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The brain is our most complex and least understood organ. Animal models have

long been the most versatile tools available to dissect brain form and function;

however, the human brain is highly distinct from that of standard model organisms.

In addition to existing models, access to human brain cells and tissues is essential

to reach new frontiers in our understanding of the human brain and how to intervene

therapeutically in the face of disease or injury. In this review, we discuss current and

developing culture models of human neural tissue, outlining advantages over animal

models and key challenges that remain to be overcome. Our principal focus is on

advances in engineering neural cells and tissue constructs from human pluripotent

stem cells (PSCs), though primary human cell and slice culture are also discussed.

By highlighting studies that combine animal models and human neural cell culture

techniques, we endeavor to demonstrate that clever use of these orthogonal model

systems produces more reproducible, physiological, and clinically relevant data than

either approach alone. We provide examples across a range of topics in neuroscience

research including brain development, injury, and cancer, neurodegenerative diseases,

and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement

therapy progresses, we touch on the advancements that are needed to make this a

clinical mainstay.

Keywords: human pluripotent stem cells, neural stem cells, regenerative medicine, human brain development,

disease modeling

INTRODUCTION

The brain is the most complex organ in the human body, estimated to contain over 85 billion
neurons and a similar number of non-neuronal cells (Azevedo et al., 2009). Specialized neuron
subtypes continue to be identified and characterized at an increasing rate (Chen et al., 2017;
Zhong et al., 2018; Hodge et al., 2019; Ximerakis et al., 2019; Polepalli et al., 2020; Bakken
et al., 2021; Berg et al., 2021). The diverse non-neural populations that populate our brains
include astrocytes, oligodendrocytes, neural stem and progenitor cell subtypes, and those with
mesenchymal (microglia), epithelial (choroid plexus) and endothelial (vasculature) origins. Cell
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types of the brain are highly varied molecularly and
functionally, displaying unique signatures of electrical
activity, neurotransmitter release, inflammatory responses,
synaptic pruning and blood-brain barrier mechanisms. Our
understanding of these complex features, how they’re driven
and how their intersection is important for brain function,
remains quite limited. The plasticity of neural networks as they
respond to and process stimuli is therefore only beginning to be
elucidated. Understanding the remarkable synergy by which the
vast number of cells in the brain connect together to produce
human emotion and behavior is one of the richest and most
exciting frontiers of science.

The pursuit of decoding the mysteries of the nervous system
has led to a wealth of current tools that are enabling us to
investigate increasingly transformative research questions. It goes
without saying that human brain tissue is not easy to obtain
from the source. While some behavioral studies performed
in human subjects have provided insights, performing such
experiments in a scientifically rigorous and ethical manner is
challenging. Innovative neuroscientists over the decades have
found new strategies to explore the answers they seek that
balance physiological complexity with increasing relevance to
the human brain (Figure 1). The simplest neural circuits can be
modeled in fruit flies, zebra fish and roundworms (Guo et al.,
2019; El-Daher and Becker, 2020; Singh and Aballay, 2020).
Inbred rodents and chick embryos allow for straight-forward
genetic manipulation and permit studies to link DNA sequence
with consequent effects on cell biology, tissue development,
maintenance and function, and organismal behavior (Keynes and
Cook, 2018; Gulinello et al., 2019). Primates, like chimpanzees
and macaques, can model some aspects of more complex
social behaviors and disorders when rodents fall short (Shen,
2016). Traditional animal models used to dissect brain form
and function have provided critical insights, informing our
current understanding of the basic mechanisms of neurobiology.
For example, work done in mice and rabbits was essential to
our understanding of how acetaminophen acts as an analgesic
(Swierkosz et al., 2002). Our knowledge of neural tube formation
and closure was borne from work with frog embryos (for one
example see Lutz et al., 1999). The neurotoxic effects of 1-
methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) in creating
Parkinson’s-like symptoms were not fully resolved until the drug
was administered to squirrel monkeys (Langston et al., 1983).

Despite these advances, it’s clear that research using human
cell sources is critical to overcome significant knowledge gaps that
remain about the human brain (Figure 1). This is underscored
by the existence of basic foundational differences in brain
evolution across species. The fact that rodent cortices are
smooth (lissencephalic) while the human cortex is highly folded
(gyrencephalic) illustrates the point. Recent single cell RNA-
sequencing of the middle temporal gyrus from both mouse
and human tissue found that while most cell types are broadly
conserved, their relative proportions, laminar distributions,
morphologies and gene expression patterns are vastly different
between the two species (Hodge et al., 2019). A similar conclusion
was drawn from analyses of single cells derived from the primary
motor cortex of humans, the non-human primate marmoset,

and mice (Bakken et al., 2021). While the broad molecular
identities of cell types in this region were found to be conserved,
their relative proportions, transcriptional and chromatin states,
and expression patterns of cell type marker genes were quite
distinct between the three species. Additionally, the mouse brain
lacks certain defined structures and cell types that are found in
humans. These include a greater number of glutamatergic neuron
subtypes in the supragranular region of the human cortex (Hodge
et al., 2019; Berg et al., 2021) and the human outer subventricular
zone (oSVZ). The oSVZ is populated with basal radial glia cells,
a neocortical stem cell type important for neuronal expansion
and cortical folding in gyrencephalic species; in line with the
expanded oSVZ in humans, basal radial glia are abundant in
humans and rare in mice (Pollen et al., 2015). Additionally, at the
sub-cellular and physiological levels, several proteins known to
be involved in human disease, such as amyloid precursor protein,
don’t display the same pathological features in mice.

A formidable constraint, the vast complexity of human
behaviors cannot be accurately modeled in other species. For
example, stress has been shown to be one key indicator of
depression in humans. Several types of behavioral tests have been
established tomeasure stress inmice, however it has been difficult
to meaningfully link the results of these standardized tests to
depression-related coping mechanisms typical of humans (see
Commons et al., 2017 for one key example). The consequences
of inter-species evolutionary and physiological differences are
exemplified by research into many developmental and age-
related neurological disorders, including Alzheimer’s disease, in
which rodents are still the prevailing model. The most telling
outcome of this has been the large numbers of successful drugs
that reverse characteristic biochemical hallmarks and memory
defects in mice which subsequently fail in human clinical trials
(Ransohoff, 2018). One report mentions that a single strain of
mice used to model Alzheimer’s Disease was “cured” over 300
times, though not one drug reported clinical success (Zahs and
Ashe, 2010). Thus, many questions related to human specific
mechanisms of development and disease for which animal
models have yielded insights will inevitably require replication
and additional study in relevant human models.

CULTURE MODELS FOR NEUROSCIENCE
RESEARCH

Primary Human Tissue
Advances in brain mapping are increasingly providing a better
understanding of the firing patterns of neuronal networks within
distinct brain regions. With these rich data sets, correlations
can be made between human behavior, disease states, and
the functional areas of the brain that are affected (Mitchell
et al., 2019). Though to achieve the widely sought goal of
successful pharmacological intervention, deeper investigation
into these processes at the cellular and biochemical levels is
needed. While many current efforts in neuroscience research
are providing deep knowledge of molecular and functional
neurological mechanisms, correlating in vitro and in vivo
observations remains a significant challenge. Human cellular
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FIGURE 1 | Animal and cell culture models fall on a continuum that balances providing physiological complexity with human brain relevance. Non-mammalian model

organisms like worms (C. elegans) and fruit flies (D. melanogaster) allow molecular and functional investigation of simple neuronal circuits and rational dissection of

critical regulatory pathways in a physiologically relevant setting. Rodent and non-human primate models provide additional physiological complexity by permitting

quantitative analysis of complex behavioral traits and simultaneously enrich relevance to the human condition. Human subjects and dissected human brain tissues fall

high on both measures, but their procurement is rare or ethically impossible. The emergence of human pluripotent stem cell (hPSC)-derived 2D cell and 3D tissue

models offer a highly needed source of neurological modeling tools with high relevance to the human brain. Though they offer less physiological complexity than

animal models this capacity is ever increasing as technology advances (defined cell co-cultures and 3D tissue engineering). Furthermore, their relevance to the human

condition is greatly enhanced compared to traditional culture of immortalized or non-human primary cell lines. A combination of hPSC-based and animal model

approaches offers the best opportunity to capture both physiological complexity and relevance to the human brain.

models, especially those that mimic the associated in vivo tissue
environment, provide the best bridge to form that link.

The most relevant source of in vivo neural cells is the
human brain itself (Figure 1). On rare occasions, access to
living patient tissue can be granted, though most studies rely
on donation of post-mortem tissue. When access to tissue is
possible, biochemical analysis of organotypic slice culture allows
for the characterization of human-specific cell and molecular
phenotypes of disease. In a recent example the existing in vivo
structures present in organotypic slice culture made it possible
to examine the spreading of α-synuclein aggregates between
neurons (Elfarrash et al., 2019). Having direct access to the
living tissue allowed the authors to show that spreading of this
pathogenic protein can occur even in the absence of disease
characteristic α-synuclein Serine 129 phosphorylation. Neural

stem cells have also been isolated from human embryonic brain
tissue and can be expanded in culture and differentiated to
downstream neural cell types (Dos Reis et al., 2020). In fact,
dopaminergic neurons obtained directly from human embryos
were some of the first to be used for cell transplantation
experiments in Parkinson’s Disease patients. For primary human
brain-derived cultures time is the enemy, as most neurons begin
to die after a few hours in culture and many neuronal cultures
cannot be maintained for longer than 14 days (Croft et al.,
2019).

Pluripotent Stem Cells
Pluripotent stem cells (PSCs) are a powerful tool that have
allowed us to overcome the limits of tissue availability and low
viability of primary human tissue in culture (for a comparison
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TABLE 1 | Comparison of typical neural culture systems.

Culture System Application Pros Cons

Organotypic slices - Complex neural

circuit modeling

- Tumor invasion analysis

Retain in vivo organization - Limited culture life

- Genetic manipulation difficult

Primary neurospheres - Neural stem and

progenitor cell expansion

- Tumor cell expansion

- Isolation of mature (active) cell types and

pure cell populations possible

- Co-culture of distinct cell types possible

- Low variability between experiments

- Ease of expansion for high cell yield

- Limited passage number

- Technically difficult to passage

- Need sufficient starting cell source

- Difficult to establish from adult tissues

- Lacks in vivo organization and diverse cell types

Primary cell adherent

culture

- Separating cell

autonomous from

non-autonomous effects

- Isolation of mature (active) cell types and

pure populations of some cell types

- Co-culture of distinct cell types possible

- Low variability between experiments

- Isolating pure cell types difficult and

time consuming

- Difficult to establish from adult tissues

- Genetic manipulation difficult outside of

proliferating NPCs

- Limited culture life-span for mature cell types

- Lacks in vivo organization and diverse cell types

hPSC-derived adherent

culture

- Separating cell

autonomous from

non-autonomous effects

- Human genetic studies

(background variability and

single gene mutations)

- Neurogenesis

and gliogenesis

- Accessible human relevant cells

- Pure culture and co-cultures possible

- Can generate specific cell subtypes

- Easy to produce multiple cell types from

one initial source

- Early proliferating cell types (PSCs or

NPCs) are expandable and bankable

- Genetic manipulation protocols well

established

- Cells produced are typically fetal-like

- Lacks in vivo organization

- Long differentiation protocols and

maturation times

- Mastery of hPSC culture a prerequisite

- High cell line to cell line variability

hPSC-derived

spheroids and

organoids

Tumor cell expansion,

Modeling brain development

and neurodevelopmental

disorders

- High efficiency of neural differentiation

- Observe interactions between multiple

cell types

- In vivo-like organization

- Spontaneous (unpatterned) or directed

(patterned) differentiation possible

- Similar to adherent culture

- Lacking some critical non-CNS cell types (e.g.,

microglia and vasculature), though these can be

added by co-culture

of typical neural culture systems see Table 1). Now researchers
with access to readily available somatic cell sources such as
blood, skin and urine from normal or disease donors, can
establish induced pluripotent stem cell (iPSC) lines to study
their disease of interest through the introduction of core
pluripotency transcription factors (such as OCT4, SOX2, c-
MYC, Lin28, NANOG, and KLF4). These iPSC cultures can
then subsequently be directed to differentiate into almost
any cell type of interest using well-established protocols,
permitting the derivation and analysis of distinct cell types along
major lineages (Chambers et al., 2009; Nolbrant et al., 2017;
Tcw et al., 2017). Publically available cell banking initiatives,
through which researchers can acquire already established
iPSC lines for study, are also now widely available [e.g.,
International Stem Cell Banking Initiative (https://www.iscbi.
org/), Coriell Institute for Medical Research (https://www.
coriell.org/), European bank for induced pluripotent stem cells
(www.ebisc.org), StemBANCC (www.stembancc.org), HipSci
(www.hipsci.org), National Institute of Neurological Disorders
and Stroke (NINDS) Human Cell and Data Repository (https://
stemcells.nindsgenetics.org/), Simon’s Foundation (https://www.
sfari.org/resource/ips-cells/)]. The flexibility of human PSC
culture systems is well-suited to studies aiming to discern cell
autonomous vs. non cell autonomous effects by comparing
phenotypes in pure cultures vs. heterogeneous co-cultures,
lineage tracing across multiple cell types, and genome editing

to permit comparison of control and isogenic edited lines
(Figure 2).

In addition to iPSC reprogramming and subsequent directed
lineage differentiation, transdifferentiation using cell-type
specific transcription factors allows direct reprogramming of one
somatic cell type into another (Figure 2; for example, fibroblasts
to neurons: Vierbuchen et al., 2010). This approach has the
advantage of maintaining the epigenetic signature of the cell type
of origin by avoiding transition through an embryonic iPSC state,
which is especially useful when modeling diseases of aging (Huh
et al., 2016). Similarly, forward programming of PSCs using
transcription factor overexpression can produce highly pure
populations of neurons (Zhang et al., 2013), astrocytes (Li X.
et al., 2018) and oligodendrocytes (García-León et al., 2018). The
speed and ease of use of these protocols has made them especially
attractive for large scale screening applications (Sridharan
et al., 2019). The most direct clinical application of somatic cell
reprogramming is the potential for in vivo transdifferentiation
of resident astrocytes into functional neurons for neuronal cell
replacement therapy (Liu et al., 2015; Aravantinou-Fatorou and
Thomaidou, 2020; Ma et al., 2021). This strategy, which has been
achieved with both neuronal transcription factor expression
and more recently targeted small molecules, could importantly
circumvent the need to generate large numbers of cells for
transplant and the worry of immunocompatibility. Questions
remain, however, about the true identity, functionality, and
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FIGURE 2 | Advances in hPSC-based neurological modeling are increasingly improving the complexity of human neural cell types and circuits we can model. Somatic

cells from multiple human patient sources (fibroblast skin cells, blood, urine) can now be used to produce induced human pluripotent stem cells (hPSCs) by

over-expression of typically four key pluripotency transcription factors (OCT4, SOX2, KLF4, c-MYC). Similarly, induced neurons can be directly established by

over-expression of neuronal identity genes like NGN2. It is essential to regularly perform quality control assays (detailed in the main text) to ensure maintenance of a

high-quality pluripotent state in reprogrammed hPSCs. This stage also offers a critical period for genome editing (e.g., CRISPR-Cas9) in which to introduce mutations

of interest or create isogenic control lines. As a field, we can reproducibly generate fetal-stage excitatory and inhibitory neurons in 2D and 3D cell cultures. These

cultures permit analysis of cell-autonomous mechanisms of development and disease, especially in the presence of a disease-causing mutation. Recent efforts have

increased our ability to generate additional specialized brain-resident cells (“Heterogenous brain cell types”) and to produce more mature neurons (purple = excitatory

and inhibitory neurons with elaborate neurite networks; green = astrocytes; orange = oligodendrocytes; yellow = microglia). These heterogeneous cultures permit

modeling of non-cell autonomous processes. Offering the most advanced level of complexity in hPSC models are 3D brain tissue engineering approaches, including

organoids (rounded enclosed objects = ventricular zones; blue shading = neural stem and progenitor cells; green shading = neurons and other differentiated cell

types) and bioprinted constructs, which can incorporate microfluidic channels for advanced microenvironmental control. Studies have also begun to incorporate

vasculature and components of the blood-brain barrier into microfluidic and organoid models. The box to the right outlines recent and developing strategies for

promoting neuronal maturation and aging in 2D and 3D models.

origin of the resulting cell types if developmental programs are
not strictly followed and when artificially high levels of cellular
factors are expressed (Nehme et al., 2018; Wang et al., 2021). In
fact, a recent group pointed out that neurons that were presumed
to be reprogrammed from astrocytes were actually, in fact,
derived from other endogenous neurons (Wang et al., 2021).
This highlights the need for a closer look at the consequences of
somatic cell reprogramming, including a necessity to incorporate
careful lineage tracing analyses to ensure we understand which
cell identity transitions are in fact taking place.

A more recent advance in stem cell research has been the
development of differentiation protocols in three-dimensional
cultures (Figure 2; see Tian et al., 2020 for a recent review),
including both spheroids (aggregates of differentiated cells) and
organoids (structures that form out of aggregated progenitors).
The first neuroectoderm-derived organoids (Eiraku et al., 2011)
were able to recapitulate many features of the developing eye.
Later protocols exploited the intrinsic self-organizing potential
of aggregated neural precursors to activate endogenous cell
signaling mechanisms to promote spontaneous differentiation

into cerebral cortex tissue, mimicking similar developmental
stages and tissue architecture as the developing human brain
(Lancaster et al., 2013). Similar to 2D differentiation protocols,
cytokines and small molecules can be added to pattern the
organoids into specific cortical regions (Muguruma et al., 2015;
Jo et al., 2016; Birey et al., 2017; Sloan et al., 2018; Marton
et al., 2019; Eura et al., 2020; Hor and Ng, 2020). The primary
advantage of organoid culture technology is the ability to
replicate cell organization and maturation during development
while simultaneously maintaining cell viability in long term
culture (see Table 1). Using these sophisticated human tissue
models, researchers have also been able to fuse organoids that
represent adjacent anatomical regions. This permits modeling
of the connections between neurons from different areas of
the brain (Bagley et al., 2017) and between the eye and brain
(Fligor et al., 2018). These same principles have also been applied
to cancer research, such that organoids derived from patient
biopsies more closely mimic the attributes of the parent tumor
than do traditional immortalized cancer cell line models (Hubert
et al., 2016; Jacob et al., 2020).
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TABLE 2 | Considerations for PSC culture.

Source material Study design Reprogramming method Replicates

In-house derived hPSCs:

- Dependent on access to somatic

cell sources (skin, blood, urine), ease

and efficiency of reprogramming (e.g.,

urine is easily accessible, but more

laborious than other sources to

reprogram)

- Age (younger cells reprogram more

efficiently)

- Access to patients with mutations of

interest can be challenging

Purchased cell lines (e.g., Coriell,

EBISC, StemBANCC, HipSci,

NINDS):

- Dependent on price, availability of

desired mutation, patient medical

data

- Assess restrictions on use

(expansion, banking, differentiation,

commercial use)

- Verify appropriate patient consent

and institutional review forms available

(ICF and IRB review and approval)

- Biological replicates are critical:

collect from multiple donors

where possible

- Non affected familial control or

isogenic wild-type lines

are necessary

- For case-control study designs:

multiple clones required

- Consider genetic engineering if

controls or lines with mutation of

interest are unavailable

Integrating vs. non-integrating

reprogramming:

- Genomic integration of vector can

lead to unwanted secondary

mutations and reactivation of

reprogramming factors

- Certain vectors are more effective

with certain cell types (Okita et al.,

2013)

- Labor cost: non-integrating

methods often require specialized

equipment (e.g., electroporator)

- Financial cost: increasing efficiency

typically comes with higher cost

- Selection of reprogramming factors

(e.g., OCT4, SOX2, c-MYC, KLF4)

- Consider published protocols to

increase reprogramming efficiency

(Huangfu et al., 2008; Esteban et al.,

2010)

- Selection of high efficiency

reprogramming medium

Accounting for inherent variability

among hPSC lines:

- Include hPSCs from at least 3 similarly

affected subjects. If not possible, use at

least 3 hPSC clones per donor

- Ensure all experimental lines are of a

similar age

- Sex balance: use an equal number of

female and male hPSC lines

- Consider other potential mitigating health

factors from sample (other health issues,

diet, potential genetic modifiers)

Culture Considerations Quality Control Maintenance Differentiation/Maturation Method

- Dedicated Biological Safety

Cabinets and safety protocols for

human tissue work

- Separate space for human vs. other

mammalian culture preferable

- Asses incoming human samples for

presence of infectious viruses

- Mycoplasma testing of all new cell

lines

- Cryogenic storage essential for

biobanking viable hPSCs

- Daily morphological

assessment: visibly differentiated

cells can be manually removed

- Karyotype all new lines, genetic

analysis (QPCR for common

abnormalities) for new thaws and

before important experiments

- Assess pluripotency (teratoma

or trilineage differentiation) of all

new lines

- Assess markers of pluripotent

state (e.g., OCT4, TRA-1–60) for

all new lines

- Choose between defined (feeder

and serum free) or undefined (feeders

and serum/serum replacement,

sometimes more efficient for

differentiation) culture conditions

- Clump vs. single cell passaging

(single cell passaging can increase

chromosomal abnormalities)

- Matrix: defined (vitronectin, laminin)

or undefined (matrigel)

- Low protein, robust or stabilized

growth media

- Regulatory compliance of hPSC

growth media

- Feed, passaging and banking

schedule

- Developmental patterning to drive

lineage induction vs. forward programming

(e.g., NGN2 overexpression)

- Pure populations or co-cultures

- 2D (largely homogenous cell types) vs.

3D (e.g., heterogeneous

organoids) architecture

- Transdifferentiation (retain epigenetic

signature of source by skipping

PSC stage)

- Identify best time-points to freeze and

biobank cells, with high post-thaw viability

- Maturation strategy (e.g., increased

culture time, physiological maturation

medium, addition of cell stressors)

Considerations for Starting PSC Cultures
Starting a project using PSCs for the first time is not without
a learning curve (see Table 2 and Ernst, 2020 for an in-
depth review). However, advances in the field have lowered
many barriers to adoption. Robust reagents and methods
exist for embryonic stem (ES) and iPSC culture, as well as
neural differentiation. While it may never be possible to fully
recapitulate every neural subtype that exists in both space and
time, protocols have been established to generate most major cell
types (Chambers et al., 2009; Falk et al., 2012; Douvaras et al.,
2014; Tcw et al., 2017; Marton et al., 2019). Addition of protein
and small molecule patterning factors specifies regionality to
these protocols to generate even more specialized cell types like
dopaminergic (Kirkeby et al., 2012), hippocampal (Sarkar et al.,
2018), serotonergic (Lu et al., 2016), and motor neurons (Hu
and Zhang, 2009). Protocols for neural crest cell differentiation

(Hackland et al., 2017; Tchieu et al., 2017) enable the generation
of peripheral neurons (Prince et al., 1991) as well as their
mesenchymal derivatives (cartilage, bone (Leung et al., 2016),
fat (Gomez et al., 2019) and smooth muscle (Serrano et al.,
2019; Delaney et al., 2020; Li X. et al., 2020). Even non-
ectodermal contributors to the nervous system can be produced
and incorporated into brain tissue models including microglia
(Abud et al., 2017; McQuade et al., 2018), brain microvascular
endothelial cells (Qian et al., 2017) and pericytes (Stebbins et al.,
2019).

Standardized media and protocols have made it easier than
ever for labs that have traditionally focused on animal work
to adopt hPSC-based culture into their pipelines. Though
despite the advances mentioned above, there are limits to the
current applicability of stem cell-derived neural cells. Many
labs new to stem cell culture, even when experienced in
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traditional primary or immortalized cell culture, struggle to
maintain quality human stem cell lines. This is especially acute
when the project involves generating novel iPSC lines from
multiple patients. The choice of starting cell type, reprogramming
method, clone selection, culture medium and passaging protocol
can all influence the efficiency of downstream differentiation
(see Table 2 and Ernst, 2020). Knowing how crucial starting
cell quality is for downstream differentiation, several large
consortia have agreed on a minimum set of criteria required
for assessing stem cell quality (Sullivan et al., 2018). Several can
be routinely monitored in the lab without specialized training
or equipment (morphology, marker expression, trilineage
differentiation potential, epigenetic signature). Tracking and
maintaining genetic stability is more difficult. qPCR kits exist
that will give basic information on common small chromosomal
amplifications and deletions known to exist in pluripotent cells
(for review see Halliwell et al., 2020). This needs to be combined,
however, with G-banding and possible copy number variation
analysis to truly understand genetic stability. These later two
methods are costly and are therefore usually only done when
starting a new cell bank or before a critical experiment. Several
publications suggest that even small chromosomal gains or
losses influence downstream differentiation efficiency (reviewed
in Henry et al., 2018). Labs ignore karyotyping at their peril.
For example, gain of chromosome 20 frequently occurs in PSC
culture, driven by BCL2L1, a gene associated with reduced
apoptosis and cancer (Enver et al., 2005; Baker et al., 2007).
Cells with amplifications like this have a growth advantage, but
with a potential increase in tumorigenic potential (Blum and
Benvenisty, 2008; Ben-David and Benvenisty, 2011).

Addressing Long Time Frames for in vivo

Maturation
An important consideration is the immature fetal-like nature
of PSC-derived neural cell types. Several approaches are being
taken to increase the speed at which neurons are produced and
become functionally mature in vitro. Applying compounds, such
as inducers of reactive oxygen species, to induce age-associated
cellular stressors has been effective in revealing phenotypes
associated with progressive neurodegenerative disease (Mertens
et al., 2018) genetic over-expression of pro-aging factors (i.e.,
progerin) have also been applied and result in increased
molecular signatures of aging (Miller et al., 2013; Cornacchia
and Studer, 2017). However, to date no single approach has
been conclusively proven to generate adult-like functionally
mature neurons.

Modifying neural cell culture protocols to increase maturation
in vitro has, however, yielded some degree of success. Co-culture
of neurons with astrocytes has long been shown to increase
neurite outgrowth and activity, and this approach is now yielding
more physiologically relevant iPSC-derived neuronal cell disease
models (Odawara et al., 2014; Kuijlaars et al., 2016; di Domenico
et al., 2019; Enright et al., 2020; Leventoux et al., 2020). Cell
culture media formulated to mimic human cerebral spinal fluid
(Bardy et al., 2015) increases neuron maturation and generates
neurons which become active at a much earlier stage in culture.

Organoids appear to provide the necessary tissue structure and
cell non-autonomous support needed for increased neuronal cell
maturation, demonstrating complex oscillatory firing patterns in
neurons derived from cerebral organoids (Trujillo et al., 2019;
Fair et al., 2020; Giandomenico et al., 2021). However, there is
still some debate as to what molecular or activity readouts define
a “mature” neuron. These important phenotypic parameters first
need to be defined before the field can move forward with
improving neuron maturation in culture (Livesey et al., 2016;
Ghanavatinejad et al., 2019).

Dealing With Genetic and Technical
Variability
Many recent efforts have focused on identifying and addressing
key technical issues to increase the biological relevance and
decrease the variability of PSC-derived models (see Volpato
and Webber, 2020 for a recent review). Genetic variability
between cell lines can not only mask phenotypes but also
influence differentiation efficiency (Ortmann and Vallier, 2017).
One interesting method to overcome this involves “normalizing”
signaling pathways by simultaneous activation and inhibition
during the first phases of differentiation (Hackland et al.,
2017). Other groups have reported that ES/ iPSC with naïve
gene expression profiles are better able to differentiate into
neural lineages (Park et al., 2018; Watanabe et al., 2020).
Further, there is some evidence to suggest that addition of
something as simple as low concentrations of DMSO can increase
differentiation to neural lineages in difficult to differentiate PSC
lines (Li J. et al., 2018); this has been attributed to activation
of the Retinoblastoma signaling pathway. While standardized
culture media and protocols can overcome much inter-cell
line variability, there needs to be a deeper understanding of
the signaling pathways involved during the earliest cell fate
decisions that take place during differentiation. Normalizing
these pathways before differentiation is induced could help
increase reproducibility in differentiation efficiency across cell
lines, especially PSC lines that are generated using slightly
different methods and by different researchers. Increased access
to and decreased pricing for single cell genomic studies is
continually improving our understanding of variation among
human neuronal cells and tissues, and is providing insight into
the genetic vs. technical basis of developmental and disease
phenotypes observed in vitro (van den Hurk and Bardy, 2019).

Traditionally, the main advantage of using animal models
has been the ease of genetic manipulation and control over
the genetic background. Due to the extensive genetic variability
that exists between humans, stem cell-based studies aiming to
determine the neurological impacts of mutations in even a single
gene have traditionally required a large number of cell lines
derived from patients with the same disease (and with multiple
clones per patient), as well as multiple cell lines from unaffected
individuals to serve as controls. Though more recently, for
diseases caused by known genetic variants or with established
genotype-phenotype correlations, genome editing technologies
such as CRISPR/Cas9 (reviewed in Rehbach et al., 2020) can
efficiently establish paired gene variant and isogenic control
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cell lines. Thus, inbred animals are no longer the only way to
model disease-related mutations across isogenic backgrounds.
The relative ease by which isogenic control lines can now be
engineered in hPSC also greatly increases the opportunity for
stem cell-derived models to yield significant phenotypic changes,
by limiting genomic variability among experimental samples
without the need to establish and analyze a cost-prohibitive
number of patient and control cell lines.

For diseases with complex genetics or combined
environmental and genetic contributions, human cell-based
studies still need to rely on genetically related or cohort matched
unaffected controls (see Riemens et al., 2020 for a recent review).
In some cases, it can also be argued that to develop effective
disease treatments study designs need to reflect the inherent
genetic variability in the population they are aiming to treat. In
animal models this is accomplished by testing different strains
and stratifying study subjects by sex, age, diet, and environment.
With stem cell-derived models this same level of control can be
accomplished by incorporating samples from multiple patients,
deriving multiple clones from each line, creating multiple sets
of isogenic variant and control lines (in the case of single gene
mutations), and adopting a standardized cell culture protocol
with carefully implemented quality control measures while
maintaining diverse hPSC lines. When modeling phenotypes
that underlie development or disease states, assessing variability
between cell lines established from different donors is particularly
critical; increasing access to and streamlined strategies to analyze
iPSC lines is continually making these endeavors more possible
(Schuster et al., 2015). An effective way to establish the validity
of an observation in the face of high biological variability is to
test it across multiple experimental models and methods. In one
study (Yuva-Aydemir et al., 2019), the authors modeled Amyloid
Lateral Sclerosis (ALS) by producing Drosophila mutants with
expanded GGGGCC repeats in C9ORF72. With this approach,
axonal and locomotor defects that reflect those observed in
ALS patients were reproduced. The simplicity of Drosophila
genetics allowed them to perform an unbiased genetic screen in
which they discovered that partial loss of Lilliputian activity can
suppress the toxicity of the repeat expansion. Using CRISPR-
Cas9 genome editing they were then able to knockout one
of the mammalian homologs of Lilliputian in iPSC derived
from ALS patients with C9ORF72 repeat expansions, in which
they observed a decrease in TDP-43 pathology and axonal
degeneration. Subsequently, Anastasaki et al. used CRISPR-Cas9
to engineer seven pairs of isogenic iPSC lines covering a range
of mutations in NF1, the causative gene in the developmental
disorder Neurofibromatosis Type 1 (Anastasaki et al., 2020).
As expected, some phenotypes were common across all cell
lines (increased proliferation, RAS pathway activity) while some
varied according to the particular mutation (dopamine levels,
apoptosis and neuron differentiation). In order to determine
which phenotypes were likely to be disease related the authors
compared their results to those collected in Nf1-mutant mice
(which also represented a range of mutations). Notably they
were able to replicate the finding that dopamine levels are
reduced as a result of some, but not all, NF1/Nf1 mutants in
mice/humans.

Both of these studies demonstrate how replication of
phenotypes across model systems increases the confidence in
disease-associated observations. Pinpointing phenotypes that
persist across such wide variability in genetic background will
help to identify treatment targets with the most wide-spread
effect. In the next section we will discuss disease specific examples
of this strategy.

COMPLEMENTING AND BUILDING ON
ANIMAL MODELS WITH HUMAN STEM
CELL MODELS

Uncovering disease-causing mechanisms and effective
therapeutic strategies are expensive, high stakes undertakings.
Collecting multiple data sets from orthogonal model systems to
support these efforts greatly enhances the likelihood of success.
Below are some recent examples where combining human and
animal models of disease have resulted in new discoveries of
disease mechanisms and promising treatments.

Neurodegeneration
Neurodegenerative diseases, particularly those with a protein
aggregation component, have been especially hard to model
accurately in animals like mice. As such, PSCs have become a
very attractive model for this field (for more detailed discussions
on the topic see: Riemens et al., 2020; Valadez-Barba et al., 2020;
D’Souza et al., 2021). Alzheimer’s disease, Parkinson’s disease,
ALS and Huntington’s disease are complex disorders with the
vast majority being sporadic, but with familial cases caused
by known mutations that provide evidence of strong genetic
risk factors, such as ApoE4 (Corder et al., 1993). Neuronal cell
death is a hallmark of most of these disorders, making cell
replacement therapy an attractive treatment option. Replacement
of dopaminergic neurons for treatment of Parkinson’s disease
has been advancing rapidly with notable recent success (Duma
et al., 2019; Takahashi, 2020; Piao et al., 2021). Stem cell-
based models have been used to recapitulate most, if not all,
disease phenotypes including immune and vascular pathologies
(Blanchard et al., 2020; Liu et al., 2020; McQuade et al., 2020;
Zhao J. et al., 2020). Organoids are particularly attractive models
as some protein aggregate pathologies are only observed in
3D culture systems (see Venkataraman et al., 2020; Cenini
et al., 2021 for recent reviews). Incredibly, this is despite
the fact that PSC-derived neurons are fetal in nature; though
this may be helpful in detecting pre-clinical abnormalities
(Malankhanova et al., 2020). Still, age is the primary indicator
for the majority of these conditions. Although approaches such
as transdifferentiation (see Mertens et al., 2021 for a recent
example) to generate “aged” neurons are being developed,
combining animal models and pluripotent stem cell technology
is especially useful in modeling the breadth of phenotypes in
these diseases.

An approach taken by Höing et al. (2012) combined mouse
ES cell-derived motor neurons and astrocytes with a transformed
human microglia cell line (BV2). This co-culture model was
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developed as a cost-efficient way to scale up for a high-
throughput screen. The microglia were activated to mimic a
pro-inflammatory environment, which the authors hypothesized
was a contributing factor in sporadic ALS. The activated
microglia induced cell death in the neighboring motor neurons
and the authors screened for compounds that could reduce this
death. One compound they found to be effective, termed E4, was
then tested on human PSC-derived neurons. E4 was found to
increase neuron survival in the presence of DeltaNO (a known
inducer of cell death), with no adverse effects in the absence of
DeltaNO. This co-culture approach of mouse and human cell
types provided a quick and convenient way to screen compounds
in a high-throughput manner, and to assess any potential cell
non-autonomous mechanisms of action.

An alternative approach is to identify phenotypes in human
cells, and subsequently validate and expand on these findings in
in vivo animal models. Laperle et al. (2020) derived iPSCs from
three individuals with young onset Parkinson’s disease with no
known family history or predisposing mutations. Dopaminergic
neurons derived from those cells accumulated α-synuclein,
which was found to be due to an impairment in the lysosomal
degradation pathway. Deriving an additional seven control and
nine patient lines confirmed this novel phenotype in 8/9 patient
lines. Three lysosomal agonists were added to the cells in an
attempt to decrease α-synuclein levels. One of those agonists,
PEP005, was able to reduce α-synuclein and increase the median
TH intensity in human dopaminergic neurons. The activity of
PEP005 was subsequently confirmed by stereotactic injection
into the striatum of wild type mice, in which a similar decrease
in α-synuclein levels was observed. The combination of in vitro
human and in vivo observations have increased the confidence in
PEP005 as a potential therapeutic.

In Alzheimer’s Disease models, altered mitochondrial
morphology and function which manifest as increased AMPK
activity and decreased mitophagy, were recently observed using
electron microscopy (Fang et al., 2019). To investigate this
compelling phenotype further, iPSCs from one sporadic and
one familial Alzheimer’s patient with a matched control were
derived. A decrease in mitophagy was further confirmed in
cortical neurons differentiated from these cells as indicated by
decreases in several mitophagy related proteins. One hypothesis
posited is that neuron loss in Alzheimer’s disease could be
caused by accumulation of damaged mitochondria, leading to
energy deprivation and inflammation. To test if activation of
mitophagy could affect Alzheimer’s disease pathogenesis in a
simple in vivo model, C. elegans was used to screen for inducers
of mitophagy. The screen identified two potential candidate
compounds, urolithin A and actinonin. These candidates
were able to improve memory defects and reduce Aβ levels
in a transgenic C. elegans Alzheimer’s disease model. The
mechanisms behind the action of these drugs were conserved
in multiple species’ models, as similar effects were seen in an
Alzheimer’s mouse model. Further investigation of these mice
revealed that decreased mitophagy in microglia resulted in an
inability to remove accumulated Aβ plaques and an increase
in the release of pro-inflammatory cytokines. The conservation
of these mechanisms across species suggests that enhancers

of mitophagy are a good target for new Alzheimer’s disease
drugs and that physiological assessment of their effects can be
adequately performed in animal models.

Neurodevelopment
Stem cell-derived neural cells are especially powerful models
of embryonic development since differentiation protocols are
typically designed to closely mimic key signaling pathways
during early embryogenesis (for recent reviews see Imaizumi
and Okano, 2021; Sabitha et al., 2021). Stem cell-derived
neurons, whether in 2D or 3D culture, have been found to
exhibit gene expression signatures that are most similar to
early to mid-gestational stages (Handel et al., 2016; Logan
et al., 2020). Recently, organoids have been shown to display
electrical firing patterns that are similar to fetal signals detected
by electroencephalography, providing a potential connection
between in vitro models and in vivo phenotypes (Trujillo et al.,
2019; Fair et al., 2020; Matsui et al., 2020; Giandomenico
et al., 2021). This has led to discoveries using organoids to
model fetal toxin exposure (Prince et al., 2019; Arzua et al.,
2020) and developmental disorders (Gomes et al., 2020). In
a novel application of the technology, organoids are being
generated from across several species, leading to discoveries
about how brain development has changed over evolution
(Kanton et al., 2019; Benito-Kwiecinski et al., 2021; Chan et al.,
2021). Additionally, protocols have recently been developed
to generate human neural crest cells and their derivatives. A
transient population in the embryonic ectoderm, neural crest
cells are difficult to isolate and study even in animals. Neural
crest cell culture allows for the study of neurocristopathies
(Barrell et al., 2019) and neural tube development (Rifes et al.,
2020; Libby et al., 2021). These features make stem cell-derived
ectoderm cell types including neurons ideal tools for studying
neurodevelopmental disorders, and mechanisms of normal brain
development and evolution across species.

The Zika virus epidemic of 2015-2016 yielded important
advances in modeling vulnerabilities of neurodevelopment using
hPSC-derived models (Cavalcante et al., 2020; Pettke et al., 2020;
Krenn et al., 2021). Gabriel et al. (2017) took advantage of the
ability of cerebral organoids to model microcephaly, a main
phenotype in infants born to ZIKA infected mothers. Using
two novel and one established strain of Zika virus, the authors
found productive infection in 2D cultures of neural progenitor
cells (NPCs). While all three strains decreased NPC proliferation
one of the novel strains had a far more pronounced effect,
showing less spontaneous neuron differentiation and increased
apoptosis compared to the other strains. The mechanism of NPC
disruption was found to be linked to centriole disruption, with
abnormal recruitment of Cep152, PCNT, Cep164, and CPAP
proteins. Using infected cerebral organoids the authors linked the
centriole disruption to the decrease in proliferation by showing
altered planes of division of NPCs in the putative “ventricular
zones” of the organoids. As occurs in vivo, altered planes of
division influence whether NPCs divide symmetrically to self-
renew or asymmetrically to generate neurons. The Zika infected
NPCs in the organoids skewed toward asymmetric divisions,
increasing the number of neurons but consequently depleting the
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NPC pool. As the organoids continued to develop in culture the
lack of NPCs resulted in fewer overall neurons being produced
and smaller organoids, thereby replicating the decreased cortical
size characteristic of microcephaly. By combining viral infection
and organoid technologies the authors were able to correlate
the severity of the strain with mechanism of action in driving
aberrant brain development: either an increase in apoptosis or
an increase in premature neuronal differentiation.

The previous example illustrates how a combination of
homogenous populations of 2D cells with more complex
organoid models can help reveal in vivo mechanisms of disease.
However, while organoids can replicate some important features
of human brain development like cortical folding (Li et al., 2017;
Karzbrun et al., 2018) and abundant outer radial glia (Bershteyn
et al., 2017; Andrews et al., 2020; Eze et al., 2021), complex
interconnections, neuron remodeling, and synaptic pruning are
still best modeled in vivo. Toward this goal, Real et al. (2018)
injected human iPSC-derived neurons into the cortices of young
mice and followed their integration and maturation at a single-
cell level over time using in vivo imaging. Real-time tracking
revealed that more neurons extend processes than in ex vivo
culture and that those extensions occur more quickly than
retraction of processes. This resulted in a pattern of neurite
gains and losses that changed dynamics the older the graft was.
When neurons derived from Down Syndrome patients were
stereotactically injected into adult mouse brains, fewer extensions
and retractions were observed, with an increase in neurite
stability and reduced activity. This combination of approaches
demonstrates an interesting developmental paradigm for human
neurons and a newmechanism for Down Syndrome pathology at
the synapse level.

Psychiatric Disease
The most difficult brain pathologies to model are those
with a primary behavioral manifestation, as so many are
unique to humans as a species. In these cases, correlating
molecular and cellular phenotypes from human cells to specific
behaviors in animal models provides our strongest evidence for
promising therapeutic targets. When using PSC-based models
this connection can be made by linking electrophysiological
function of PSC-derived neurons to EEG readings from human
patients (see (Wang M. et al., 2020)) for a review and (Naujock
et al., 2020) for a recent example). Mechanistic and safety
studies for new psychiatric drugs can also be worked out
in advance of or aligned with clinical trials (see Marcatili
et al., 2020 for a recent example using ketamine as an
antidepressant). A recent advance using co-cultured organoids
patterned to different brain regions (AssemBloidsTM) opens the
possibility to study connectivity issues between specific areas
of the brain (reviewed in Marton and Paşca, 2020). This is
of particular interest to psychiatric research as pathology often
involves signaling between multiple brain regions. The genetics
of psychiatric disease are also very complex (Prytkova and
Brennand, 2017).

One group (Sawada et al., 2020) used pairs of discordant
twins with psychosis to examine the developmental origins of the
disease. Single cell RNA sequencing in cerebral organoids from

the affected and unaffected twin revealed that organoids from
the affected twin had a decrease in the proportion of SOX2+
progenitor regions with a concordantly higher proportion
of GABAergic inhibitory type neurons. This phenotype was
reversed when the organoids were treated with LiCl, a GSK3β
inhibitor and antipsychotic. This suggested an underlying
imbalance in the excitatory/inhibitory network of neurons early
in embryogenesis as a mechanism for the development of
psychosis. This striking result was confirmed in organoids
produced from three additional pairs of discordant twins. A
new technique aimed at combating the high genetic variability
between patients is the so-called “population in a dish,” where
many bar-coded PSC lines are combined in a single dish and
interrogated together. Single-cell RNA seq can then be used
to create phenotypic “sub groups” for further analysis (see
Cederquist et al., 2020 for an example).

Shao et al. took a different approach by generating iPSC
lines from 14 unaffected and 14 Schizophrenia patients (Shao
et al., 2019). RNA-seq performed on 8 week old neurons
derived from these iPSC lines indicated that neurons from all
individuals had very similar gene expression patterns. Only a
few genes, including PCDHA2 and other protocadherin family
members previously linked to Schizophrenia, were differentially
expressed between affected and unaffected lines. Examination of
a Pcdha KO mouse model found decreases in VGAT+ staining
on parvalbumin positive neurons with a decrease in neurite
length and branch number, suggesting a defect in inhibitory
neuron development and function. When the control and patient
derived neurons were transplanted into 5–7 week old mice via
stereotaxic injection, a mild but significant defect in inhibitory
synapse formation was observed. This study suggests a novel
link between protocadherin gene expression and inhibitory
synapse formation.

Together these studies, using 2D and 3D culture of hPSC-
derived neural cells in conjunction with animal models, raise
interesting questions about the balance that inhibitory and
excitatory neurons play in psychiatric disease. These efforts
suggest that even more complex physiological models can be
developed using stem cell derived 3D cultures.

Brain Injury
Repair and regeneration of damaged neurons has been a
longstanding goal for regenerative medicine (see Farzaneh
et al., 2020 for a recent review). In addition to transplanted
mesenchymal stromal cells (MSCs), neural progenitors have
also been the subject of testing for clinical trials (eight on-
going or completed www.clinicaltrials.gov) for brain repair
(Nieves et al., 2020) or spinal cord injury (Kamata et al.,
2021). Recognizing the key role they play in CNS function,
glia are being considered for replacement as well (Balakrishnan
et al., 2020). This is particularly relevant to the treatment
of myelination disorders like multiple sclerosis (Smith et al.,
2021). An emerging field that has developed tangentially to
this is the development of biomaterials to increase PSC-
derived graft survival and efficacy (reviewed in Lacalle-Aurioles
et al., 2020). An interesting alternate approach is the in
vivo transdifferentiation of glia/glial progenitors into functional
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neurons or oligodendrocytes (reviewed in Qian et al., 2021). This
approach side-steps the need for host immune matching and
graft survival, however more work is needed to fully understand
the resulting cell type, it’s function and connectivity. Organoids
are also being considered as tissue sources for transplantation,
though primarily for retinal replacement (Lin et al., 2020), due to
the increased maturation of cells in 3D structures. Additionally,
organoids are proving a robust injury model, whether it be the
consequences of reduced oxygen to the brain after systemic injury
(Kim M. S. et al., 2021) or direct traumatic injury to the brain
tissue itself (Shi et al., 2021).

Testing PSC-derived cells for cell replacement necessitates
safety and efficacy studies in vivo, which benefits from even
simpler models like Zebrafish (Tayanloo-Beik et al., 2021). To
support those studies, Shiga et al. looked at ways to improve
autologous transplantation of iPSC-derived neural progenitors
(Shiga et al., 2019). The authors tested a previously identified
activator of fibrinolysis, an enzymatically inactive tissue-type
plasminogen activator (EI-tPA), known to promote neuron
growth on iPSC-derived NPCs. EI-tPA increased expression
of neural progenitor markers and reduced thrombin-mediated
apoptosis in vitro. The NPCs were then implanted into a
rat model of spinal cord injury either with or without pre-
treatment with EI-tPA. The EI-tPA treated NPCs significantly
increased motor recovery, body weight and tibialis weight
over rats injected with untreated NPCs. The EI-tPA treated
NPCs also showed increased survival in the graft (16 weeks)
and generated neurons which projected into the ventral spinal
T7 segment of the spinal cord with no negative effects on
sensory function.

Another group recently built on what was known about
the promising effects of MSCs in transplant grafts (Zheng
et al., 2021). MSCs don’t generate new neural cells in grafts
meant to repair brain injuries, but instead secrete extracellular
vesicles (EVs) that contain substances which promote cell growth
and regeneration. The authors asked whether EVs secreted
from NPCs had similar effects. NPCs and MSCs were isolated
from newborn mouse subventricular zones and adipose tissue,
respectively, in order to collect enough material for the study.
EVs were isolated from these cells using two common methods,
PEG and ultracentrifugation, and the cargo they contained was
characterized. Mass spectrometry revealed the expected cytosolic
proteins, transmembrane proteins and EV markers common to
most EVs. A selection of miRNAs with known neuroprotective
function was also detected by qPCR. To determine their
potential protective properties the EVs were added to the culture
medium of iPSC-derived cerebral organoids exposed to oxygen-
glucose deprivation as a stroke model. The EVs reduced the
number of TUNEL+ cells even at lower doses after only 8 h
of treatment. In a final experiment, the authors found that
EVs from NPCs were able to improve movement in a rodent
model of cerebral ischemia to a similar level as treatment
with the MSC-derived EVs. Impressively, this improvement
persisted for 84 days post-stroke with an increase in neuronal
density and proliferating cells. This approach further confirms
the therapeutic utility of EVs and opens up new potential
sources for producing functional neurons in vivo. Treatments

could even be considered that induce endogenous NPCs to
release EVs without the need for generating cells and EVs in
the lab.

Brain Cancer
The cancer stem cell hypothesis predates human pluripotent
stem cell technology though still remains controversial (see
Gimple et al., 2019 for a recent review). Methods for isolation
and culture of CNS solid tumor stem cells are established
and can be used for examining the first steps of cancer
formation (see Goranci-Buzhala et al., 2021 for a recent example).
Human stem cells (endogenous and PSC-derived) make excellent
complimentary models for studying the cell of origin, cellular
heterogeneity, and mechanisms of progression of multiple types
of brain cancers, particularly since dedifferentiation and re-
activation of an embryonic stem-like state is a hallmark of many
cancers. This has been particularly true in efforts to model
the highly lethal brain cancer glioblastoma multiforme (Gimple
et al., 2019) but has also been used for non CNS cancers
like medulloblastoma (Xue et al., 2021) and neuroblastoma
(Cohen et al., 2020). Researchers have found that 3D models
are particularly successful in modeling the lineage progression,
cellular heterogeneity and invasive potential of these devastating
cancers (see Luo and Li, 2021 for a recent review). 3D modeling
approaches for glioblastoma are ever evolving and have included
organoids generated from primary patient samples or hPSC
derivatives, and more recently bioprinted constructs that aim
to more faithfully recapitulate multiple elements of the tumor
tissue microenvironment (Gimple et al., 2019; Zhang et al.,
2020; Stanković et al., 2021). There are two main approaches
to 3D cancer modeling: creating a “tumorsphere” consisting
of cancer cells to model growth, signaling and drug response
(Lenin et al., 2021; Pinto et al., 2021) or co-culture of cancer
cells with “normal” organoids to study invasion and tumor
formation (Choe et al., 2020; Azzarelli et al., 2021). Some groups
have even reproduced tumor initiating events by introducing
known tumor causing mutations into wild type organoids (Kim
H. M. et al., 2021). In one compelling example, a streamlined
strategy was recently developed to establish organoids from
resected patient tumor tissues that closely recapitulate the cell
type heterogeneity, histological patterns, mutation spectrum,
and gene expression patterns of the parental tumors (Jacob
et al., 2020). The authors created a biobanking strategy for
these patient-derived models, and eloquently demonstrated their
utility in modeling tumor invasiveness following mouse brain
xenografts and in high throughput drug testing, including
demonstrated sensitivity to CAR-T cell immunotherapy. The
next phase of 3D cancer modeling will involve increasing the
complexity of organoids to capture the tumor microenvironment
(Ruiz-Garcia et al., 2020) by including key aspects such as
vascularization and immune components (reviewed in Majc
et al., 2021).

Medulloblastoma is the most common malignant brain
tumor. Patients with Gorlin Syndrome, caused by a mutation
in PTCH1, develop pediatric medulloblastomas at a rate
of 5%. PTCH1 mutations are also common in sporadic
medulloblastoma cases, making Gorlin patients a useful model
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to study the mechanism of this gene in cancer initiation.
Susanto et al. generated iPSC from a patient with a mutation
leading to a truncation in PTCH1 protein and differentiated
them, along with a control line, to neuroepithelial stem cells
(NES cells) (Susanto et al., 2020). They found that patient
NES cells showed a decrease in apoptosis compared to the
unaffected control NES cells. When injected into the brains of
mice only the patient, not control, NES cells grew into tumors
with histology reflective of medulloblastoma. Secondary cells
isolated from those tumors were able to form new tumors in a
second injected mouse, confirming their transformation. These
tumors showed expression of genes similar to a common SHH-
dependent medulloblastoma type in humans and responded
similarly to Vismodegib, a common treatment for SHH-subgroup
medulloblastoma. Examining the transcriptional differences
between the parent patient NES cells, and those from primary and
secondary tumors revealed an increase in LGALS1 expression,
a gene which is novel in medulloblastoma but has been shown
to promote invasiveness and immune evasion in neuroblastoma.
Using stem cell derived neural cells to model cancer initiating
events that reflect in vivo biology therefore has great utility for
novel mechanistic and therapeutic discovery.

Stem cell derived models are also important tools to validate
potential novel cancer drugs discovered in animal models.
Atorvastatin is a potential cancer therapeutic that can cross the
blood brain barrier; however the systemic dose needed for an
effective dose in the brain is cytotoxic. Lübtow et al. (2020)
created novel micellar atorvastatin formulations and tested their
efficacy against established glioblastoma cell lines and cultured
mouse tumor spheroids. The new formulations reduced the
growth of both human and mouse cancer cells. To determine
if the new formulation could cross the blood brain barrier,
and at what concentration, the authors established an iPS cell-
derived human blood brain barrier model in a transwell system.
With this innovative approach they were able to administer
high doses of the drug with no cytotoxic effects and found
that the new formulations could cross their engineered blood
brain barrier.

THE NEXT STEPS IN HUMAN CELL
MODELS

Cell replacement therapy is often discussed as one of the
main applications of PSC-derived neural cells. Much work is
being done to perfect differentiation protocols to achieve high
yield, purity, functionality and regulatory compliance. Ganat
et al. developed one of the first protocols for dopaminergic
neuron differentiation to be used for cell replacement therapy
for Parkinson’s disease (Ganat et al., 2012) (see Parmar et al.,
2019 for a recent review of Parkinson’s Disease clinical trials).
Autologous transplant, where a patient’s tissue is reprogrammed
and differentiated to the target cell type, is most certainly
too costly and too slow for effective therapeutic intervention.
Transdifferentiation (as mentioned above) has been a popular
avenue of exploration in this regard. Several groups are
pursuing transdifferentiation of astrocytes into neurons for cell

replacement therapy (Brulet et al., 2017; Gao L. et al., 2017;
Zhu et al., 2018; Zhao A. D. et al., 2020). Another approach
is that of generating the “universal cell donor” where banks of
genetically modified universal cell donor or homozygous HLA
matched iPSCs are generated. This promising approach is still
actively under development but offers substantial potential for
long-term sustained impacts (Han et al., 2019).

Scale-up manufacture and purity of differentiated cultures
are key considerations for cell replacement therapy, with labor
and financial costs posing major hurdles to overcome (Kim and
Kino-Oka, 2020). It will not be enough to be able to produce
billions of cells simultaneously if no one can afford the cost
to inject them into patients. One Phase I trial injected up to
20 million NPCs into stroke patients (Kalladka et al., 2016),
while for other transplanted tissue types 1–10 × 109 cells per
patient are required (Kropp et al., 2017). While stem cells
have a high proliferative potential, increased time in culture
means more opportunity for genetic instability. Protocols have
been developed for large scale iPSC generation and culture
(Nathanson, 1989; Ismadi et al., 2014; Otsuji et al., 2014; Pagliuca
et al., 2014). Bioreactor scale differentiation of PSCs into NPCs
has also been developed (Miranda et al., 2015), providing
a second intermediate proliferative cell type for expansion.
Methods for cortical neurons generated in suspension culture
(Parmet and Berg, 1989) and attachment-based scale up methods
are also feasible in “cell-factory” style culture systems (Tirughana
et al., 2018).

Toward disease modeling in a dish, brain organoids that
mimic more diverse elements of tissue architecture are advancing
rapidly.With the recent development of protocols to differentiate
microglia, brain microvascular endothelial cells, pericytes, and
choroid plexus and to then co-culture them with neural
organoids, we are well on our way to building structures that truly
mimic the in vivo cellular environment. Recent development
of choroid plexus organoids allows for complementary blood-
cerebrospinal fluid barrier modeling (Pellegrini et al., 2020).
True vascularization of organoids is clearly a goal of the field,
however, this has not yet been fully established in culture and has
required transplant of engineered tissues into recipient animal
models (Mansour et al., 2018). The most recent work in this field,
however, has shown that co-culture of blood vessel organoids
with neural organoids can create vascularization in vitro (Ahn
et al., 2021). While an exciting advance, additional work will be
needed to determine the functionality and long-term viability of
these in vitro vessels.

Organ on a chip technology (Figure 2) allows for regulated
flow through microfluidic channels and precise placement of
cells in concert with them. This approach is especially promising
for developing more complex brain neovascular unit models
(Campisi et al., 2021). Blood brain barrier modeling is relevant to
diseasemodeling (Pelkonen et al., 2020) and drug delivery studies
(Wang X. et al., 2020). An added advantage over vascularized
organoid models is the ability to control flow rate, pressure
and compound delivery though the channels (see Lovett et al.,
2020 for a review of organoids vs. bioengineered 3D models).
Microfluidics has been used recently to examine barrier function
upon SARS-CoV-2 infection (Buzhdygan et al., 2020) as well as
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to mimic signaling gradients to model neurodevelopment (Rifes
et al., 2020). Outside of the brain, microfluidic models can be
used to mimic flow through a variety of lumens and linking
several tissue chips in succession is an intriguing way to model
systemic interactions (see Raimondi et al., 2019 for a review on
gut-brain-axis modeling).

The neural contribution of primarily non-CNS diseases can
also now be examined given the breadth of stem cell-derived
models that have recently been developed (Maiullari et al.,
2018). Enteric neurons have been co-cultured with human
intestinal organoids (Workman et al., 2017). Spinal motor
neurons in co-culture with stem cell-derived muscle cells can
form working neuromuscular junctions to permit analysis of
processes underlying spinal muscular atrophy (Afshar Bakooshli
et al., 2019). Sympathetic and parasympathetic neurons co-
cultured with cardiac muscle can be used to test the effect of
drugs on heart rate and heart health (Winbo et al., 2020). The
next level of these complex co-cultures is 3D tissue printing
(Figure 2). Using bio-mimic matrix type “inks” cells are layered
into precise patterns in pre-set ratios and architectural patterns
to accurately reproduce in vivo tissue structures. This technology
has been used to create trachea (Gao M. et al., 2017), heart
(Maiullari et al., 2018), and skin (Lee et al., 2014). Advances
in 3D bioprinting of brain tissues are also on the rise with
recent studies reported in modeling tumor, spinal cord, and
developing cortex microenvironments (Walus et al., 2020). The
advantage of bioprinted constructs is the level of control over
spatial organization, potentially increasing the reproducibility
over spontaneously formed organoids (see Li Y. C. et al., 2020
for an example). In a recent example, printed adipose-derived
mesenchymal stem cells were differentiated into dopaminergic
neurons displaying electrical response, a step toward functional
patient-derived tissue for transplantation (Restan Perez et al.,
2021). This technology is particularly suited to cancer modeling
as normal brain tissue, cancer stem cells and associated immune
cells can be positioned to mimic tumor growth, invasion, drug
and immunological response (Tang et al., 2020). Incorporation
of drug releasing microspheres into printed constructs can
promote patterning during differentiation to generate tissue from
multiple regions in the same construct (Sharma et al., 2020).
Many of these tissue models now also incorporate microfluidic
channels, providing advanced environmental control. With the
ultimate goal of engineering functional transplantable tissues
for therapeutics, this exciting technology paves the way for the
production of rationally patterned heterogeneous full organs
and tissue constructs entirely produced in vitro from human
stem cells.

CONCLUSION

The most robust neurological phenotypes and clinically
impactful drug targets are those that are reproducible across
multiple cell lines, biological tissue samples, animal models,
and experimental techniques. The power of combining
traditional cell culture and animal models with the emerging
technologies described here, is the ability to deeply interrogate
cellular mechanisms of development and disease and to then
translate these findings in clinically relevant ways. The future
of translational medicine research will increase the demand
for validation in human-relevant models in addition to animal
studies. Science done through collaboration between groups
specializing in model organisms and those specializing in human
stem cell culture will yield the most fruitful research to this end.
A focus on the standardization of differentiation procedures
and cost-efficient scale-up methods is necessary to drive these
technologies closer to in vivo modeling and to unlock their full
potential for cellular therapy and regenerative potential.
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