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Background. NGAL is involved in modulation of the inflammatory response and is found in the sera of uremic patients. We
investigated whether hemodiafiltration (HDF) could influence the ability of polymorphonuclear granulocytes (PMGs) to release
NGAL. The involvement of interleukin- (IL-)1f and tumor necrosis factor- (TNF-)a on NGAL release was evaluated. Methods.
We studied end-stage renal disease (ESRD) patients at the start of dialysis (Pre-HDF) and at the end of treatment (Post-HDF)
and 18 healthy subjects (HSs). Peripheral venous blood was taken from HDF patients at the start of dialysis and at the end of
treatment. Results. PMGs obtained from ESRD patients were hyporesponsive to LPS treatment, with respect to PMG from HS. IL-
18 and TNF-«a produced by PMG from post-HDF patients were higher than those obtained by PMG from pre-HDEF. Neutralization
of IL-1f3, but not of TNF-«, determined a clear-cut production of NGAL in PMG from healthy donors. On the contrary, specific
induction of NGAL in PMG from uremic patients was dependent on the presence in supernatants of IL-1f3 and TNF-a. Conclusion.
Our data demonstrate that in PMG from healthy subjects, NGAL production was supported solely by IL-1f3, whereas in PMG from
HDF patients, NGAL production was supported by IL-1f, TNF-a.

1. Introduction

Neutrophil gelatinase associated lipocalin (NGAL) is a 25-
kDa glycoprotein first found, as a matrix protein, in specific
granules of human neutrophils [1]. NGAL is involved
in a variety of cellular processes, including the innate
immune response, [2—4]. NGAL expression is also found
in epithelial cells, where it is strongly induced in the
presence of inflammation [5, 6]. Furthermore, the protein
has been associated with several tumor types, including
breast, ovarian, colorectal, and pancreatic cancer [7-10].
NGAL expression is rapidly induced in the nephron in
response to renal epithelial injury [11, 12], it was recently
reported that NGAL levels are predictive of [13, 14] the onset
of acute renal injury following treatments that are potentially
harmful to the kidney and also the serious exacerbation

of unstable nephropathy. Furthermore, recently reported
findings also suggest that NGAL may be involved in the
pathophysiological process underpinning chronic renal con-
ditions such as polycystic kidney disease [15] and glomeru-
lonephritis [16]. NGAL levels, clearly correlated with the
severity of renal impairment, probably express the degree
of active damage underlying the chronic condition. Among
the several concepts concerning the role of inflammation in
acute kidney injury that have recently emerged are alterations
in the endothelial and epithelial renal cells of the kidney as
consequence of proinflammatory mediators. The interaction
between innate and adaptive immunity contributes to the
inflammation, thus leading to renal parenchymal cell death
and acute renal injury. In the early steps of this process, a key
role is played by neutrophils, which are important mediators
of innate immunity. Since polymorphonuclear granulocytes
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(PMGs) are the predominant infiltrating cell type present
in the acute inflammatory response, they act as a first line
of defence against invading microorganisms, as well as in
the inflammation status, associated with the renal endothe-
lial damage occurring in patients chronic kidney disease.
Moreover, it has been demonstrated that NGAL exerts its
antimicrobial effect by binding iron-transporting molecules,
thus it could play an important role in antimicrobial defence
in uremic patients [17]. The mediators orchestrating the
inflammatory response are cytokine networks, the main
controlling elements in the immune reactions. Among these
cytokines, interleukin (IL-)1f and tumor necrosis factor-
(TNF-)a have profound effects on the proinflammatory
process peculiar to acute kidney injury.

Previous reports also suggested that NGAL is upregulated
in response to inflammation. In particular, Cowland et al.
have demonstrated that NGAL is selectively upregulated in
human epithelial cells by the IL-1 but not by TNF-« in an
NF-xB-dependent manner [18].

Furthermore, other Authors have demonstrated that IL-
13 plasma levels are increased in long-term hemodiafiltration
patients [19], and several groups have also found increased
circulating TNF-« levels in patients undergoing hemodiafil-
tration [20], although others have not made this finding [21].

The main aim of the present study was therefore to
investigate whether intermittent HDF in end-stage renal
disease patients (ERDS) can influence the release of NGAL by
polymorphonuclear granulocytes (PMGs) obtained from pre
and postHDF patients. A further end-point was to evaluate
IL-18 and TNF-a production, and evaluate any role they
might play in NGAL modulation.

In this in vitro study we present, for the first time,
evidence that the specific induction of this innate immune
defence protein, in HDF patients, depends mainly on the
presence of [1-1 and TNF-« in PMG supernatants .

2. Materials and Methods

Thirty chronic HDF patients were enrolled in the study; all
had been dry-weight stable for at least 2 months before the
study was started and had achieved a normotensive edema-
free state. Exclusion criteria were: presence, or a recent
history, of bleeding, malignancy, liver, thyroid or infectious
diseases, alterations in the leukocyte count or formula and/or
recent treatment with steroids or immunosuppressors.

Patients had been treated with hemodiafiltration (HDF)
with the same prescription for 6 months: three times a
week for 3.5—4 hours, blood flow 300 mL/min; bicarbonate
infusion 2000 mL/h; mean weight loss set at 2.5kg. HDF
was conducted using the Integra Machine (Hospal, Bologna,
Italy).

Peripheral venous blood was taken from HDF patients at
the start of dialysis (PreHDF) and at the end of treatment
(Post-HDF) and from a small group of 18 healthy subjects
(HSs) matched with HDF patients for age and gender.
The study was approved by the local Ethics Committee,
and fully informed consent was obtained from all partici-
pants.
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2.1. Isolation of Human Polymorphonuclear Granulocytes
(PMGs). PMG were isolated from freshly collected venous
blood. PMGss were isolated from peripheral blood antico-
agulated in Heparin, using Mono-Poly Resolving Medium
(M-PRM) following the manufacturer’s instructions (MP
Biomedical, Illkirch, France). Briefly, M-PRM is a solution
composed of a polysaccharide (Ficoll 400) and a radiopaque
contrast medium (Hypaque) in a specific ratio to yield a
density of 1.114 + 0.002. Blood was centrifuged at 300x g
for 30 minutes. After centrifugation, the following fractions
were obtained: mononuclear leucocyte band, PMG band and
the the red blood cell pellet. The PMG band was harvested
and washed three times in RPMI 1640 medium, was cultured
in 24-well plates at a concentration of 2 X 10° cells/mL per
well in RPMI 1640 medium supplemented with 50 yg/mL
gentamicin and 5% fetal calf serum (FCS), at 37°C in a
5% CO, atmosphere. All reagents were supplied by Sigma
Aldrich (Milan, Italy).

2.2. Treatments. Lipopolysaccharide (LPS) from the E.coli
strain 055:B5 was used as the positive control. LPS was used
at a concentration of 1 g/mL in or not in the presence of
recombinant proteins or monoclonal antibodies.

18, 24, and 48 hours post treatment, the supernatants
were harvested, and suitable aliquots were stored at —80°C
until cytokine analysis.

2.3. Cytotoxicity Test. To determine cells viability 18 h, 24 h,
and 48h after culture a colorimetric assay was used as
described by Mosmann [22]. The assay is based on the
tetrazolium salt 3-(4,5 dimethylthiazol-2-yl) 2,5diphenylte-
trazoliumbromide (MTT), a pale yellow substrate that is
cleaved by active mitochondria to produce a dark blue
formazan product. Briefly, cells were seeded onto 96-well
culture plates at a number of 10* per well. The plate was
then incubated at 37°C in an atmosphere of 5% CO, for
18 h, 24h, and 48 h. The medium was then discarded and
the MTT reagent added. The plate was reincubated at 37°C
for an additional 3 h to allow formazan development. The
plates were read with a microelisa reader using a wavelength
of 570 nm. The percentage of cytotoxicity was calculated as
follows:

| (experiment OD — lysis control OD) 100
(cell control OD — lysis control OD)
(1)

2.4. Limulus Test. Culture media and reagents tested for the
presence of endotoxin using the E-Toxate kit (Sigma, Milan)
were found to contain <10 pg of endotoxin per mL.

2.5. Cytokine Evaluations. Supernatants from PMG in dif-
ferent experimental conditions, were harvested, centrifuged
and kept at —80°C until titration for the presence of TNF-
a and IL-1f by an immunoenzymatic method (ELISA); the
kits used were supplied by R&D System (Milan, Italy) and
NGAL (BioPorto Diagnostics, Verona, Italy), respectively.
The minimum detectable dose of TNF-a was less than
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1.6 pg/mL, of IL-1f3 less than 1 pg/mL, and NGAL, less than
1 pg/mL.

2.6. Cytokines and Monoclonal Antibodies. The concentra-
tions used were 1 ng/mL for recombinant human (rh)IL-18
and 10 ng/mL for recombinant human (rh) TNF-a.

Monoclonal antihuman TNF-a(mAbvsTNF-«) (ND50
was 0.015-0.06 yg/mL in the presence of 0.25ng/mL of
recombinant human TNF-«) and monoclonal antihuman
IL-18 (mAbvsIL-1f3) (the ND50 for this antihuman IL-1
antibody was determined to be approximately 0.05—
0.1 ug/mL in the presence of 50 pg/mL of rhIL-18 on using
the D10.G4.1 cell proliferation assay) were added to human
PMG at the time of LPS treatment. All reagents were supplied
by R&D System (Milan, Italy).

The concentration of antibody required to neutralize IL-
15 and TNF-« activity depended on the cytokine concentra-
tion obtained.

2.7. Statistical Evaluation. Results are expressed as the means
of three experiments + standard deviation (S.D.). Data were
analysed using one-way analysis of variance (ANOVA) and
the Student-Newman-Keuls test. Differences were considered
statistically significant at a P value of <.05.

3. Results

The main characteristics of the study cohort patients are
summarized in Table 1.

Table 2 shows the kinetics (18, 24, and 48 hours) of IL-
15 and TNF-a release by PMG from different donors. No
basal production of IL-1f3 and TNF-« was found in any of the
groups examined. LPS triggered PMG from different donor
groups to release markedly high levels of IL-13 and TNF-a.
In particular, the levels of both cytokines in supernatants of
PMG from HS were significantly higher than those from pre
and postHDF (P < .05). Furthermore, the levels of IL-1/3 and
TNF-a from postHDF PMG were higher than those obtained
by PMG from preHD (P < .05). The kinetics of IL-1j
and TNF-ashowed a production peak at 24 hours post LPS-
stimulation in all the experimental conditions. Incubation
times (18, 24, and 48 hours) did not significantly influence
cell viability (data not shown).

Figure 1 reports the results concerning the role of IL-1/3
on NGAL production. No basal production of NGAL was
found in PMG from preHDF and postHDF patients or HS.

LPS-stimulation of PMG induced a significant upregu-
lation in NGAL, both in uremic patients and in HS with
respect to unstimulated PMG (P < .05). When recombinant
IL1j3 were added to unstimulated PMG, an upregulation of
NGAL production was obtained in all groups with respect
to that obtained with LPS treatment (P < .05). Moreover, the
addition of rhIL-1/ to PMG LPS-stimulated induced levels of
NGAL similar to those obtained in PMG treated with rhIL-
1 in pre and postdialysis patients, whereas in PMG from
HS combined treatment with LPS and rhIL-15 determined
a greater production of NGAL than that in patients treated
solely with rhIL-18 (P < .05).
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FiGURrE 1: Role of IL-1f on the kinetics of NGAL production by
PMG from preHDF and postHDF patients and HS. *Significantly
different (P < .05) from that of unstimulated PMG. °Significantly
different (P < .05) from that of LPS-stimulated PMG. *Significantly
different (P < .05) from that of LPS-stimulated PMG.

In the attempt, prompted by the above findings, to gain
further insight into the role of IL-15 on NGAL modulation
it was found that the neutralization of IL-1f by monoclonal
antibodies in LPS-stimulated PMG determining a 50%
decrease of NGAL production in predialysis patients (P <
.05), and a 60% decrease in postdialysis patients (P < .05).
Whereas, the neutralization of IL-1f determined a clearcut
production in PMG from healthy subjects with respect to
LPS treated PMG (P < .05). Is interesting to address that in
all the experimental conditions, PMG from preHDF patients
produced lower amounts of NGAL compared with those
from postHDF patients; levels were even lower with respect
to PMG from HS. The NGAL kinetics showed a peak in
production at 24 hours in all the experimental conditions.

In the light of the above data, we investigated whether
the amounts of TNF-a found in supernatants of PMG
from all the groups studied (Table 1) might be involved in
modulating NGAL production.

The data reported in Figure 2 show the TNF-« effect on
NGAL release by PMG from different donor groups.

The addition of rhTNF-« to unstimulated PMG deter-
mined an upregulation of NGAL production only in PMG
from pre and postHDF (P < .05). On the contrary, in
cells from HS the addition of rhTNF-« failed to trigger the
production of NGAL.

Moreover, the addition of rhTNF-a to LPS-stimulated
PMG induced higher levels of NGAL in pre and postHDF
compared to that observed in PMG treated with thTNFw«
alone (P < .05). In PMG from healthy donors, combined
treatment (LPS/rhTNF-a) determined the appearance of a
marked amount of NGAL with respect to amounts observed
after hTNF-« treatment (P < .05).

Furthermore, the neutralization of TNF-a« by mon-
oclonal antibodies in LPSstimulated PMG determined a
down-regulation of NGAL production in cells from pre and
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TaBLE 1: Main characteristics of the study cohort.
Parameter HDF patients (n : 30) HSS (n:18)
Gender (M/F) 16/14 10/8
Age (yrs) 55+ 12 56+9
Dialysis vintage (mos) 38 [8-299] —
spKt/V (weekly mean) 1.21£0.19 —
PCR (g/Kg/day) 1.18 + 0.23 —
PTH (pg/mL) 188 [42-348] —
Creatinine (mg/dL) 9.9 +2.1 0.9+0.2
Urea (mg/dL) 177.4 + 39.6 18.5+3.3
Ca X P product (mg2/dL2) 46.6 +13.3 30.1 1.9
Hemoglobin (g/dL) 11.6 = 1.8 15.0 £ 2.0
Hematocrit (%) 31.9+3.0 44,3 + 3.7
Erythrocytes (n X 10°) 3.59 =0.98 4.93 +0.81
White Cells (1 x 10°) 6.5+1.6 7.8+ 1.1
Albumin (g/dL) 4.22 + 0.65 4.06 = 0.43
hsCRP (mg/L) 6 [1-42] 0.15 [0.07-0.44]
f2-microglobulin (mg/dL) 29 [7-53] 0.12 + 0.4
Uric acid (mg/dL) 6.02 = 1.08 5.03 +0.77
Serum iron (mcg/mL) 59.9 +19.8 88.5+18.1
Serum transferrin (mg/dL) 187.1 £ 45.0 300.9 + 37.1
Serum ferritin (ng/mL) 155 [9-789] 151 + 33

TasLE 2: Kinetics of IL-1f (pg/mL) and TNF-a (pg/mL) release by PMG from preHDF and postHDF patients and HS.

IL-13 (pg/ml)

TNF-a (pg/ml)

18h 24h 48h 18h 24h 48h

preHDF

none <1 <1 <1 <1.6 <1.6 <1.6

LPS 70.1 + 8.3 120.2 + 15.4 327+ 7.9 85.4+15.3 123.7 £ 21.9 51.6 +20.9
postHDF

none <1 <1 <1 <1.6 <1.6 <1.6

LPS 407.5 = 37.4*%* 511.8 + 68.6** 331.3 £ 21.7%* 286.2 = 87.1%* 481.4 = 98.3** 192.5 + 61.8**
HS

none <1 <1 <1 <1l.6 <1l.6 <1l.6

LPS 797.5 £ 65.8* 810.7 + 58.5* 550.3 = 39.8* 1409.3 = 99.1* 1847.3 + 121.7* 1055.4 + 111.6*

*Significantly different (P < .05) compared with those obtained from pre and postHD.
**Significantly different (P < .05) compared with those obtained from preHD.

post dialysis patients (P < .05). On the contrary, in PMG
from HS the neutralization of TNF-a did not have any
effect on NGAL production. The kinetics of NGAL showed
a peak in production at 24 hours in all the experimental
conditions.

In order to confirm the hypothesis that NGAL release
in PMG from HDF patients was supported by IL-15 and
TNF-«, in another series of experiments, we neutralized
both cytokines. The results obtained are shown in Figure 3.
Unexpectedly, after the neutralization of IL-15 and TNF-a,
the PMG from uremic patients still produced appreciable
amounts of NGAL, albeit smaller than the amounts induced
by LPS (P < .05). On the contrary, the neutralization of IL-
15 and TNF-ain PMG from healthy donors determined a
clearcut production of NGAL (P < .05).

4. Discussion

In addition to having metabolic and endocrinal functions,
renal tubule cells appear to probably play an important
role in the systemic inflammatory balance, participating in
the complex and dynamic network of leukocyte action and
pro and antiinflammatory cytokines. Loss of this function
may result in a propensity to develop systemic inflammatory
response syndrome, and may relate to chronic inflammatory
state in end-stage renal disease [23, 24].

It is well known that complement, TLRs, numerous
cytokines and chemokines are clearly involved in amplifying
the immune response to kidney injury [25, 26]. A body of
evidence in literature indicates that both innate and adapt-
ive immunity are involved in uremic patients. The innate
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FIGURE 2: Role of TNF-a on the kinetics of NGAL production by
PMG from preHDF and postHDF patients and HS. *Significantly
different (P < .05) from that of LPS-stimulated PMG. *Significantly
different (P < .05) from that of rhTNF-alpha-treated PMG.
°Significantly different (P < .05) from that of unstimulated PMG.
*Significantly different (P < .05) from that of rhTNF-alpha-treated
PMG.
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Fiurg 3: Effects of neutralization of IL-18 and TNF-«a on the
kinetics of NGAL production by PMG from preHDF and postHDF
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stimulated PMG. **Significantly different (P < .05) from that of
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immune system, is activated very early in infectious or
inflammatory states in a non-antigen-specific fashion, and
is comprised of neutrophils, monocytes/macrophages, den-
dritic cells (DC) and natural killer (NK) cells. In contrast,
the adaptive immune system, which becomes responsive
to specific antigens over the course of several days, and
includes DC, T and B lymphocytes. It is well known that the
interaction between the different immune cells is mediated
by a complex network of cytokines and chemokines with
pleiotropic effects that orchestrate the immune response
[27]. Thus, the induction, perpetuation, and collapse of

a particular cytokine network and of the cellular events that it
controls are strongly influenced by the dynamic relationships
between pro and antiinflammatory cytokines, as well as their
rates of production [28].

Neutrophils may play an early and critical role in patients
with uremia. In fact, numerous cytokines may induce the
synthesis of a variety of other inflammatory mediators,
most of which are chemotactic for neutrophils,, which are
then recruited to and activated in the inflammatory focus,
this may contribute in inducing tissue damage. Among the
factors, involved in this process, a key role appears to be
played by an innate immune defence protein, NGAL.

In the present paper, we evaluated whether HDF in end-
stage renal disease patients can influence in vitro cultured
PMG in producing NGAL. In addition, we analyzed the
role of IL-18 and TNF-« in order to ascertain whether
they are involved in NGAL production. The data reported
demonstrate that PMG obtained from ESRD patients on
hemodialysis are hyporesponsive to LPS treatment; their
impaired immune response is characterized by the lower IL-
18 and TNF-a with respect to PMG production in healthy
subject. These findings seem to be in disagreement with
data reported by Cowland et al. [18]. that demonstrate that
LPS was not able to induce NGAL expression. However,
this different behaviour could be ascribed to the different
cellular system used. In fact, those experiments were carried
out on epithelial cell lines and ours on PMG obtained from
peripheral blood. Furthermore, our results demonstrate that
the levels of IL-18 and TNF-a produced by PMG from
postHDF patients were higher than those obtained by PMG
from preHDEF. We believe that this depends on hemodialysis
restoring the impaired immune PMG status. In fact, PMG
collected from patients at the end of the dialysis session
displayed a markedly greater capacity to respond in vitro
to LPS-stimulation than PMG collected during the preHDF
session.

Interestingly, in all the experimental conditions, the
amounts of NGAL produced by LPS-stimulated PMG from
preHDF patients were lower than those produced by PMG
from postHDF patients and much smaller than those
produced by PMG from HS. Furthermore, no significant
differences were found between the kinetics of NGAL
production in LPS-stimulated PMG obtained from preHDF
patients at the different assay times. On the contrary, in LPS-
stimulated PMG obtained from postHDF patients and HS,
peak in the kinetics of NGAL production occurred at 24
hours following the trend of IL-15 and TNF-« production.
These findings prompted us to further investigate the role of
IL-1 and TNF-a in NGAL modulation.

Our findings demonstrate that the addition of rhIL-
18 to PMG upregulates NGAL production in both uremic
patients and HS whereas, the addition of rhTNF-a to PMG
can increase NGAL production only in uremic patients.
These data demonstrate that NGAL production by PMG
from HS is supported solely by the presence of IL-1f in
cell supernatants. On the other hand, in PMG from uremic
patients, NGAL production appeared to be supported mainly
by IL-1f and TNF-a too. To verify this, we conducted another
series of experiments, neutralizing both IL-15 and TNF-«



with monoclonal antibodies. The neutralization of IL-1/ and
TNF-« in PMG from HS determined a clearcut production
of NGAL. Unexpectedly, however, the neutralization of IL-1
and TNF-« did not completely eliminate NGAL production
in PMG from HDF-patients; in fact, appreciable amounts of
NGAL were still produced.

Opverall, our findings demonstrate that in PMG from HS,
NGAL production is supported solely by IL-1f3, whereas in
PMG from HDF patients, NGAL production is supported by
IL-1B3, TNF-a and also by other biological mediator(s).

Recently, Karlsen et al. [29] demonstrated that NGAL
was strongly induced by stimulation with TNF-« in the
presence of IL-17, a proinflammatory cytokine. We can
hypothesize that results concerning the effect of TNF-« on
NGAL production by PMG from uremic patients could be
related to a dynamic relationship between Th-1 and Th-17
response. Further studies are needed in order to understand
this intriguing network of biological mediators and the
consequent cellular events that they control.

The open question is the role that other biological
mediators may play in PMG from uremic patients in
determining the nature of cytokine networks and thus in
determining the quality and quantity of microenvironmental
signals involved in NGAL release.
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