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Abstract: Parkinson’s disease (PD) is a common neurodegenerative movement disorder 
that is characterized pathologically by a progressive loss of midbrain dopaminergic 
neurons and by protein inclusions, designated Lewy bodies and Lewy neurites. PD is one 
of the most common neurodegenerative diseases, affecting almost 1% of the population 
over 60 years old. Although the symptoms and neuropathology of PD have been well 
characterized, the underlying mechanisms and causes of the disease are still not clear. 
Genetic mutations can provide important clues to disease mechanism, but most PD cases 
are sporadic rather than familial; environmental factors have long been suspected to 
contribute to the disease. Although more than 90% of PD cases occur sporadically and are 
thought to be due, in part, to oxidative stress and mitochondrial dysfunction, the study of 
genetic mutations has provided great insight into the molecular mechanisms of PD. 
Furthermore, rotenone, a widely used pesticide, and paraquat and maneb cause a syndrome 
in rats and mice that mimics, both behaviorally and neurologically, the symptoms of PD. In 
the current review, we will discuss various aspects of gene-environment interaction that 
lead to progressive dopaminergic neurodegenration, mainly focusing on our current finding 
based on stress-mediated parkin dysfunction. 
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1. Introduction  

Parkinson’s disease, initially described as “shaking palsy” in the early 1800s by British physician 
James Parkinson, is among the most prevalent neurological disorders, particularly in the population 
over 60 years of age. The current figure of at least four million affected individuals worldwide is 
predicted to double by the year 2040, as the elderly population increases. The most prominent clinical 
features are bradykinesia, rigidity, resting tremor, and postural instability, with some patients also 
experiencing cognitive, autonomic, and psychiatric manifestations. Pathologically, PD is a relentlessly 
progressive neurodegenerative disease that is characterized by the loss of dopaminergic neurons in the 
substantia nigra pars compacta [1]. Protein aggregation, a feature common to many neurodegenerative 
disorders, results in the formation of Lewy bodies, a neuropathological hallmark of PD [2,3]. Various 
provocative evidence suggest that environmental exposures to certain neurotoxicants (heavy metals, 
pesticides and fungicides) may play a role in the development of neurodegenerative movement 
disorders such as Parkinson’s disease (PD). A number of large association studies have identified 
factors that may correlate with altered risk for developing PD, and these studies have shown  
both genetic and environmental factors playing a role in this risk [4-7]. However, the concept that  
gene-environment interactions may play a role in PD pathogenesis, have been addressed by very few 
studies able directly in an experimental system.  

2. Gene-Environment Interplay 

Figure 1. An interplay between gene and environment affecting various stages of 
progressive mechanisms leading to the neuronal death in PD. The central generation of free 
radicals after exposure to environmental toxins or decreased UPS function and protein 
aggregate formation due to genetic defect is thought to be a major mechanism of 
dopaminergic cell death in PD. 
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Various studies suggest that PD develops from complex gene-environment interactions which 
involve a crosstalk among multiple molecular pathways leading to PD neurodegeneration. The 
following diagram illustrates interplay between gene and environment affecting various stages of 
progressive mechanisms leading to the neuronal death in PD (Figure 1). 

The findings illustrating the role of causative gene mutations in PD have led to numerous 
mechanisms leading to neuronal degeneration in PD. Major categories of these mechanisms can be 
categorized into protein aggregation such as Lewy Body and neuritis, impaired function of ubiquitin-
proteasome system (UPS) leading to impaired protein degradation and accumulation of toxic proteins, 
mitochondrial dysfunction, specially Complex I deficiency, and finally oxidative stress leading to 
various signal transductions disruptions. Following Table [8] lists various genes whose mutation is 
attributed to development of familial PD (Table 1). 

Table 1. Loci and genes associated with familial PD or implicated in PD [8]. 

Locus Chromosome 
Location 

Gene Inheritance 
Pattern 

Typical  
Phenotype 

PARK1& 
PARK4 

4q21-q23 α-synuclein AD Earlier onset, 
features of DLB 
common 

PARK2 6q25.2-q27 parkin Usually AR Early onset with 
slow progression 

PARK3 2p13 unknown AD, IP Classic PD, 
sometimes 
dementia 

PARK5 4p14 UCH-L1 unlcear Classic PD 
PARK6 1p35-p36 PINK1 AR Early onset with 

slow progression 
PARK7 1p36 DJ-1 AR Early onset with 

slow progression 
PARK8 12p11.2-q13.1 LRRK2 AD Classic PD 
PARK10 1p32 unknown unclear Classic PD 
PARK11 2q36-q37 unknown unclear Classic PD 
N/A 5q23.1-q23.3 Synphilin-1 unclear Classic PD 
N/A 2q22-q23 NR4A2 unclear Classic PD 

N/A—not assigned, AD—Autosomal Dominant, AR—Autosomal Recessive, IP—Incomplete 
Penetrance, DLB—Dementia with Lewy Bodies. 

 
The α-synuclein (SNCA) mutations and single-nucleotide polymorphisms (SNPs) make α-synuclein 

adopt a propensity for misfolding and accelerated aggregate formation. Excessive α-synuclein 
aggregates may overwhelm UPS protein degradation. Accumulated α-synuclein can translocate to the 
mitochondria and impair mitochondrial activity. Parkin mutations and UCHL-1 SNPs prevent the 
proteolytic degradation of excessive toxic proteins (e.g., misfolded α-synuclein) in proteasomal 
machinery. 

PINK1, Parkin, and DJ-1 functionally interact to maintain mitochondrial integrity and functionality 
and to protect cells against adverse effects of multiple stressors. Mutations in these genes cause 
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mitochondrial dysfunction and subsequent decline in ATP production and increase in free radical 
generation, which results in oxidative stress and energy deficiency. Impaired mitochondria can release 
cytochrome c and other ‘pro-apoptotic factors’ triggering apoptotic cascades and cell death. 
Mitochondria in at least some forms of PD reveal abnormal morphology, impaired fission-fusion 
balance, and metabolic malfunction. DJ-1 mutations reduce antioxidant response of cells, aggravating 
oxidative stress. Oxidative stress engages in diverse cellular processes and plays a prominent role in 
the induction of neuronal death. For instance, excessive production of free radicals can damage 
proteins (e.g., abnormal modification of α-synuclein and inactivation of Parkin), lipids, DNA, or RNA, 
leading to cell dysfunction (e.g., UPS and mitochondrial impairment) and eventual death. Mutations in 
Pink1 and LRRK2 induced aberrant kinase activity, altered substrate specificity, leading to 
inappropriate protein phosphorylation (e.g., increased α-synuclein phosphorylation at serine 129 by 
LRRK2 in vitro) and thereby affecting cell survival. Environmental toxins and brain trauma can trigger 
neuronal lesions by damaging mitochondria, causing oxidative stress, inducing inflammation in the 
central nervous system (CNS), and compromising defence mechanisms of cells. Some environmental 
risk factors can directly activate microglia (the resident immune cells in the CNS) or cause systemic 
inflammation, which in turn affects CNS inflammation. Genetic variation and polymorphisms in the 
HLA region and several inflammatory cytokines may become risk factors for PD. Activated microglia 
produce and secrete a spectrum of inflammatory and cytotoxic molecules, such as cytokines, 
chemokines, reactive free radicals, eicosanoids, and proteases. In addition to modulating microglial 
activity, these molecules influence the fate of surrounding neurons. Excessive inflammatory reaction 
usually becomes exaggerated and destructive, and turns into chronic inflammation that drives 
progressive neurodegenerative process. Injured neurons activate the surrounding microglia through the 
release or leakage of noxious self-compounds into the extracellular milieu, such as membrane 
breakdown products, abnormally processed or aggregated proteins (e.g., α-synuclein and β-amyloid), 
imbalanced neurotransmitters (e.g., elevated glutamate) and cytosolic compounds (e.g., α-synuclein, 
ATP, HMGB1 and neuromelanin). Thus, gene–environment interplay induces complex crosstalk 
among multiple signal cascades, forming a network and culminating in neuronal death and PD 
development (Figure 2) (paragraph and diagram adapted from Gao and Hong [9]). 

3. Parkin Modification as an Example of Gene-Environment Interaction in PD  

Much current evidence suggests that impaired regulation of protein aggregation and dysfunction of 
the ubiquitin-proteasome system (UPS) is a common pathway in the progression of both genetic and 
sporadic forms of PD [4-6]. The UPS mediates the ubiquitination of a substrate by a multi-step 
enzymatic process, which includes a ubiquitin activator (E1), a ubiquitin conjugator (E2), and a 
ubiquitin ligase (E3). Ubiquitinated substrates are then targeted for degradation by the proteasome [10]. 
Parkin, one of a number of E3 protein-ubiquitin ligases [11], mediates ubiquitination of itself, as well 
as an unusually large number of other protein substrates, including the α-SYN-interacting protein 
synphilin-1 (and other synaptic proteins), PaelR (parkin-associated endothelin-like receptor), cyclin E, 
α/β tubulin, and the p38 subunit (p38/JTV-1) of the aminoacyl-tRNA synthetase complex [12], which 
has recently received the alternative designation of aminoacyl-tRNA Synthetase (ARS)-interacting 
multifunctional protein type 2 (AIMP2) [13]. The gene that encodes parkin was originally 
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demonstrated to have an association with autosomal recessive juvenile-onset parkinsonism in Japanese 
families [14]. Current evidence suggests that up to half of hereditary parkinsonism and 10% of all 
early-onset PD cases are associated with PARKIN mutations [15,16]. 

Figure 2. Gene-environment interplay induces complex crosstalk leading to the increased 
level of oxidative stress in dopaminergic neurons. Various pathways and their dysfunctions 
resulting from genetic defects in PD-related genes such as α-synuclein, Parkin, DJ-1, 
LRRK2, PINK 1 lead to molecular mechanisms that result in an increased oxidative stress. 
Similarly, stress and trauma that might be physical or induced by environmental toxicants 
can inhibit proper functions of the gene products of PD-related genes such as Parkin, DJ-1 
or PINK 1 or induce mitochondrial Complex I inhibition or neuroinflammation resulting in 
increased oxidative stress thus leading to neuronal cell death [9]. 

 



Int. J. Environ. Res. Public Health 2011, 8         
 

4707 

Although clinical phenotypes vary, patients with PARKIN mutations generally develop 
parkinsonism at an early age, exhibit slow disease progression, and respond well to levodopa therapy. 
A subset of these mutations results in the loss of parkin E3 ubiquitin ligase function , which is thought 
to lead to UPS dysfunction, aggregation of parkin and/or its ligase substrates, and degeneration of 
dopaminergic neurons [4,5,17]. Mutations in parkin are currently recognized as one of the most 
common cause of familial Parkinsonism. To date, the descriptions of parkin-related PD include 
patients with homozygous and compound heterozygous mutations, as well as those with a single 
mutated allele [16]. Although PD due to parkin mutations is classically transmitted in an autosomal 
recessive inheritance, the existence of patients with single mutations raises the possibility of an 
expanded risk associated with parkin haploin sufficiency [16-18]. Supporting this possibility is the 
recent association of parkin gene promoter polymorphisms with late-onset PD [19]. Parkin variability, 
both qualitative and quantitative, could thus be considered as a risk factor for the development of PD.  

The importance of parkin expression in neuronal survival is probably related to the multitude of 
1neuroprotective roles it appears to serve [20]. Parkin apparently confers protection to neurons against 
a diversity of cellular insults, including manganese-induced cell death [21], α-synuclein toxicity [22], 
proteasomal dysfunction [23], endoplasmic reticulum stress [24], Pael-R [25] and AIMP2  
(p38/JTV-1) [13] accumulation, and kainate-induced excitotoxicity [26]. Additionally, parkin confers 
neuronal resistance to stimuli that promote mitochondria-dependent apoptosis and dopamine-mediated 
toxicity [27,28]. Given the multiplex neuroprotective roles of parkin, it is conceivable that any 
depletion in the level or activity of parkin would significantly compromise neuronal integrity. Indeed, 
many familial PD-linked mutations of PARKIN cause a loss of parkin catalytic competency [29,30]. 
Similarly, the inhibition of parkin activity by BAG5 enhances dopamine neuron death in an in vivo 
model of PD [31]. Conversely, animals with over-expressed parkin have reduced α-synuclein-induced 
neuronal pathology compared with normal control animals [32,33]. Susceptibility of primary neurons 
of parkin null mice to rotenone has been shown to be significantly high. In addition to the role of 
parkin in neuronal survival, a very recent study suggested a protective role of parkin against 
mitochondrial toxins and β-amyloid accumulation in skeletal muscles during Inclusion Body  
Myositis [34].  

The PARKIN gene, located at the PARK2 locus on chromosome 6q, is comprised of 12 exons 
encoding a 465 amino acid protein that is expressed widely, but most prominently in muscle and  
brain [14]. The ~52 KDa parkin protein (see Figure 2) is comprised of an N-terminal ubiquitin-like 
(UBL) domain, a unique parkin domain (UPD), and two RING (really interesting new gene) fingers 
flanking an IBR (in-between-ring) domain at the C terminus. All of these domains appear to be 
important, since PD mutations are found within each of them [10]. Studies by Ted Dawson [35] and 
Philipp Kahle [36], have shown that post-translational modifications of parkin protein alter its  
E3-ubiquitin ligase activity. In the first instance, Chung, Dawson, and their colleagues have shown that 
S-nitrosylation of parkin compromises its ubiquitin ligase activity and abrogates its protective function 
against α-synuclein-mediated neurotoxicity. This group also demonstrated extensive S-nitrosylation of 
parkin in mouse models of PD, as well as in PD patients [35]. In the second example, Yamamoto, 
Kahle, and colleagues [36] have recently shown that parkin phosphorylation on various serine residues 
results in a decrease in its E3 ubiquitin ligase activity. However, no evidence has yet been obtained for 
the induction of phosphorylation of parkin by oxidative or nitrative stress or for the presence of 
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phosphorylated parkin in PD. Moreover, a recent study observed vulnerability of parkin to 
modification by dopamine, the principal transmitter lost in PD, suggesting a possible mechanism for 
the progressive loss of parkin function in dopaminergic neurons [37]. Taken together; these studies 
suggest that critical modifications of parkin play an important role in the pathogenesis of sporadic PD, 
the predominant form of the disease. Since sporadic PD is thought to be due in part to oxidative  
stress [38,39], the work of Chung and colleagues provides a link between oxidative damage and the 
role of parkin in sporadic PD. Therefore, oxidative, nitrative, or nitrosative stress, and more recently 
dopaminergic stress, are thought to impair the function of parkin through post-translational 
modification and/or altering the solubility of parkin [37,40,41]. The molecular mechanisms underlying 
the impairment of parkin’s function by these stressors are unknown. Moreover, the extent to which 
these modifications play a role in the common sporadic form of Parkinson’s disease has not yet  
been defined.  

An etiologic link has been suggested between PD and the herbicide paraquat (1,1'-dimethyl-4,4'-
bipyridinium) [42,43]. Paraquat is structurally similar to MPP+, the active metabolite of MPTP. 
Epidemiologic data suggest a positive dose-response relationship between lifetime cumulative 
exposure to paraquat and risk of PD [44]. In experimental studies in which paraquat has been 
administered to animals, researchers have observed loss of SN dopaminergic neurons, depletion of 
dopamine in the SN, reduced ambulatory activity, and apoptotic cell death [45]. 

The insecticide rotenone induces clinical and pathologic features in rats similar to those induced  
by PD, including selective degeneration of the nigrostriatal dopaminergic system and movement  
disorders [46]. Synergistic effects have been observed in animals administered a combination of 
rotenone and lipopolysaccharide, a molecule that stimulates inflammation [47,48]. Susceptibility to 
rotenone has been shown to be increased in the neurons from parkin null mice [34]. In our recent 
studies [49], we show that tyrosine phosphorylation of parkin by c-Abl, a tyrosine kinase activated 
majority by oxidative stress, is a major post-translational modification that leads to loss of parkin 
function and disease progression in sporadic PD. Moreover, inhibition of c-Abl offers new therapeutic 
opportunities for blocking PD progression.  

In our studies, c-Abl was activated and parkin was tyrosine phosphorylated in SH-SY5Y cells 
treated with either paraquat or rotenone (Figure 3). Furthermore, pre-treatment with STI-571 inhibited 
the paraquat or rotenone mediated activation of c-Abl and tyrosine phosphorylation of parkin. These 
data provide support for the activation of c-Abl mediated pathway and loss of parkin function during 
the exposure to environmental toxins such as paraquat and rotenone, leading the progression of PD 
after these exposures.   
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Figure 3. Environmental toxin stress results in tyrosine phosphorylation of parkin in  
SH-SY5Y cells expressing myc-parkin. Cells were treated with 250 μM paraquat or  
2.5 μM rotenone for 24 hr. In some cases, cells were pretreated with 10 μM STI-571  
6 hours prior to toxin treatment. RIPA lysates were prepared and subjected to 
immunoprecipitation with anti-parkin antibody and immunoblotted with antibodies as 
shown in the figure.  

 

4. Conclusions  

Recent evidence has demonstrated a close interplay between genetic and environmental causes of 
PD neurodegeneration. Environmental risk factors and PD-associated gene mutations have been shown 
to act in parallel pathways, likely sharing some common molecular mechanisms. Previously, we have 
shown that chronic rotenone administration can lead to significant injury to the nigro-striatal system, 
mediated by increased generation of nitric oxide [50]. A very recent study presents molecular insights 
into link between gene products associated with development of PD and the pesticides. Gu and 
colleagues [51] took some of the first steps toward unraveling the molecular dysfunction that occurs 
when proteins are exposed to environmental toxins. Their discovery helps further explain the link 
between PD and two particular pesticides—rotenone and paraquat. This study provides the evidence 
that oxidative stress, possibly due to sustained exposure to environmental toxins, may serve as a 
primary cause of PD suggesting why many people, such as farmers exposed to pesticides, have an 
increased incidence of the disease. Scientists previously believed that PD might be associated with 
oxidative stress, which is when electronically unstable atoms or molecules damage cells. Gu and 
colleagues specifically demonstrated how oxidative stress caused parkin proteins to cluster together 
and malfunction, rather than performing normally by cleaning up damaged proteins. More studies are 
needed to establish solid relationship between various gene products responsible for the development 
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of PD and the impact of different environmental factors on these gene products during the 
development and progression of sporadic PD.  
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