signature to be
involved in cell signaling associated with CRC progression through PI3K, Akt, ERK 1/2,
and Jun.

CMS1 having genes involved in PI3K-AkT signaling is a process atypically assigned to
CMS1 CRCs. Our findings highlight the relevance of gene networks involved in CMS1 as it
relates to oncogenic signaling cascades, cell activation and positive regulation of immune
responses associated with CMS1 CRC progression.

5. Conclusions

The CMS1 phenotype accounts for 14% of CRC tumors, is characterized by a high
immune response, and is associated with right-sided tumors and MSI. Herein we aimed to
better understand the factors that contribute to the CMS1 phenotype. Genomic studies have
shown that EGFR and downstream MAPK and PI3K signaling pathways are nearly ubiqui-
tous events in CRC. Our findings strongly support CMS1 positively correlated modules,
and its co-expression network activates important pathways such as JAK-STAT, MAPK,
and PI3K-Akt, to be associated with CRC progression and tumor growth. These pathways
have frequently been associated with CRC progression due to their ability to activate signal-
ing cascades of Ras-Raf-ERK signaling that contribute to cell proliferation, differentiation,
and survival. Our findings highlight the relevance of gene networks involved in CMS1
as it relates to oncogenic signaling cascades, cell activation, and positive regulation of
immune responses associated with CMS1 CRC progression. For the first time, we identi-
fied a strong correlation of 555-overlapping genes for CMS1 gene signature involved in
chemokine-mediated signaling pathways, immune responses, inflammatory responses,
and cell activation. Despite extensive studies on signaling pathways associated with CRC
progression, we identified 555-overlapping genes found in critical molecular pathways
known to progress colorectal cancer which are involved in immune hypermutated CMS1.
Understanding how co-expressed genes and their networks are associated with CRC
clinical phenotypes and biological functions will yield new insights into understanding
biomarkers and more targeted therapies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225824/s1, Table S1: 555-overlapping genes for CMS1 gene signature, Table S2:
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