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T cells develop in the thymus from lymphoid primedmultipotent progenitors or

common lymphoid progenitors into ab and gd subsets. The basic helix-loop-

helix transcription factors, E proteins, play pivotal roles at multiple stages from T

cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also

regulate T cell development while promoting ILC differentiation. Recent

findings suggest that the thymus can also produce innate lymphoid cells

(ILCs). In this review, we present current findings that suggest the balance

between E and Id proteins is likely to be critical for controlling the bifurcation of

T cell and ILC fates at early stages of T cell development.
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Introduction

The E protein family of transcription factors are crucial molecules engaging in B cell

development in the bone marrow and T cells differentiation in the thymus (1, 2). This

family consists of proteins encoded by three genes, E2A (also called Tcf3), HEB (Tcf12)

and E2-2 (Tcf4) (Figure 1A) (3–5). These proteins share extensive sequence homologies

in the activation domains (AD1, LH) and basic helix-loop-helix (bHLH) DNA-binding

domain (6–9). E proteins regulate the transcription of their target genes by forming

homodimers or heterodimers and bind to E-box sequences (9). The E2A gene gives rise

to two proteins, E12 and E47, due to alternative splicing of two adjacent exons, each

encoding a basic helix-loop-helix (bHLH) domain (10). While E47 binds DNA avidly as

homodimers, E12 does so poorly due to the presence of an inhibitory domain (11).

However, both form heterodimers with other bHLH proteins such as MyoD, and bind

DNA efficiently. The HEB gene encodes a full-length canonical protein (HEBCan) and a

truncated alternate form (HEBAlt), which derives from a transcript initiated in the

middle of the gene (12). HEBAlt lacks the AD1 transcription activation domain and has

lower transcriptional activities (13). It has an Alt domain at the N-terminus with three
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tyrosine residues which can be modified by phosphorylation that

augments its transcriptional activity (13).

The family of inhibitor of differentiation proteins, Id1-4,

antagonize E proteins by dimerizing with them via the helix-

loop-helix domain (Figure 1B) (14–19). However, because Id

proteins lack the basic amino acids necessary for DNA binding,

heterodimers between E and Id proteins cannot bind to E box

sequences (Figure 1C). Transcription of the E protein genes is

less variable but that of the Id genes is highly dynamic.

Therefore, the net E protein activity in a given cell is

determined by the levels of both E and Id proteins (16, 17). In

this review, we intend to highlight the roles of E and Id proteins

in regulating the fate choices between T cells and innate

lymphoid cells.
T cell development

Lymphoid-primed multipotent progenitors (LMPP) and

common lymphoid progenitors (CLP) travel from the bone

marrow to the thymus and become early T cell progenitors

(ETP) (20–23). T cell developmental progression in the thymus

can be generally defined by the expression of CD4 and CD8

surface markers: from CD4 and CD8 double negative (DN) to

double positive (DP) and then to CD4 or CD8 single positive

(SP) (24–27). During the transition from DN to DP stage, an

immature CD8 single positive subset (ISP) has been described

(28, 29). Within the DN compartment, four subsets (DN1 to
Frontiers in Immunology 02
DN4) are characterized by the expression of c-kit and CD25 in

the order of maturity as c-kit+CD25-, c-kit+CD25+, c-kit-CD25+

and c-kit-CD25- (27). ETPs are at the top of the hierarchy and

included in the DN1 subset (23). They give rise to both ab and

gd T cells, which have distinct T cell receptors (TCRs), different

developmental programs and divergent functions. The E2A and

HEB genes are both expressed in the thymus. Interestingly,

HEBAlt is preferentially produced in the DN and ISP stages.

Since E proteins are known to inhibit cell proliferation and

HEBAlt acts as a hypomorph (13, 30), whether HEBAlt plays a

role in tampering E protein activities during pre-TCR-triggered

cell expansion is interesting to be investigated.
ab T cells

The development of ab T cells is largely driven by ab
TCR signaling events. However, before the formation of pre-

TCRs and TCRs, the differentiation of committed T cell

precursors is supported by Notch signaling and signaling

from cytokine receptors such as that of IL-7 (31–35).

Critical transcription factors involved in T cell commitment

include TCF1, GATA3 and Bcl11b (36–40). The sequential

rearrangements of TCRb and then TCRa genes catalyzed by

the RAG1 and RAG2 recombinases set the milestones of the

developmental progression (24, 41–44). The TCRb locus

undergoes recombination between D to J regions and then

V to DJ regions to produce functional b chains, which pair
A B

C

FIGURE 1

Schematic diagrams of E and Id proteins. (A) The function domains of E proteins are labeled. AD1 and LH are two transcription activation
domains. The basic and helix-loop-helix domains are marked as b and HLH, respectively. (B) Id proteins with the HLH domain are shown.
(C) The mechanism of action of Id proteins to inhibit DNA binding by E proteins. The figure was created by BioRender.com.
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with the pre-Ta (45, 46). The pre-TCR complex delivers

signals leading to the expansion of DN3 cells and

their advancement to the DP stage. The TCRa gene

rearrangement occurs at the DP stage, which allows the

formation of ab TCRs, triggers the positive and negative

selection and enables the generation of mature SP T cells (47–

49). Mature but naive T cells leave the thymus by the

upregulation of S1PR1 and CD62L (50–53).

ab T cells possess a large repertoire of TCRs due to a

collection of V regions. These TCRs recognize diverse antigens

presented by the MHCmolecules and elicit subsequent signaling

events. CD4+ and CD8+ naïve T cells exit the thymus to be

activated and differentiate into helper and cytotoxic effectors in

peripheral lymphoid organs, respectively (54, 55). Due to the

sheer quantity of thymic output of ab T cells and their ability to

proliferate in response to antigen engagement, ab T cells are the

major players of adaptive T cell immunity.
gd T cells

The development of gd T cells differs from ab T cells. Firstly,

unlike ab T cells, gd T cells do not traverse DP and SP stages

during the development. Instead, they undergo gd lineage

commitment and maturation at DN2 and DN3 stages (56–58).

Generation of mature gd T cells depends on the V-J

rearrangement of the TCRg locus and V(D)J recombination in

the TCRd locus, along with Notch signaling. Since the TCRd
gene is embedded in the TCRa locus, TCRa rearrangement,

triggered by pre-TCR signaling after an independent

rearrangement event of the TCRb gene, can eliminate the

TCRd gene, thus aborting the gd T cell fate (59–61). Early

precursors of effector gd T cells in the thymus are identified as

CD24+ and then mature to CD24- stage (62, 63). There are three

types of gd T cells classified based on their effector functions, gd1,
gd17 and innate-like gd T cells, which secrete interferon g, IL-17
and interferon g plus IL-4, respectively (64–66). The

development of gd T cells require stronger TCR signals in the

comparison to ab T cells (67, 68). The gradients of TCR signals

determines the development of specific effector subsets. The

generation of innate-like gd T cells depends on the strongest

TCR signal as indicated by their higher levels of CD5 compared

to other gd subsets (69). CD5 levels are proportional to TCR

signaling strength in the thymus (70, 71). Expression of PLZF

transcription factor also depends on ligand ligation with TCR

and PLZF is required for the effector function of innate-like gd T
cells (72). Type 1 gd T cells also require a strong TCR signal and

the T-bet transcription factor is critical for gd1 differentiation

(65, 72–75). On the other hand, type 17 gd T cells rely on a

weaker TCR signal for the differentiation (65, 72, 74, 76). In fetal

organ culture, addition of activating antibodies against gd TCR

or CD3 impairs the production of gd17 cells (76). Moreover,

RORgt transcription factor is essential for gd17 development
Frontiers in Immunology 03
(77). Additionally, CD73 expression marks most of gd T cells

committed to mature into effector cells in the thymus (78).

Distinct subsets of gd T cells reside in different tissues and

develop at different ages in mice (56, 57). The Vg regions are

described by two different nomenclatures. In this review, we will

use the one defined by Raulet and colleagues (79). In the early

fetal stage, the first wave of gd T cells is associated with the

Vg3+Vd1+ subset known as the dendritic epidermal cells, which

produce IFNg (65, 80, 81). The development of the Vg4+ subset
begins at the fetal stage and lasts until birth. The generation of

the Vg2+ subset occurs in the late fetal stage and continues

through adulthood. The Vg2+ subset consists of cells producing
IL-17 or IFNg (82). The IL-17-producing cells become long-lived

cells with self-renewal capabilities after birth (83). Vg1.1+ cells

develop at the prenatal stage and this persists through adult life

(56). Despite the complicated developmental schemes of gd T

cell differentiation, how gd TCRs interact with their ligands and

elicit signals is less understood. To some extent, gd T cells are

thought to have properties resembling innate cells.

T cell development is a “wasteful’ process”. Every D-J or

V-DJ combination only has one third of a chance to create an

in-frame joint that result in a full-length TCR chain. It is

believed that over 70% of the developing T cells do not reach

the mature stage and die because they fail to form pre-TCR (b
selection) at the DN3 stage or because they cannot produce a

full-length TCRa chain at the DP stage (death by neglect).

They can also be eliminated due to excessively strong TCR

signaling (negative selection). Are there any alternative fates

for these T cell “drop-outs”? Perhaps, innate lymphoid cells

are some of the options.
Regulation of T cell development by
E and Id proteins

E proteins play pivotal roles in governing the development

of ab T cells. Two of the E protein genes, E2A and EBCan, are

expressed in T cells and they have redundant functions. The

proteins encoded by these two genes include E12, E47, HEBCan

and HEBAlt. Since all knock-out constructs targeted the bHLH

domains, E2A or HEB deficient mice lack all of their respective

proteins. Germ-line ablation of either E2A or HEB gene partially

impairs T cell development by dramatically reducing thymocyte

counts (84, 85). The leaky block allows the maturation of small

numbers of T cells, which are predisposed to develop T cell

lymphoma (84–86). HEB deficiency also reveals a novel role of

HEB at the ISP stage (86). In contrast, simultaneous inhibition of

all E proteins by expressing Id1 using the proximal promoter of

lck in transgenic mice results in a complete block of T cell

development, arresting thymocytes at the DN1 stage when the

Id1 transgene begins to be expressed (87, 88). Likewise, inducible

ablation of both E2A and HEB genes using the plck-Cre
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transgene results in a developmental arrest at the DN3 stage

when the Cre gene is expressed (89).

E protein-mediated control at these early stages of T cell

development is multi-dimensional. First, E proteins are known

to activate the transcription of Notch1, which encodes the

receptor for Notch ligands such as Delta-like 4 in the thymus

and ensure the differentiation and survival of T cells (90–92).

Second, E proteins are found to activate the transcription of

Rag1 and Rag2 (93, 94), which code for the enzymes essential for

VDJ recombination of TCR genes. Third, E proteins facilitate

TCR gene rearrangement by increasing chromatin accessibility

at the TCRb locus (95). Fourth, the binding of E2A-HEB

heterodimers to Ptcra enhancer regulates pre-Ta expression at

the DN3 stage (96–98). Finally, the interplay between E proteins

and other transcription factors such as TCF1 and LEF1 also

contribute to the positive regulation of early T cell development

(36, 99).

Following pre-TCR signaling, the Ras-MAP kinase pathway

is activated, which leads to the up-regulation of Egr transcription

factors and then activation of the Id3 gene (100–103). This

suggests that down-regulation of E protein activity is necessary

for DN3 cells progress to the DP stage. Indeed, when Rag1 was

deleted, T cell development arrested at the DN3 stage (104).

However, if E proteins are down-regulated by germline E2A

deletion or pLck-Id1 expression, Rag1-/- thymocytes can advance

to the DP stage (105, 106). Another mechanism to down-

regulate E proteins is to accelerate their ubiquitin-mediated

degradation in the presence of Notch signals and MAP kinases

activated by pre-TCR signaling (107, 108).

At the DP stage, Id3 expression is transiently triggered by

TCR signaling and is involved in the positive selection of

developing thymocytes (101, 109). Deleting both Id2 and Id3

genes prevented the progression of positively selected T cells to

the SP stage (110). Conversely, low levels of Id1 expression in

plck-Id1 heterozygous transgenic mice allows some T cell

precursors reach the DP stage but a majority of these cells

undergo apoptosis likely due to excessive responses to the

normal levels of TCR stimulation (105, 111). This notion was

supported by the observation of hyper-activation of NFkB upon

ectopic Id1 expression (105, 112). In addition, deleting both E2A

and HEB genes also impairs the generation of CD4 SP T cells

(110). Collectively, E and Id proteins clearly are the central

players in shaping ab T cell development.

A strong TCR signal triggers the activation of the ERK-Egr-

Id3 axis and favors gd over ab T cell development (73). Id3

deficiency resulted in an expansion of Vg1.1+ innate-like gd T

cells, possibly due to the dampening of the strong TCR signaling

which normally causes the death of these cells (113, 114). In fetal

organ cultures, HEB deficiency impairs the differentiation of Vg4
and Vg6-containing gd17 cells. In et al. postulated two pathways

of gd T cell development (115). Pathway 1, which favors gd1
cells, depends on strong TCR signaling and up-regulation of Id3.

In contrast, pathway 2 mostly occurs in the fetal stage and
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requires lower levels of TCR signaling and Id3 expression. HEB

is necessary for Vg6+CD73- gd17 T cells in the fetal stage as well

as Vg4+CD73+ gd17 T cells in neonates (115). HEB and E2A are

thought to activate the transcription of Sox4, Sox13 and Rorc

genes necessary for gd17 differentiation (115, 116). Overall, it

appears that Id3 expression plays a critical role in directing gd T
cell development through counterbalancing the function of

E proteins.
Differentiation of innate
lymphoid cells

Innate lymphoid cells (ILCs) are first responders in immune

reactions towards environmental insults and microbial

infections. ILCs are divided into three groups, ILC1 to ILC3,

which play different roles during specific immune responses

(117, 118). Even though ILCs share with T cells the

transcriptional factors that drive their differentiation and the

profiles of cytokine production, they lack T-cell receptors (TCR),

thus eliciting innate immunity as opposed to adaptive immunity

mediated by T cells (118–120). Each ILC subset has been

increasingly recognized to be heterogenous and display

different characteristics in different tissues (121). Plasticity

between the three ILC subsets also exist, especially under

pathophysiological conditions (118, 122). Nevertheless, the

general properties and functions of these three subsets of ILCs

have been established. The ILC1 group consists of helper-like

ILC1s and conventional NK cells (cNK). ILC1s mediate the early

immune response upon contact with intracellular pathogens like

bacteria and viruses. Their effector function regarding cytokine

production is similar to the that of cNK cells, namely secreting

IFNg upon pathogen exposure. However, NK cells but not

helper-like ILC1s are cytotoxic and able to produce high levels

of cytotoxic granules like perforin and granzymes. The T-bet

transcription factor is responsible for ILC1 differentiation and

function (123). ILC2s share a transcriptional network and

cytokine production profiles with those of type 2 T helper cells

(Th2). GATA3 is the signature transcription factor and drives

the expression of cytokines including IL-5, IL-13, IL-4, IL-9, and

amphiregulin (124–126). RORa is another transcription factor

indispensable for ILC2 differentiation (127). ILC2s are crucial

for the protection against helminth infection. They are also

activated by allergens due to the release of IL-25, IL-33 and TSLP

in the tissues, contributing to a number of respiratory diseases

such as asthma (128). On the other hand, ILC2s have also been

shown to be involved in tissue repair following influenza

infection (129). The ILC3 group includes innate immune cells

committed to targeting extracellular microbes. They reside

mainly in the mucosal tissues and maintain their homeostasis

locally. ILC3s express RORgt and produce cytokines such as IL-

17A, IL-22, and GM-CSF (118, 123). Lymphoid tissue inducers

(LTis) are a subset of ILC3s essential during the fetal stage for
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supporting the development of lymph nodes and other

lymphoid tissues (130).

Innate lymphoid cells are progenies of hematopoietic stem

cells, arising from progenitors destined to become lymphoid

cells such as lymphoid-primed multipotent progenitors

(LMPPs) or common lymphoid progenitors (CLPs) (20, 21).

These progenitors reside in fetal liver or adult bone marrow

where ILCs differentiate in addition to B cells. These processes

have been extensively studied as summarized below. However,

LMPPs and CLPs also travel to the thymus to produce T cells.

The capability of the thymus to support ILC differentiation has

recently become appreciated (90, 131–133). The divergence of T

cell development to ILC fates is an interesting issue to be

addressed here. Finally, ILCs are also believed to be derived

from tissue-resident progenitors but at what stage these

progenitors seed the peripheral tissues and whether all ILC

subsets utilizes this mechanism of reproduction are not

fully understood.
ILC differentiation in the bone marrow
and fetal liver

Innate lymphoid cells develop in the bone marrow from

LMPPs or CLPs through a series of intermediate progenitors

which progressively lose the potential of giving rise to B cells and

then NK cells (120). The progenitors that can generate

subsequent progenitors for either ILC or NK cells are called

alpha LPs (aLPs), which require the NFIL3 and TOX

transcription factors (134). Early innate lymphoid progenitors

(EILP) characterized by TCF1 expression, also have a similar

differentiation potential (135). Next, common helper ILC

progenitors (CHILPs) are regulated by Id2 and responsible for

the ILC but not NK subsets (136). ILC progenitors (ILCPs)

controlled by PLZF are dedicated to only producing ILCs, and

are found in both bone marrow and fetal liver (137). In contrast,

NK progenitors (NKPs) which also express Id2 are specialized to

become NK cells (120, 137). Although CHILPs or ILCPs have

the potential to give rise to all three ILC subsets in vitro when

cultured on OP9-DL1 stroma, the predominant subset detected

in the bone marrow is ILC2 as well as their precursors called

ILC2Ps (138). Moreover, there is also evidence that ILC1s can be

generated in adult liver from fetal hematopoietic stem

cells (139).

Whether the bone marrow serves as a constant source of

ILC2 replenishment has not been well established. Experiments

using parabionts suggested tissues such as the lung receive few

ILC2s from the blood circulation (140, 141). However, recent

single cell RNA sequencing (scRNAseq) data showed a

population of ILC2s in the blood of wild type and athymic

nude mice, which suggest that these ILC2s may come from the

bone marrow or they are the recirculating ILC2s from

peripheral tissues (133). IL-18R+ precursors of ILC2s have
Frontiers in Immunology 05
also been found in the lung and shown to arrive from the

blood (142, 143).

In humans, ILC progenitors with biases to different ILC

subsets are readily detectable in the blood (144, 145). Likewise,

committed ILC1 to ILC3 subsets are also found in the blood

(122, 146). These cells are assumed to come from the bone

marrow but no direct evidence is available. The frequencies of

the ILC subsets are often found to be altered in different disease

states, which may potentially serve as biomarkers of these

diseases (147–149).
ILC differentiation in the thymus

Small numbers of ILCs, particularly ILC2s, have been found

in the thymus at pre- and post-natal stages (150–154). This is

consistent with the fact T cell progenitors express the

transcription factors supporting ILC2 differentiation, namely

GATA3, TCF1 and Bcl11b (155).

Whether the thymus is another lymphoid organ capable of

exporting ILC precursors or ILCs to peripheral tissues was

investigated by using scRNAseq of the lineage negative (Lin-)

Thy1+ fraction of the blood of wild type and athymic nude mice

(133). Bajana et al. found that about half of the ILC-containing

Lin-Thy1+ population, was greatly diminished in the athymic

nude mice, which suggest that the production of these cells is

thymus-dependent, thus designated td-ILCs. These cells were

fractionated into four clusters based on their distinct

transcriptomic properties. All td-ILCs express genes commonly

expressed in ILCs such as Tcf7 and Il7r but they lack the signature

transcription factors that specify ILC1 to ILC3: T-bet, GATA3 and

RORgt, suggesting that td-ILCs can be ILC precursors. Indeed,

when these cells were isolated as Lin-Thy1+CD127+CD62L+ from

the blood and cultured on OP9-DL1 stroma, different subsets of

ILCs were generated (133). Whether this population contains

disparate progenitors for distinct ILC subsets or progenitors with

multiple potentials is to be determined.

Interestingly, td-ILCs express Cd3d, Cd3e and Cd3g but no

other T cell specific genes such asCd4, Cd8a, Rag1, Rag2 andDntt.

Flow cytometry analyses detected CD3ϵ by intracellular staining

but not by surface staining (133). Moreover, td-ILCs do not have

TCRb or TCRd either on the surface or in the cytoplasm, thus

indicating that they are not T cells. Using intracellular CD3ϵ
(icCD3ϵ) as a marker, Bajana et al. also detected icCD3ϵ+ cells in
the lung, small intestine and skin of wild type mice (133). Because

these icCD3ϵ + cells are greatly diminished in nude mice, the

results were interpreted to mean that icCD3ϵ marks thymus-

derived cells. Like in blood td-ILCs, the icCD3ϵ+ cells in the lung

and small intestine do not express TCRb or TCRd, ruling out the
possibility that they are T cells. This suggests that td-ILCs in the

blood may home to peripheral tissues where they differentiate into

diverse ILC subsets. In the lung, a significant fraction of icCD3ϵ+

ILCs are ST2-RORgt+ ILC3-like cells. In contrast, the lamina
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propria of small intestine harbors icCD3ϵ+KLRG1-T-bet+ ILC1-

like cells. Curiously, the expression levels of GATA3 correlated

inversely with those of icCD3ϵ, which suggests that ILC2

differentiation is accompanied by the down-regulation of CD3

expression (133). Although this possibility remains to be

investigated, the potential down-regulation of CD3 expression

makes it difficult to assess the contribution of thymus-derived

ILC2s to the overall ILC2 pool. A lineage-tracing system with a

Cre transgene that is specifically and efficiently expressed at the

early stages of T cell development would greatly facilitate the

estimation of the contribution of thymus-derived ILC2s and

further validate the thymic origin of ILC2 subsets.

Additional evidence exist that support the notion that the

thymus contributes to the ILC2 pools. Qian et al. showed that not

only multipotent progenitors (DN1) but also committed T lineage

cells (DN3) from the thymus can differentiate into functional ILC2

on OP9-DL1 stromal cells (132). Consistently, ILC2s isolated from

the lung of WT but not nude mice harbor rearranged TCR genes,

Tcrb and Tcrg, suggesting that at least some of the ILC2s originated

from committed T lineage cells in the thymus (132, 156). While

Tcrg rearrangement was readily detectable by electrophoresis,

analyses of the D-J and V-DJ recombination in the Tcrb locus

required Southern blotting because of the diversity of their

rearrangement events. Shin et al. sequenced the rearranged Tcrg

segments and found a reduced frequency of in-frame

rearrangement in ILC2s compared to that in gd T cells (156). It

was thus concluded that ILC2s are derived from cells which have

failed productive gd TCR rearrangement (156, 157). However,

further investigation at the single-cell level could strengthen the

conclusion. Despite the rearrangement events detected, ILC2s do

not express TCRb or TCRd either intracellularly or on the surface.

Likewise, NK cells have also been shown to arise from early

T cell precursors in the thymus, suggesting a branch point

between T and NK cells (158–160). It remains to be

determined if this branch point is similar or different from

those giving rise to ILCs.
Regulation of ILC differentiation by E
and Id proteins

Id2 is expressed in ILC progenitors and plays an essential role

in ILC development, which implicates the involvement of E

proteins in regulating ILC differentiation (136, 161). Strikingly,

down-regulation of E proteins by the ectopic expression of Id1 in

transgenic thymocytes at the DN1 stage or by deletion of the E2A

and HEB genes with plck-Cre at the DN3 stage led to dramatic

increases in ILC2 production in the thymus (131, 132). As a result,

large amounts of ILC2s were exported from the thymus to

peripheral tissues throughout the body. The thymus was shown

to be responsible for the mass production of ILC2 in Id1

transgenic mice because when the transgene was bred onto the
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nude background, ILC2 expansion was no longer detectable (132).

ILC2s made in the thymus of Id1 transgenic and E protein

deficient mice respond to IL-25 or IL-33 stimulation similarly as

wild type ILC2s by secreting IL-5 and IL-13 in cultures (131, 132).

In vivo, Id1 transgenic mice exhibited greater type 2 responses

when treated with papain in the lung or during helminth infection

(131). These are likely due to the presence of excessive amounts of

ILC2s in Id1 transgenic mice. However, on a per cell basis, Id1

transgenic ILC2s appeared to have a less robust production of IL5

and IL-13 (131). It is not clear if this is due to a cell intrinsic

difference or a limitation of stimuli available to all of the extra

ILC2s in Id1 transgenic mice. Barshad et al. made a similar

observation by treating wild type and Id1 transgenic mice with

house dust mites (HDM) (162). By analyzing the chromatin

accessibility, they found a reduction in AP-1 and C/EBP

binding sites in open chromatins after HDM treatment in Id1

transgenic ILC2s. Whether this is due to a direct or indirect effect

of E protein inhibition remained to be determined.

In the blood of Tcf3fl/flTcf12fl/flplck-Cre mice, an extremely

large population of cells (cluster 0) that belong to thymus-

dependent ILC precursors was detected using scRNAseq (133).

In addition, a subset (cluster 2) with characteristics of NK cells

was also markedly enriched (133). These cells can give rise to

different ILC/NK subsets when cultured on OP9-DL1 stroma

(133). Together, these results suggest that E proteins play

multiple roles in suppressing the production of ILC and NK

precursors, which may arise at different developmental stages or

from different T cell precursors. Whether E proteins suppress

the same or different transcriptional programs governing ILC

and NK differentiation remains to be investigated.

Ablating E2A and HEB genes starting at the CLP stage using

IL7r-Cre increased the production of both ILC2s and LTi-like

cells, a subset of ILC3s (90). Conversely, inducible expression of

a gain-of-function mutant of E47 by Rag1-Cre impaired the

differentiation of ILC2s from ILCP in the bone marrow (163).

Furthermore, Id2-/- mice have been shown to be devoid of NK

cells and lymph nodes which are initiated by LTi cells (130). Yet,

overexpression of Id3 in human hematopoietic stem cells

promoted NK differentiation (164). These findings suggest that

down-regulating E protein function is instrumental for NK cell

differentiation (165). It was further shown that Id2 plays a key

role in regulating the production of IL-15 important for NK

homeostasis (166, 167).
Transcriptional programs of E
protein-mediated suppression of
ILC differentiation

Inducible deletion of the E2A and HEB genes promoted

ILC2 differentiation from CLP, DN1 and DN3 cells on OP9-DL1
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stroma by 20-40 folds, which demonstrates a powerful cell-

intrinsic suppression by E proteins (132). It is therefore

interesting to elucidate the transcriptional programs that

underlie the suppression of ILC2 differentiation. Miyazaki et

al. performed RNA sequencing and Assay for Transposase-

accessible Chromatin Sequencing (ATAC-seq) using DN1

(ETP) cells of fetal thymi of control and Tcf3fl/flTcf12fl/flIl7r-

Cre mice. As expected, they found the down-regulation of an

array of genes important for T cell development, which include

Notch1, Ptcra, Rag1, Rag2 and Cd3d. On the other hand, genes

known to be expressed in ILC progenitors or ILC2s were up-

regulated. Examples of such genes are Pdcd1, Il18r, Id2, Gata3,

Lmo4, Rora, Tox, Est1, Il4, Il1rl1 and Klrg1. The chromatin

accessibility assays also showed a shift from the open chromatin

patterns of T cells to those of ILCs. While these findings agree

with the phenotypes of E protein deficient mice, it is difficult to

pinpoint the critical switches that alter the cell fates.

Likewise, Qian et al. conducted RNA sequencing using DN1

or DN3 cells from control and Tcf3fl/flTcf12fl/flRosa26CreERT2

mice cultured on OP9-DL1 stromal cells (132). On day 4 of

the culture, tamoxifen was added to the medium and the cells

were collected 24 or 72 hours later. Expression of genes

important for T cell development decreased whereas those

crucial for ILC2 differentiation increased. Even after one day

of E-protein ablation, a collection of genes coding for diverse

transcription factors became activated. These include Zbtb16,

Gata3, Rora, Rxra, Klf6, Ikzf2 and Irf4. While it is possible that E

proteins individually repress the transcription of all of these

genes, a coordinated program that controls the transcription of

critical factors essential for ILC2 differentiation may be at play.

A close-up look at the action of E proteins was carried out by

making use of the E47-ER fusion proteins (112), which allowed

instant induction of E protein activity upon addition of

tamoxifen (168). ILC2s from the thymus of Id1 transgenic

mice were transduced with retroviruses expressing E47-ER or

empty control viruses. Transduced cells were isolated by sorting

for EGFP expressed off the same retroviral vector. After

expansion, these cells were then incubated with tamoxifen for

4 or 16 hours and harvested for RNA sequencing or ATAC-seq.

Consistent with the function of E proteins as transcription

activators, Peng et al. found more genes activated than

repressed by E47-ER at both time points (168). Among them

are three genes encoding transcriptional repressors, Cbfa2t3,

Jdp2 and Bach2 (169–171).

Interestingly, ATAC-seq data showed that a modest increase

in chromatin accessibility 4 hours post induction of E47 was

followed by a widespread reduction in open chromatin regions

16 hours later. Moreover, the transcription factor motifs

enriched in the differential peaks shifted from those bound by

bHLH and Ets1 proteins at 4 hours to those recognized by bZip

and GATA factors. It is therefore possible that one of the

mechanisms whereby E proteins suppress ILC2 differentiation

is to control the expression of transcription repressors, which in
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ILC2 differentiation or function. Although this hypothesis has

not been validated through genetic complementation studies, the

correlation between the alteration of gene expression in

Cbfa2t3-/- and E protein deficient mice support this idea (168,

172). Proteins bound to bZip and GATA motifs such as Batf and

GATA3 are also known to be crucial for ILC2 function (126,

173, 174).

The RORa transcription factor also plays an important role

in ILC2 differentiation (127). Rora-/- mice lack ILC2s but have

intact T cell compartments. Recently, Ferreira et al. showed that

RORa promotes ILC2 over T cell development by activating the

transcription of Id2 and Nfil3, which in turn inhibit the function

of E proteins (153). However, in E protein deficient thymocytes,

Rora expression is consistently up-regulated (90, 132, 168).

Thus, a positive feedback loop may perpetually cause the up-

regulation of Rora expression during ILC2 differentiation. There

are likely additional transcription factors which act in parallel or

in sequence to coordinate the differentiation of ILC2s and

possibly ILC progenitors. However, it is clear that E proteins

and their inhibitors, Id proteins, play a central role in

maintaining the balance between T cell and ILC development.
The crossroads of T cells and innate
lymphoid cells

The major difference between T cells and innate lymphoid

cells is the presence and absence of TCRs on their cell surface,

respectively. However, there are a number of common features

in the differentiation of these two types of cells (175). The thymic

environment is conducive to the maturation of both T cells and

ILCs (at least ILC2s and ILC3s) by supporting Notch and IL-7

signaling. The thymic progenitors equipped with transcription

factors such as TCF1 and GATA3, are able to differentiate into

both T cells and ILCs. Obviously, T cell production is the

dominating responsibility of the thymus. This is due to the

overwhelming effects of TCR-driven T cell expansion and

powerful transcriptional programs in place to ensure an

adequate T cell output. One of such transcriptional programs

is controlled by the balance between E and Id proteins (Figure 2).

When E protein activities are high, T cell development proceeds.

When Id proteins overcome E proteins, ILCs can develop.

Although Id2 has been shown to be expressed in ILC

progenitors and play critical roles in ILC differentiation in the

bone marrow, expression of Id3 is stimulated by TCR signaling

in both ab and gd T cells (73, 106). This would create

opportunities for developing T cells to divert to the ILC path.

However, this possibility needs to be vigorously investigated. It is

also interesting to explore whether the large numbers of

developing T cells eliminated during the differentiation

processes could be recycled into ILCs and used to replenish

ILC pools in peripheral tissues. The E/Id axis has clearly been
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shown to be gate-keepers in the crossroads to T cell and ILC

fates but the downstream transcriptional events remain to be

further elucidated as the technologies and critical reagents

become available.
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