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Abstract: A better understanding of their interaction with cell-based tissue is a fundamental pre-
requisite towards the safe production and application of engineered nanomaterials. Quantitative
experimental data on the correlation between physicochemical characteristics and the interaction
and transport of engineered nanomaterials across biological barriers, in particular, is still scarce, thus
hampering the development of effective predictive non-testing strategies. Against this background,
the presented study investigated the translocation of gold and silver nanoparticles across the gastroin-
testinal barrier along with related biological effects using an in vitro 3D-triple co-culture cell model.
Standardized in vitro assays and quantitative polymerase chain reaction showed no significant influ-
ence of the applied nanoparticles on both cell viability and generation of reactive oxygen species.
Transmission electron microscopy indicated an intact cell barrier during the translocation study.
Single particle ICP-MS revealed a time-dependent increase of translocated nanoparticles independent
of their size, shape, surface charge, and stability in cell culture medium. This quantitative data
provided the experimental basis for the successful mathematical description of the nanoparticle
transport kinetics using a non-linear mixed effects modeling approach. The results of this study may
serve as a basis for the development of predictive tools for improved risk assessment of engineered
nanomaterials in the future.

Keywords: metallic nanoparticles; shape; zeta potential; nano-bio interactions; in vitro studies;
translocation study; gastrointestinal barrier; in silico modeling; nanotoxicology; nanosafety

1. Introduction

When manufacturing new products that contain engineered nanomaterials (ENM),
often referred to as nano-enabled products [1], in addition to improving product functional-
ity and quality, the safety of the products for the user as well as safe manufacturing (safety
of workers) must be ensured. The topic of safe-by-design (SbD) is therefore gaining more
and more importance in the field of nanotechnology [2–5]. SbD is not a new concept; it has
already been applied by other industries, among others also in the pharmaceutical sector to
ensure safety throughout the drug discovery and development process [4,6–8]. However,
its implementation in nanotechnology remains challenging and requires a comprehensive
and well-founded database for functionality, toxicity and exposure of ENM. When it comes
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to the development of safe ENM, a profound understanding of their functionality is like-
wise necessary [9]. In order to develop safe nano-enabled advanced materials, it is essential
to know the potential exposure scenarios of the ENM in the foreseen final product, to collect
critical physicochemical properties that influence the ENM functionality and to identify
basic toxicological information at the earliest possible stage of product development. Key
parameters that influence ENM exposure include e.g., stability, release, toxicity and the re-
lationship between these parameters and associated human or environmental risks are still
not well understood. Knowledge gaps between ENM application and safety assessments
still exist and need to be closed by new strategies including screening technologies, as
well as a combination of screening systems and prediction models as a basis for new SbD
concepts [10]. However, such SbD concepts rely on the availability of sufficient and reliable
experimental studies and data sets. In this context, this study focuses on the influence of the
physicochemical characteristics and the stability of metallic nanoparticles (mNP), in partic-
ular gold nanoparticles (AuNP) and silver nanoparticles (AgNP) of different sizes, shapes
and surface zeta potentials, on the translocation through the gastrointestinal (GI) barrier,
along with their associated biological effects, such as membrane damage, inflammation,
apoptosis or genotoxicity.

Due to their diverse physicochemical characteristics mNP are key components of
innovations in various fields with high potential impact (e.g., energy generation and
storage, electronics, photonics, diagnostics, theranostics, antimicrobial applications or
drug delivery agents) [11,12]. To ensure the safety for humans and the environment, it is
important to investigate key characteristics that influence the release, exposure, behavior in
the environment, and effects of these mNPs on organisms in order to establish an improved
risk assessment.

In general, the human body can come into contact with ENM through three main
uptake routes: inhalation, ingestion and absorption [13]. In case of ingestion, the intestinal
mucus, a complex network of highly branched glycoproteins, lipids, cellular and serum
macromolecules, is the first barrier, which ingested ENM must pass [14]. The mucus can
entrap ENM because it poses a physical barrier due to its thickness, density, negative
charge and constant renewal [14–16] with ENM surface charge and size influencing mucus
adhesion and penetration [17]. Typically, the most common mechanism for uptake of ENM
into intestinal epithelial cells appears to be endocytosis after overcoming the mucosal
barrier [17]. pH variance within the GI compartments can affect aggregation status and
alter surface chemistry of the ENM, as ζ-potential is highly pH-dependent [18]. After
ingestion, and also in an in vitro environment, ENM develop a protein corona, consisting
of a mix of proteins, small molecules and ions that adsorb to the particle surface [19–24].
Bare mNP added into the blood system are quickly opsonized by plasma proteins [25].
Binding of polymers on the surface of the ENM protects them from opsonization, deter-
mines their final size, controls their growth, changes their surface charge and thus the
interaction with the negatively charged cell membrane, prevents clustering or agglom-
eration and helps to reduce their toxicity [26,27]. Such surface modifications influence
the bioavailability und functionality of ENM, which enables longer half-life in the blood
stream, improved biodistribution and higher ENM stability [26]. For example, AuNP with
albumin surface modification show lower toxicity, longer blood circulation time, as well as
better bioavailability and selective bioaccumulation [26].

Besides the biological features of the GI tract, the physicochemical features of the ENM
strongly impact data interpretation from ENM ingestion experiments. Particle size and
size distribution, particle number and surface area, as well as aggregation/agglomeration
state, surface charge, shape and stability are all likely to influence the biological availability
and effects of an administered ENM [13,28–30]. In the literature, many different types of
AuNPs are described, varying in size, shape (e.g., sphere, shell, star, rod, cube, diamond)
or surface modification [11]. Oxidant generation and rate of dissolution will also impact
absorption and biological response [31].
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Mechanisms of how ENM enter the GI cells and interact with cellular structures are
still not fully understood [32–34]. Besides studies on particle modifications and charac-
teristics during digestion using digestion models (mimicking gastric or small intestinal
conditions) [35–39], several in vitro studies had focused on ENM translocation and uptake
behavior with different GI models, ranging from very simple monolayer cultures, up to
models mimicking the GI environment as realistically as possible, to generate physiolog-
ically relevant results. Among the variety of cell models available in vitro, the human
epithelial colorectal adenocarcinoma cells Caco-2 are the most commonly used in ENM
translocation studies [40]. The reason for that is their expression of tight junctions. Several
examples are described in the literature where monocultures of Caco-2 cells have been
used to study the in vitro translocation of ENM (mainly polystyrene but also silicon, silver
and organic nanoparticles) [41–44]. A potential drawback of Caco-2 monolayers is the lack
of a mucus layer, which can, however, be introduced by co-culturing Caco-2 cells with the
human mucus-secreting colon adenocarcinoma cells HT29-MTX [41,43,45,46]. A further
cell type which is often combined with GI mono- or co-cultures are epithelial cells of the GI,
which are part of the immune system. The so-called M cells, or Raji cells, are combined with
Caco-2 cells as co-culture or as triple culture with both, Caco-2 and HT29-MTX [43,47–51].
Depending on the used in vitro model, different EC50 values have been determined for
ENM, e.g., AgNP in the size range of 20 nm [47,52–54].

Until now, only a few studies have investigated the correlation between the ENM physic-
ochemical properties and their influence on the GI translocation in a triple co-culture model.

Many of the published studies with AuNP or AgNP use monocultures or co-cultures
of two cell types. These show that the composition of the cell models, the incubation
conditions, including duration and the investigated dose have an influence on the induced
effects [47,55–57]. Qin et al. (2020) used the Caco-2 model and analyzed the proteomic
composition of the intracellular protein corona of AuNP, which enabled the tracing of
transport pathways in the epithelial cells [58]. Kämpfer and co-workers (2020) used a
co-culture model consisting of Caco-2 and THP-1 cells, mimicking the intestine in a healthy
and inflamed state for nanotoxicological research [59] while Mortensen et al. (2020) [7]
tested a range of metal, metal oxide and metal sulphide ENM to study their influence on
the intestinal barrier function and their cytotoxicity in Caco-2 cells.

Moreover, in vivo animal studies have shown that AuNP are able to enter the organism
after oral ingestion. The AuNP circulate in the blood stream and accumulate in various
organs such as liver, spleen and lymph nodes [32,60]. A size-dependent biodistribution
was measured by Hillyer et al. 2001 [61]. In contrast to AuNP, AgNP increased intestinal
permeability and caused inflammation of intestinal tissue [62].

Braakhuis and colleagues recently suggested that modeling experimental data of
nanoparticles with in silico techniques could help bridge the gap between ENM in vitro
translocation and in vivo bioavailability in the future [44]. For this purpose, the physiolog-
ical nature of in vitro models needs to be increased and new in silico models need to be
developed [44]. Various compartmental modeling approaches have proven to be valuable
tools in modeling cell permeation of small molecules [63]. As AuNP have shown to be
able to translocate through cell layers [64] and taken up by the cell [65,66], compartmental
modeling could also be a helpful technique in characterizing the translocation kinetics of
different ENM species [67].

In the present study, a combined approach of detailed physicochemical analysis,
toxicological assays and in silico modeling was used to answer the question on the influence
of the physicochemical characteristics and stability of AuNP on their translocation across
the intestinal barrier and related biological effects. Using AuNP of different sizes and
shapes (spheres with a mean diameter of 30 nm and 200 nm, rods with a mean diameter
of 40 nm and a mean length of 112 nm) corona formation in cell culture medium, surface
chemistry and further physicochemical parameters are correlated with their translocation
properties, while AgNP were used for comparative purposes.
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2. Materials and Methods
2.1. Nanomaterials

Gold nanospheres with a mean diameter of 30 nm (product code EM.GC 30/4) and
200 nm (product code EM.GC 200/4) were purchased from BBI Solutions (Crumlin, UK).
Gold nanorods (AuNRods) with a length of 112 nm and a diameter of 40 nm were purchased
from Nanopartz™ (A12-40-750-CIT-DIH-1-25-CS-EP, Loveland, CO, USA). AgNP, spheres
with a mean diameter <20 nm (NM-300K, JRC) were obtained from the Fraunhofer Institute
for Molecular Biology and Applied Ecology IME (Schmallenberg, Germany). All ENM
stock suspensions were treated in an ultrasonic bath (Elmasonic S15, Elma, Germany) for
10 min to disrupt agglomerations, before mixing with pre-warmed (37 ◦C) cell culture
medium (CCM) to create the test concentrations. Testing concentrations were defined as
30 µg/mL (EC50) for the positive control AgNP and 1 µg/mL for the test substances AuNP
(spheres and rods). A concentration of 1 µg/mL was chosen to cover two aspects; on the
one hand, to approach the ppm range (environmental relevant) and to further assure that
the cell barrier is not impaired which would affect the translocation analysis.

2.2. Determination of Size Distribution and Ionic Concentration via Single Particle Inductively
Coupled Plasma Mass Spectroscopy (spICP-MS)

Ultrapure water (UPW, resistance 18.2 MOhm) was obtained from a MilliQ system
(Integral 5 system, Merck, Darmstadt, Germany). For sample preparation and dilution,
TritonX100 (J.T. Baker Mallinckrodt, Deventer, The Netherlands) and an aqueous solu-
tion of Tetramethylammonium Hydroxide (TMAH) (25% (v/v), AppliChem, Darmstadt,
Germany) were purchased. All spICP-MS measurements were carried out with a diluent
of 0.1% TritionX100 and 0.5% TMAH. Furthermore, hydrochloric acid (HCl) (30% (w/w))
and nitric acid (HNO3) (65% (w/w)) were both acquired in suprapur quality from Merck
(Darmstadt, Germany).

Ionic ICP standards of silver and gold with a stock concentration of 1000 mg/L
(Carl Roth, Karlsruhe, Germany) were purchased to construct a calibration line. The
relationship between spICP-MS count rate and concentration was established by using
different concentrations of ionic silver and gold standards diluted in the same diluent as
the analytes. For determining the nebulization efficiency (transport efficiency), a reference
suspension of AuNP with a nominal diameter of 58 nm was used (product code EM.GC60,
BBI Solutions, Crumlin, UK). The nebulization efficiency was calculated according to the
“size method” published by Pace et al. (2011) [68] using the nominal the size determined
via transmission electron microscope.

spICP-MS measurements were carried out on an Agilent ICP-MS 7900 (Agilent Tech-
nologies, Waldbronn, Germany). The samples were introduced using an ASX-500 Au-
tosampler (Agilent Technologies, Waldbronn, Germany) and a peristaltic pump operating
at 0.1 rpm, which corresponds to a flow rate of 0.346 mL/min. The sample introduction
system consisted of a MicroMist nebulizer (Agilent Technologies, Waldbronn, Germany),
a quartz glass spray chamber (Scott double-pass, Agilent Technologies, Waldbronn, Ger-
many) and a quartz glass torch (2.5 mm ID injector, Agilent Technologies). The spray
chamber was cooled to 2 ◦C. A nebulizer gas flow rate of 1.09 L/min, a plasma gas flow
rate of 15 L/min and an auxiliary gas flow rate of 0.9 L/min were applied for analysis. All
inserted gas flows consisted of Argon gas (purity 5.0) and all experiments were conducted
without using any collision gas. A radio frequency power of 1550 W and a sampling
depth of 6.0 mm were used throughout all experiments. The dwell time was set to 100 µs
without any settling time. Data were acquired for 60 s recording the intensities of the
isotopes 107Ag and 197Au, respectively. A tune operation according to the manufacturer’s
recommendations was performed on a daily basis to ensure optimal hardware functionality
and alignment. Prior to analyte measurements the nebulization efficiency and element
response calibration were calculated. The nebulization efficiencies ranged between 4.8%
and 6.2%.
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All standards and samples were diluted using a mixture of 0.5% TMAH and 0.1% Tri-
tonX100 to ensure comparable and stable conditions as well as nebulization efficiencies [69,70].
Dilution factors of up to 106 were required to obtain sufficiently low particle number con-
centrations. The AuNP reference suspension for the determination of the nebulization
efficiency was diluted 106-times to reach a mass concentration of 50 ng/L. The ionic
calibration standards were used with concentrations between 100 ng/L and 1000 ng/L.

Between each measurement the complete system was rinsed in a two-step procedure
using a 1% HCl + 1% HNO3 + 0.1% TritonX100 mixture and UPW to remove all potential
particulate residues from the previous measurement and to avoid other memory effects,
which was monitored by regular analysis of blank samples [ISO/TS 19590].

Data evaluation was performed with the MassHunter software (Version 4.6, Agilent
Technologies, Waldbronn, Germany) using the automatic particle integration mode. The
differentiation between particulate and ionic concentration was specified manually and
set to the first minimum of the frequency-intensity diagram [71]. The construction of
the analyte and reference material calibration response lines was conducted in Excel
(Microsoft Office 2010, Version 14, Microsoft Corporation, Redmond, WA, USA), and
the obtained values were transferred to the spICP-MS evaluation software to use a more
meaningful calibration procedure. Measurements of mNP samples with results below
the lower particle concentration limit of detection (LODconc) were set to zero. A particle
number of 10 particles over the complete acquisition time was considered equal to the
concentration detection limit LODconc, which corresponds to a particle concentration of
around 4.98 × 105 particles/L [72]. The size detection limit LODsize was determined to
around 15 nm for AgNP and AuNP, respectively. All investigated particle sizes were
considerably above this limit with the exception of AgNP. Ionic concentrations above
150 ng/L for Au and 100 µg/L for Ag, respectively, were significantly above the detection
limit and were taken into consideration. Thereby the aforementioned values were already
corrected with the applied dilution factor.

2.3. Determination of Size Distribution, Particle Shape and Thickness of Protein Corona via
Transmission Electron Microscope (TEM)

Pioloform-coated copper grids (G2440C) from Plano (Wetzlar, Germany) were incu-
bated with 0.1% poly-L-lysine at 23 ◦C for 30 min, rinsed with water, and dried under
dust-free atmosphere. A droplet of 20 µL of the sample was pipetted on the grids. After
20 min, the grids were rinsed with water and left for drying. Afterwards, the samples were
directly investigated in the transmission electron microscope (TEM). TEM images were
acquired with a Philips CM10 instrument, coupled with a CCD camera (IDS, Obersulm,
Germany), at an acceleration voltage of 80 kV.

For visualization and measurement of the mNP protein corona thickness, the samples
must be negatively stained. Therefore, the samples were treated with a saturated ethanolic
uranyl acetate solution for 2 min. Excess liquid was removed, and the samples were dried
again before TEM analysis. Particle dimension and thickness of the protein corona were
evaluated using the software ImageJ [73], and the size distribution of 45 individual particles
was analyzed. For determining the thickness of the protein corona 20 individual particles
were analyzed.

2.4. Determination of Surface Charge via Electrical Asymmetrical Flow Field-Flow Fractionation
Coupled to an UV–VIS-Detector (EAF4-UV-VIS)

UPW from a Milli-Q system (Integral 5 system, Merck, Darmstadt, Germany) was
filtered through a 0.1 µm pore size membrane (Durapore, Merck Millipore, Tullagreen,
Ireland). An optimum carrier solution for all samples consisted of a 0.4 mM Na2CO3
(Merck, Darmstadt, Germany) solution with a conductivity of around 90 µS/cm. The mNP
were diluted to 10 ppm in UPW and CCM, respectively.

After incubation in CCM for at least 2 h the samples were analyzed by electrical asym-
metrical flow field-flow fractionation (EAF4). The EAF4 fractionation system (EAF2000
MT, Postnova Analytics, Landsberg a. Lech, Germany) was equipped with an autosam-
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pler (PN5300), Slot Outlet (PN1650), channel thermostat (PN4020) and an Electrical FFF
Module (PN2410), which controlled and applied the electrical field, as well as monitored
the conductivity of the carrier solution. A regenerated cellulose membrane of 10 kDa
molecular weight cut-off and a 350 µm height Mylar spacer were placed inside an electrical
analytical fractionation channel with a tip-to-tip length of 277 mm. The temperature of
the channel thermostat was kept constant at 25 ◦C while the samples were stored in the
autosampler at 4 ◦C. A UV–VIS detector (PN3211) was coupled online to the EAF4 system.
Due to differences between the UV absorbances of the investigated mNP, the absorbance
wavelength of the UV–VIS detector was set to 515 nm (AuNRods), 526 nm (AuNP-30),
580 nm (AuNP-200) and 400 nm (AgNP), respectively, in order to obtain sufficient signal
heights. The instrument was controlled by the NovaFFF software (Version 2.1.0.4, Postnova
Analytics, Landsberg a. Lech, Germany).

The EAF4 fractionation method was adjusted to the respective mNP to retain suf-
ficient fractionation. The detector flow rate and slot flow rate were both kept constant
at 0.30 mL/min and 0.20 mL/min for all fractionations, respectively. Furthermore, an
injection flow rate of 0.20 mL/min, an injection time of 6 min and a transition time of
0.2 min were used. The initial cross flow rate ranged from between 0.80 mL/min and
1.00 mL/min for all AuNP experiments and 1.20 mL/min for the AgNP fractionations. The
individual cross flow profiles are displayed in Table S1.

A series of EAF4 fractionations with varying electrical field strengths (between 0 V/m
and + 10 V/m) were performed, while keeping all other separation parameters constant.
The electrophoretic mobility was determined from the retention time shift of the peak
maximum under different electrical field strengths. A detailed description of the procedure
is described elsewhere [74]. The conversion from electrophoretic mobility to the ζ-potential
was conducted using the Helmholtz–Smoluchowski equation and Smoluchowski approxi-
mation with the Henry’s function f(κa) = 1.5, where κ represents the inverse Debye length
and a the particle radius [75]. The data evaluation was performed with the NovaAnalysis
software (Version 2102, Postnova Analytics, Landsberg a. Lech, Germany).

2.5. Cell Lines and Cultivation

Caco-2, a human adenocarcinoma cell line with epithelial morphology, and THP-1,
a human monocytic cell line derived from an acute monocytic leukemia patient, were
obtained from DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH,
Braunschweig, Germany). HT29-MTX-E12, a mucus-secreting subclone from colon adeno-
carcinoma HT29 cells, differentiated into mature goblet cells by methotrexate, was obtained
from Sigma-Aldrich (product no. 12040401, Munich, Germany).

All cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) high glu-
cose (4.5 g/L) (Invitrogen, city, Germany) supplemented with 10% fetal calve serum (FCS)
(Invitrogen), 2 mM L-Glutamine (Invitrogen), 1% penicillin/streptomycin (Invitrogen) and
1% non-essential amino acids (Invitrogen). All cell lines were cultured in a humidified
incubator at 37 ◦C and 5% CO2 and passaged twice a week.

Then, 24 h prior to the seeding for the translocation studies, THP-1 cells were dif-
ferentiated to adherent macrophage-like cells at a cell density of 4.0 × 105 cells/mL in
CCM supplemented with 20 ng/mL PMA (Phorbol-12-myristat-13-acetat, Sigma Aldrich,
St. Louis, MO, USA).

2.6. Translocation Studies

For the in vitro GI translocation studies, 21-day differentiated triple co-cultures con-
sisting of Caco-2, HT29-MTX-E12 and THP-1 were used in Transwell® inserts with a pore
size of 3.0 µm and a growth area of 1.12 cm2 (Corning®, New York, NY, USA).

2.5 × 105 differentiated THP-1 cells were seeded basolaterally on flipped Transwell®

inserts and cultured for 1 h at 37 ◦C. Caco-2 and HT29-MTX were added at a density
of 1.0 × 105 per insert (ratio 9:1) apically (on the back flipped inserts) and cultured in
a humidified incubator at 37 ◦C and 5% CO2 for 21 days to allow the formation of a
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dense barrier and enable the differentiation of the involved cell types [76,77]. CCM was
exchanged every second day (apical volume 0.5 mL, basolateral volume 1.5 mL).

Before in vitro exposure the mNP test solutions (Section 2.1) were vortexed (30 s).
Afterwards the mNP were pipetted apically (750 µL) to the triple co-culture model. On
the basolateral side 1.5 mL NP-free CCM was added. The cells were exposed at 37 ◦C
for 10 min, 30 min, 1 h and 4 h, in the case of AuNRods, AuNP-30 and AuNP-200 and
for 1 h and 24 h in the case of AgNP. At these individual time points medium samples of
500 µL were collected on the apical and basolateral side in an Eppendorf tube (Eppendorf,
Hamburg, Germany) and analyzed by spICP-MS and EAF4-UV–VIS. Each individual time
point was operated with a separate cell culture insert. Empty cell culture inserts without
cells served as blank controls. Translocated fraction, defined as the fraction of AuNP and
AgNP that were measured in the basolateral medium and the amount of applied AuNP
and AgNP to the apical chamber, was calculated from the results obtained by spICP-MS.

After collecting the medium samples for mNP characterization and analysis regarding
translocation across the cell barrier, the in vitro model was used for cell viability and gene
expression studies. In parallel, the cell models were analyzed via electron microscopy
regarding NP uptake and accumulation.

2.7. Characterization of the In Vitro Model via Electron Microscopy

For light and electron microscopy investigation of the non-exposed and the exposed
in vitro model, the cells were chemically fixed, dehydrated, embedded in resin and sec-
tioned as described by Hesler et al. [76]. Staining of the sections was carried out with
Löfflers Methylen blue solution (Carl Roth, Karlsruhe, Germany) followed by the investi-
gation of the samples with a light microscope (Leica DM-LS, Leica, Wetzlar, Germany) [76].

For scanning electron microscopy (SEM), the fixed and dehydrated cells were dried
by critical point drying using a CPD 010 (Baltec, Liechtenstein). After drying, the samples
were mounted on aluminum stubs (Plano Wetzlar, Germany) and coated with gold using a
sputter coater SCU 030 (Baltec, Liechtenstein). The investigations with the SEM DSM 940
(Zeiss, Oberkochem, Germany) were performed with 10 kV and the images were captured
using the software DISS 5 (point electronic, Halle, Germany).

2.8. Cell Viability Assay

After 2 h and 24 h incubation with AuNRods, AuNP-30, AuNP-200 and AgNP, the
cell viability of the triple co-culture GI model was determined using the alamarBlue® assay,
according to the manufacturer’s instructions. The supernatant on the apical side of the
in vitro model was aspirated and replaced by 10% alamarBlue® cell viability reagent in
CCM (750 µL). 1% TritonX100 in CCM was applied as cell damaging positive control. The
cells were incubated for 1 h at 37 ◦C. Afterwards, 100 µL of the apical supernatant was
transferred from each cell culture insert into a minimum of three wells of a black 96well
plate (Greiner Bio-One, Frickenhausen, Germany) for fluorescence measurement using a
Tecan Infinite F200 plate reader (Tecan, Maennedorf, Switzerland) at an excitation/emission
wavelength of 560/610 nm. Data evaluation was performed on Tecan i-control software
(Version 1.9.17.0, Tecan, Maennedorf, Switzerland). The data calculation was performed in
Excel (Microsoft Office 2016).

2.9. Determination of the Generation of Reactive Oxygen Species (ROS) via Quantitative
Polymerase Chain Reaction (PCR)

For gene expression analysis of reactive oxygen species (ROS) associated genes, apical
cultured cells of the triple co-culture (Caco-2 and HT29-MTX-E12) were harvested after
2 h and 24 h exposure. The RNA was isolated using the RNeasy Micro Kit (product code
74004, Qiagen, Hilden, Germany) according to the manufacturer’s instructions. cDNA was
generated by reverse transcription of up to 500 ng RNA using the High-Capacity cDNA
Reverse Transcription Kit (product code 4368814, Applied Biosystems®, Foster City, CA,
USA) according to the manufacturer’s instructions. Gene expression was measured via the
5’-nuclease assay (TaqMan™) quantitative PCR (qPCR) of 2.5 ng DNA using a QuantStu-
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dio™ 7 Flex system with QuantStudio™ RealTime PCR-software (Version 1.3, Applied
Biosystems®, Foster City, CA, USA) and TaqMan™ assays CAT (Assay ID Hs00156308_m1)
and GPX1 (Assay ID Hs02516751_s1). Relative quantification was calculated with the
2−∆∆CT method using HPRT1 (Assay ID Hs99999909_m1) as endogenous reference for
normalization. The level of expression was evaluated in comparison with the chosen
housekeeping gene HPRT1. The data calculation was performed in Excel (Microsoft Office
2010, Excel 2016).

2.10. Mathematical Characterization of Particle Translocation

Disposition of AuNP were characterized with a three-compartment modeling ap-
proach. Here, the compartments represent the apical compartment, cellular compartment
and basolateral compartment, respectively. The cellular compartment not only represents
the intracellular space but also the intermediate filter membrane between apical and baso-
lateral cell arrangements. The following system of ordinary differential equation describes
the change in fraction of applied particles in the respective compartment:

dAa(t)
dt

= −k12 × Aa(t) + k21 × Ac(t) (1)

dAc(t)
dt

= k12 × Aa(t)− k21 × Ac(t)− k23 × Ac(t) + k32 × Ab(t) (2)

dAb(t)
dt

= k23 × Ac(t)− k32 × Ab(t) (3)

with Aa(t0) = ϕ + ηi (4)

where Aa, Ac and Ab represent the fraction of applied particles present at time t in
the apical, cellular and basolateral compartment, respectively, and k12, k21, k23, k32 are
transfer constants.

The fraction available for translocation through the cell layers (Aa(t0)) was estimated
during the model parameter estimation step. Here, ηi represents the normally distributed
between-particle-species variability around the population mean ϕ. Further between-
particle-species variability on all transfer constants was tested during model development
while parameters were assumed to be log-normally distributed. For non-linear mixed
effect modeling parameter estimation, a first-order conditional estimation method with
interaction (FOCE-I) was used. Residual variability was implemented with a combined
proportional and additive residual error model:

Yij = Aij ×
(
1 + ε1ij

)
+ ε2ij (5)

where Yij is the jth observed fraction for the ith nanoparticle species present in the apical
or basolateral compartment, Aij is the corresponding model estimated fraction of applied
particles, and ε1ij and ε2ij are the residual errors for the proportional and the additive
components of the model with means of zero and variances of σ2

1 and σ2
2 , respectively (i.e.,

ε ∼ N
[
0, σ2]).

For mathematical modeling and simulation, NONMEM® version 7.4 (Icon Develop-
ment Solutions, Ellicott City, MD, USA) and the R package mrgSolve [78] were used. Data
management, statistical analyses and generation of graphics were performed with the R
programming language version 4.0.2 (R Foundation for Statistical Computing, Vienna,
Austria). Stochastic model simulations to estimate 95% confidence (CI) and 68% prediction
intervals (PI) were performed with n = 2000 replicates. For each AuNP species, both simu-
lated mean, CIs and PIs of translocated and non-translocated fractions including observed
data were plotted against time. Upper and lower limits of PIs were post-processed by
applying a Savitzky–Golay filter (polynomial degree of two and α of 0.75).
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2.11. Statistical Analysis

Results of the physicochemical characterization and the toxicology studies are pre-
sented as mean with standard error of the mean of 3 independent experiments (n = 3),
unless otherwise mentioned. Effects were compared to non-treated cells, and statistical
analysis by Welch´s t-test was performed in Excel (Microsoft Office 2010, Excel 2016). The
p-values are marked by * as p < 0.05, ** as p < 0.01 and *** as p < 0.001.

In order to test for differences in fraction of applied particles present in the apical and
basolateral compartment, respectively, between AuNRods, AuNP-30 and AuNP-200, a
one-way analysis of variance (ANOVA) was performed for each investigated time point
(10, 30, 60 and 240 min) with a significance level α of 0.05.

3. Results and Discussion
3.1. Nanomaterial Characterization
3.1.1. Size and Shape Analysis of the Nanoparticles via Transmission Electron
Microscopy (TEM)

TEM images of the gold nanorods (AuNRods) verify the typical rod-shaped structure,
with a length of 120.8 nm ± 17.9 nm, a diameter of 36.0 nm ± 5.7 nm and an aspect ratio
of about 3.2 (Figure 1(a1,a2)). Via TEM analysis, the 30 nm gold nanoparticles (AuNP-30)
show a predominantly round shape with only a small amount of angular shaped particles
and a mean diameter of 24.0 nm ± 2.2 nm (Figure 1(b1,b2)). The 200 nm gold nanoparticles
(AuNP-200) present predominantly an angular shape with only a small amount of round
particles. They have a mean diameter of 214 nm ± 20.1 nm (Figure 1(c1,c2)). Analysis of
the Ag nanoparticles (AgNP) verifies the round-shaped form and a variety in diameter
from 9 nm to 31 nm, with a mean diameter of 15.2 nm ± 7.1 nm (Figure 1(d1,d2)). Most of
the particles are round shaped, and they have an extreme tendency to agglomerate.
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AgNP showed a broader size distribution with the lowest sizes overlapping with the 
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ionic background. As a consequence, smaller particles (<LODsize) were counted as ions and 
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Figure 1. Representative transmission electron microscopy (TEM) images of metallic nanoparticles (mNP) in pure water.
(a1,a2) gold rods (AuRods); (b1,b2) spherical 30 nm gold nanoparticles (AuNP-30); (c1,c2) spherical 200 nm gold nanoparti-
cles (AuNP-200); (d1,d2) spherical 20 nm silver nanoparticles (AgNP). Scale bar in upper row: 100 nm. Scale bar in lower
row: 50 nm.

3.1.2. Stability Analysis in Cell Culture Medium (CCM)

After physicochemical characterization of the mNP in the stock suspension, the stabil-
ity of AuNRods, AuNPs and AgNPs in CCM was determined by analyzing the samples
after incubation in CCM. Additionally, the mNP, as received from the manufacturer, were
characterized after dilution only with UPW (Figures S1–S8). Thereby, no significant de-
viations from the native size distributions and the size distributions after incubation in
CCM were obtained for AuNRods and AuNPs using spICP-MS and TEM analysis (Table 1).
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The AgNP showed a broader size distribution with the lowest sizes overlapping with the
LODsize of the spICP-MS, which made it difficult to clearly distinguish particles from the
ionic background. As a consequence, smaller particles (<LODsize) were counted as ions
and therefore contributed to the ionic concentration. All results revealed meaningful and
low deviations. A deviation of around 8% between incubated samples and the sample
suspended in UPW was observed for the AuNP-200 sample, which was still considered as
insignificant, whereas excellent comparability for the other mNP was obtained.

Table 1. Size distribution of metallic nanoparticles (mNP). The different nanoparticles (gold nanorods (AuNRods), gold
nanoparticles (AuNP) and silver nanoparticles (AgNP)) were analyzed regarding their size distribution in the stock solution
as well as in cell culture media. Two techniques, spICP-MS and TEM, were used. For AuNRods an equivalent spherical size
was calculated from the particle mass obtained by spICP-MS.

spICP-MS
Median Size (nm) TEM Diameter (nm) spICP-MS

Median Size (nm) TEM Diameter (nm)

Stock Suspension Cell Culture Medium

AuNRods 57.4 ± 0.5 36.0 ± 5.7 54.5 ± 0.9 31.2 ± 7.5
AuNP-30 28.0 ± 0.1 24.0 ± 2.2 26.0 ± 1.0 25 ± 5.5

AuNP-200 191.6 ± 1.4 214 ± 20.1 176.2 ± 1.2 222 ± 18.7
AgNP 20.8 ± 0.2 15.2 ± 7.1 21.3 ± 0.5 15.5 ± 7.4

3.1.3. Protein Corona Formation in Cell Culture Medium (CCM)

After incubation in FCS-supplemented CCM, all studied mNP formed a protein corona
(Figure 2). The corona is clearly visible via TEM, and its formation is independent of the
particle size and shape.
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3.1.4. Determination of the Surface Charge by EAF4-UV–VIS

EAF4 allows a size-resolved determination of the electrophoretic mobility, respectively
ζ-potential, by applying a cross flow field and a superimposed electrical field. The elec-
trophoretic mobility values and ζ-potential values were evaluated for the UV–VIS-peak
maximum of the fractionated mNP. The surface charge of the incubated samples was
directly compared with the calculated values obtained for mNP from the stock suspen-
sions that were diluted in UPW (Table 2, Figures S5–S8). In general, all results indicated
an increasing ζ-potential value after suspension in CCM with only the AgNP samples
revealing a significant drop in ζ-potential. The determined ζ-potential of AuNP-200 in-
creased by more than 20%, while concurrently, the variation for AuNP-30 and AuNRods
was insignificant and within the range of uncertainty with less than 10%. Especially for
AuNP-30 in CCM a meaningful retention time shift was observed, which may correlate
with an increased hydrodynamic size that may result from the formation of a protein
corona (Figure S5).
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Table 2. ζ-potential results obtained from EAF4-UV–VIS analysis for different metallic nanoparticles (mNP). The elec-
trophoretic mobility values for all investigated mNP and their respective ζ-potential values. The displayed uncertainties
were obtained from the linear least squares analyses. UPW = ultrapure water, CCM = cell culture medium.

mNP Solvent Electrophoretic Mobility (1 × 10−8 m2/(V s)) ζ-Potential (mV)

AuNRods

UPW

−2.74 ± 0.22 −35.0 ± 2.8
AuNP-30 −4.61 ± 0.39 −59.0 ± 5.0
AuNP-200 −2.36 ± 0.10 −30.2 ± 1.2

AgNP −2.99 ± 0.15 −38.2 ± 1.9

AuNRods

CCM

−2.68 ± 0.14 −34.2 ± 1.8
AuNP-30 −4.41 ± 0.32 −56.4 ± 4.1
AuNP-200 −1.81 ± 0.11 −23.1 ± 1.4

AgNP −5.35 ± 0.35 −68.5 ± 4.5

Furthermore, AgNP also yielded an increased retention time but a broadened UV–
VIS-peak by EAF4 fractionation, in contrast to the native AgNP was detected, which can
be explained by a certain degree of agglomeration by the presence of CCM components
(Figures S4 and S6). The distinct formation of a protein corona for AuNP-30 and AgNP
was described in the previous section and was supported by the TEM analysis (Figure 2).

The decreasing tendency of the ζ-potential for AgNP may result from different stabi-
lizers and stabilization mechanisms, respectively, compared to the AuNP samples. That
may cause differences in the formed protein corona or may be related to the adsorption
of different CCM components. The AgNP are stabilized both sterically and electrostati-
cally [79]. However, the shifted retention time maximum and especially the broadened size
distribution after incubation in CCM made it difficult to compare both ζ-potential values
as the fractograms are not fully comparable. In general, increased retention times in EAF4
(with no electrical field) correspond to an increased hydrodynamic size, but it should be
mentioned that changed surface properties (such as zeta potential) may cause a different
retention behavior in EAF4 due to particle-membrane interactions.

3.2. Characterization of the In Vitro Model by Light and Electron Microscopy

Before performing the translocation studies, the developed triple in vitro culture
was characterized by different microscopy techniques. Light microscopy provides an
overview of the structure and allocation of apical and basolateral cell layers as well as the
distribution of the different cell types. Subsequently, these are imaged in relation to the
surface structures in the SEM and analyzed in relation to the internal structures in the TEM.
The investigation of the semi-thin sections via light microscope, after hematoxylin and
eosin staining, shows layers of two different cell types at the apical side of the sample and
a mostly confluent cell monolayer at the basolateral side of the culture (Figure 3a). SEM
analysis of the triple in vitro model shows a multilayer of cells with different topographical
appearance on the apical side of the membrane (Figure 3b,c). Cells with a large number of
microvilli alternate with cells with few or no microvilli on their surface (Figure 3c). On the
surface of some cells, the microvilli are found in small clusters (Figure 3c). Via TEM, we
could differentiate between three various cell types. The typical form of the Caco-2 cells
(Figure 3d–e), consisting of a significant quantity of microvilli on the surface, was identified
as well as the mucus secreting HT29-MTX-E12 cells which show a less dense cytoplasm.
At higher magnification, the mucus vesicles at the cell surface are also visible in addition
to the microvilli at the cell surface (Figure 3f–g). The individual borders between the two
different cell types are also clearly visible in Figure 3g. Both cell types are separated by a
cell membrane border and some connecting desmosomes.
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Black arrows indicate the encapsulated mucus which is secreted by the HT29-MTX-E12 cells.

3.3. Gastrointestinal Translocation of mNPs

The triple co-culture model was exposed with the mNPs for different durations
(10 min, 30 min, 1 h and 4 h). After the individual time points, the medium samples
in the apical and basolateral compartment were analyzed via spICP-MS. An increase in
translocated particle concentration over time from around 0.4 ± 0.6% up to 9.8 ± 2.8%
was observed for the studied AuNMs (Figure 4a). Hereby, the determined basolateral
particulate concentrations were correlated to the apical inserted particle concentration and
displayed in percent as translocated fraction. Particle number concentrations of 9.22 × 109

particles/L (AuNP-200), 6.91 × 109 particles/L (AuNRods) and 3.80 × 1012 particles/L
(AuNP-30), respectively, were introduced on the apical side at the start time. Figure 4a
visualizes the time-dependent relationship of the basolateral particle concentration. No
significant size or shape dependence on the translocated concentration was determined,
when comparing AuNP-30 with 9.8 ± 2.8% to 8.2 ± 2.6% of AuNP-200 nm and 8.2 ± 6.6%
AuNRods, respectively.

In parallel, the ionic concentration increased with time, showing similar trends for all
particle sizes and shapes. The ionic concentration on the basolateral side by the application
of a cell barrier ranged between 0.00 µg/L and 28.5 µg/L ± 6.9 µg/L (Figure 4b). Through-
out all measurement series, the respective blank samples that only contained CCM showed
the absence of particles with particle number concentrations below the LODconc. The ne-
cessity of high dilutions to obtain low particle concentrations together with extremely low
particle mass concentration limits resulted in relatively high ionic concentration detection
limits due to the fact that the background gets diluted by the same factor [80]. However,
the results indicate low ionic concentrations with a small number of samples below the
ionic concentration detection limit.

All results of the AuNM experiments were transferable to the experiments with AgNPs.
For AgNP studies, the triple co-culture model was exposed for 2 h and 24 h. A particle
number concentration of 2.70 × 1014 particles/L was inserted. After 2 h in the basolateral
compartment, the translocated fraction of AgNPs was 3.0 ± 1.8%. After an incubation
time of 24 h, a translocated fraction of 14.0 ± 5.2% and an ionic basolateral concentration
of 2754 µg/L ± 4771 µg/L were detected in contrast to ionic concentrations below the
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limit of detection after 2 h. Dissolution and reactivity of AgNP in biological media have
been reported in literature [70,81]. Since AgNPs might dissolve in the medium, the ionic
concentration of silver was also determined in the apical samples. Over the investigated
time period no significant dissolution and increase in ionic concentration of AgNPs could
be determined by sp ICP-MS (data not shown). Components of the surrounding CCM may
stabilize the particles and prevent dissolution [82,83].
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As mentioned in the previous section, EAF4-UV–VIS indicated a shift towards larger
sizes for AgNP in CCM (Figure S6). Moreover, spICP-MS revealed an increased fraction
of larger particle sizes (Figure S4), which on the other hand had no significant influence
on the median size average. Some results came along with large standard deviations,
especially the experiments with AuNRods, which can be explained by variations in the
inserted particle number concentration. The concentration of the prepared mNP-CCM
that was inserted on the apical side was determined for each experiment and compared to
the concentration, which was obtained for the different durations on the basolateral side.
Therefore, the translocated fraction values take varying start concentrations throughout all
replications (n = 3) into consideration.

3.4. Mathematical Characterization of Particle Translocation

One-way ANOVA revealed no significant differences in observed fraction of applied
particles between different AuNP species, both for the apical and basolateral compartment
and for all investigated time points with adjusted p-values always greater than 0.1. Estima-
tion of transfer kinetics with the help of a compartmental translocation model showed no
differences between AuNP species with estimated between-particle-species variabilities
approaching zero and high levels of η-shrinkage. As a result, the final model did not
include between-particle-species variability on transfer parameters. Results of the model
simulations for each investigated AuNP species are depicted in Figure 5. While Figure 5a–c
show observed and simulated fractions for the different AuNP species present in the apical
chamber, Figure 5d–f depict the corresponding fractions in the basolateral chamber. Model
simulations are in good agreement with mean observed values with respective model
parameters presented in Table S2.
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The results are in agreement with studies of Bachler et al. where no significant
differences in translocated fraction could be observed for in vitro monolayer models with
alveolar type II epithelial cells between AuNPs of size 18 nm–80 nm for an investigated size
range of 2 nm–80 nm [64]. In contrast, other studies found differences in cellular uptake
for transferrin-coated AuNP with an optimal size of 50 nm [65] assuming a size preference
for receptor-mediated endocytosis—the suggested primary route of cell entry [66]. Due
to high variability in longitudinal data, combined with the complexity of the investigated
triple co-culture cell model, cell entry via membrane wrapping of nanoparticles [67] was
necessarily simplified to kinetics via transfer rate constants.

The mean fraction available for translocation (ϕ) of AuNP species was estimated
to be 69% (AuNRods: 74%, AuNP-30: 73%, AuNP-200: 59%). It should be noted that
the estimated fraction available for translocation comprises of different factors, such as
incomplete AuNP recovery in the apical compartment or adhesion of AuNPs to the cell
surface. In general, various influences such as cell line type used or applied AuNP dose
could have affected cellular uptake and translocation. Although modeling could not
identify differences in fractional cellular uptake and translocation kinetics for AuNPs, these
factors and the observed high intra-species-variability might mask existing differences in
translocation kinetics between AuNP species.

3.5. Cellular Uptake and Cell Viability

After completing the translocation studies, the exposed cells were analyzed by TEM
to study cellular uptake of the mNP. Using AuNRods as an example, cellular uptake
was observed (Figure 6). AuNRods were found in the cytoplasm of the cells (Figure 6a).
Detailed analysis showed that the AuNRods contain a second shell in addition to the
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protein corona (Figure 6b). This is most likely a vesicular membrane. This fact proves that
the AuNRods are internalized by the cells of the GI in vitro model via endocytosis.
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After the NP translocation experiments, the cell viability was determined after 2 h
and 24 h. The positive control (1% TritonX treated in vitro model) decreased in viability
to 2.22 ± 0.53% after 2 h and 0.99 ± 1.30% after 24 h, demonstrating the effectiveness of
the cell death inducing detergent, as well as the functionality of the test method (Figure 7).
Cells incubated with NP-free CCM were defined as negative control and set as 100%
viability. After 2 h, none of the applied mNPs induced cell death in comparison to the
negative control. After 24 h, AgNP decreased the cell viability significantly to 47.69 ± 1.11%
(Figure 7). This decrease in cell viability might have influenced translocation kinetics of
AgNP. After 24 h, an insignificant trend of an increased cell viability was observed in
case of AuNRods and AuNP-200, which could be explained by a higher cell metabolism
acting as a type of defense mechanism in response to the presence of foreign particles
inside the cells. A recent study described a low cytotoxicity induced by AuNP (60 nm)
in a Caco-2 monoculture after 24 h exposure. This monoculture was also differentiated
for 21 days on membrane inserts before NP exposure, as in our study. Unlike our study,
the AuNP were not able to cross the intestinal barrier [32]. In contrast to their findings,
another study described the time-dependent translocation of AuNP in the sizes 15, 50 and
100 nm across Caco-2 monolayers, evidenced by ICP-MS measurements, similarly to our
findings with the same sensitive method but in a triple co-culture model [55]. The cellular
uptake and cytotoxicity of AuNP in the sizes 5, 50 and 100 nm were determined by Jiang
et al., who did not observe any cytotoxic effects or disturbances of the epithelial barrier
permeability regardless of the particle size [34]. The induction of acute cytotoxicity via
an oxidative-stress-related pathway was observed for AgNP but not for AuNP in Caco-2
cells [84]. This corresponds to our finding that AgNP, but not AuNP or AuNRods, induces
cytotoxicity in a triple co-culture model after 24 h, but not after 2 h. In a comparable triple
co-culture model in the study of Susewind et al., Ag-NP also induced cytotoxicity after 24 h
but not AuNP (15 nm and 80 nm). Furthermore, it could be demonstrated that the Caco-2
monoculture alone was more sensitive to the mNP than the triple co-culture model [56].
Thus, for more physiological relevant screenings of mNP, triple co-culture-models of the
GI barrier should be applied, instead of Caco-2 monocultures.
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AgNP. Afterwards, the cell viability of the apical cell layer (Caco-2 and HT29-MTX) was analyzed via
alamarBlue® assay. n = 3, * p ≤ 0.5, *** p ≤ 0.001.

3.6. Expression of Oxidative Stress Genes after mNP Exposure

After the mNP translocation experiments, the cells were harvested, RNA was extracted,
and cDNA was produced to determine the gene expression of two ROS associated genes
(CAT and GPX1) by qPCR. Catalase (CAT) acts as an enzyme catalyzing the reaction from
hydrogen peroxide (H2O2) to water and oxygen, a defense mechanism against oxidative
stress, mitigating the toxic effects of H2O2. The glutathione peroxidase 1 (GPX1) is one of
the most important antioxidant enzymes in humans and functions in the detoxification of
H2O2, protecting cells against oxidative damage [85]. The possible ongoing production of
H2O2 upon incubation with the tested mNP would require a higher activity of CAT and
GPX1 in the cells; thus, the gene expression patterns would change in order to upregulate
the protein synthesis of the needed enzymes. The gene expression patterns were examined
after 2 h and 24 h mNP incubation (Figure 8). A double RQ-value (compared to the control)
has been defined as threshold. A gene upregulation over this threshold is identified as
effect in this study. None of the applied mNP induced a 2-times higher expression of the
genes of interest at the investigated time points (Figure 8), neither for CAT enzyme as
defense mechanism against oxidative stress (Figure 8a) nor for GPX1 antioxidant enzyme
(Figure 8b). Thus, it can be assumed that both investigated ROS-mediated mechanisms
were not active after 2 h and 24 h. One reason for that might be that the mechanisms
are activated at an earlier or later time point or do not occur at all after exposure with
the tested AuNRods, AuNP and AgNP in the GI triple co-culture-model. Moreover, the
aspect of tested dose or cellular composition of the in vitro model could be a reason for
the lack of gene upregulation. AgNP actually are known to induce cytotoxicity by ROS
and free-radical generation, which can be traced back to the fact that AgNP release ions
from their surface in aqueous solutions [47]. This effect can be reduced by different surface
coatings [86]. Furthermore, AgNP have been described to decrease antioxidant enzymes
and imbalance the oxidative status in the cells [86]. However, the two genes relevant
for the ROS metabolism stayed unchanged after the incubation with uncoated AgNP in
this study. AuNP with different sizes and coatings were also demonstrated in previous
studies to induce oxidative stress in several cell types, such as HeLa cells [87], kidney
cells [33], retinal cells [88] and MRC-5 fibroblasts [89]. In contrast to our study, Bajak
et al. reported that small AuNP (5 nm) increased the glutathione metabolism in Caco-2
cells [90]. Besides the size, additional differences regarding incubation time, concentration,
surface modification of the NPs, and investigating only one cell type in contrast to three
could explain the different outcomes regarding the glutathione metabolism and oxidative
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stress mechanisms. In another study, it was demonstrated that smaller AuNP showed
more adverse effects in vitro and in vivo [87,91]. The tested AuNP in this study were
relatively large in comparison to others examined elsewhere, and the applied concentration
of 1 µg/mL chosen was very low. In addition, the used model exhibits a mucous layer
which can serve as a protectant layer from NPs [77]. These aspects may be the reason for
non-toxic effects of the studied AuNP in different sizes.
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Figure 8. ROS generation in the gastrointestinal in vitro model after 2 h and 24 h incubation with mNPs. The in vitro model
was exposed to 1 µg/mL AuNRods, AuNP-30, AuNP-200 and 30 µg/mL AgNP. Afterwards, the expression of Catalase
(CAT) and Glutathioneperoxidase (GPX1) in the apical cells (Caco-2 and HT29-MTX) was determined via qPCR. (a) CAT
expression; (b) GPX1 expression. n = 3.

4. Conclusions

In the present study, a combined approach of detailed physicochemical analysis,
toxicological assays and in silico modeling was used to answer the question of the influence
of the physicochemical characteristics and stability of AuNP on their translocation across
the intestinal barrier and related biological effects. Using AuNP of different sizes and
shapes (spheres with a mean diameter of 30 nm and 200 nm, rods with a mean diameter
of 40 nm and a mean length of 112 nm) corona formation in cell culture medium, surface
chemistry and further physicochemical parameters were correlated with their translocation
properties and biological effects in an 3D in vitro GI barrier model, while AgNP were used
for comparative purposes.

Both the physicochemical and biological analyses as well as the mathematical model
did not detect any significant differences between the different particle species using the
chosen study conditions. The combined approach used in the presented study may serve
as an advanced testing strategy for an improved risk assessment of ENM in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11061358/s1. Table S1: EAF4 fractionation conditions for the different studied metallic
nanoparticles (mNP). Table S2: Parameter estimates of gold nanoparticle translocation non-linear
mixed effect modeling. Figure S1: Comparison of the native size distribution of AuNP-30 with the
size distribution in CCM obtained by spICP-MS. Figure S2: Comparison of the native size distribution
of AuNP-200 with the size distribution in CCM obtained by spICP-MS. Figure S3: Comparison of
the native size distribution of AuNRods with the size distribution in CCM obtained by spICP-MS.
Figure S4: Comparison of the native size distribution of AgNP with the size distribution in CCM
obtained by spICP-MS. Figure S5: Fractogram with the UV/Vis signals of AuNP-30 comparing the
sample in UPW and CCM. Figure S6: Fractogram with UV/Vis signals of AgNP comparing the
sample in UPW and CCM. Figure S7: Fractogram with the UV/Vis signals of AuNP-200 comparing
the sample in UPW and CCM. Figure S8: Fractogram with the UV/Vis signals of AuNRods comparing
the sample in UPW and CCM.
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