
Frontiers in Oncology | www.frontiersin.org

Edited by:
Erxi Wu,

Baylor Scott and White Health,
United States

Reviewed by:
Andrew Liss,

Massachusetts General Hospital
and Harvard Medical School,

United States
Jose Soto,

Baylor Scott and White Health,
United States

Ajay Dixit,
University of Minnesota Twin Cities,

United States

*Correspondence:
Jen Jen Yeh

jjyeh@med.unc.edu

Specialty section:
This article was submitted to

Gastrointestinal Cancers: Hepato
Pancreatic Biliary Cancers,

a section of the journal
Frontiers in Oncology

Received: 31 July 2021
Accepted: 21 September 2021

Published: 06 October 2021

Citation:
Perez VM, Kearney JF and Yeh JJ

(2021) The PDAC Extracellular Matrix:
A Review of the ECM Protein

Composition, Tumor Cell Interaction,
and Therapeutic Strategies.
Front. Oncol. 11:751311.

doi: 10.3389/fonc.2021.751311

REVIEW
published: 06 October 2021

doi: 10.3389/fonc.2021.751311
The PDAC Extracellular Matrix:
A Review of the ECM Protein
Composition, Tumor Cell Interaction,
and Therapeutic Strategies
Vincent M. Perez1, Joseph F. Kearney1,2 and Jen Jen Yeh1,2,3*

1 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,
2 Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, 3 Department of
Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Pancreatic ductal adenocarcinoma (PDAC) is notorious for a dense fibrotic stroma that is
interlaced with a collagen-based extracellular matrix (ECM) that plays an important role in
tumor biology. Traditionally thought to only provide a physical barrier from host responses
and systemic chemotherapy, new studies have demonstrated that the ECM maintains
biomechanical and biochemical properties of the tumor microenvironment (TME) and
restrains tumor growth. Recent studies have shown that the ECM augments tumor
stiffness, interstitial fluid pressure, cell-to-cell junctions, and microvascularity using a mix of
biomechanical and biochemical signals to influence tumor fate for better or worse. In
addition, PDAC tumors have been shown to use ECM-derived peptide fragments as a
nutrient source in nutrient-poor conditions. While collagens are the most abundant
proteins found in the ECM, several studies have identified growth factors, integrins,
glycoproteins, and proteoglycans in the ECM. This review focuses on the dichotomous
nature of the PDAC ECM, the types of collagens and other proteins found in the ECM, and
therapeutic strategies targeting the PDAC ECM.

Keywords: pancreatic ductal adenocarcinoma, extracellular matrix, tumor microenvironment, proteome, cancer
INTRODUCTION

With a 5-year survival of 10%, pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause
of cancer deaths in the United States and is projected to become the second leading cause of cancer
deaths in the United States by 2030 (1, 2). Most patients have regional or distant spread at the time
of diagnosis and are not eligible for a potentially curative operation (3). While advances have been
made in the treatment of metastatic PDAC (4–6), most patients remain refractory to current
regimens. Metastatic PDAC exhibits resistance to therapies like cytotoxic, radiation, and
molecularly targeted therapies. A major factor thought to contribute to the treatment resistance
of PDAC is its dense fibrotic stroma intertwined with the extracellular matrix (ECM), which
together, provide a physical barrier of protection to the tumor cells and may also restrain
tumor growth.
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Research has shown that the ECM plays several roles beyond
acting as a barrier for tumor cells. The deposition of abundant
ECM proteins is common among solid tumors like PDAC and is
known as a desmoplastic reaction (7). This tumor
microenvironment (TME) exerts mechanical and biochemical
properties on tumor cells, modulates interstitial fluid pressure (8,
9), and reduces blood vessel density within tumors (8). Although
evidence has shown that the ECMmay be tumor promoting (10),
recent research has demonstrated that the stroma and ECM may
restrain tumor growth (11, 12). In addition, tumor metastases,
the primary cause of patient mortality, have less stroma than
primary tumors (13, 14). A major regulator of the ECM are
cancer-associated fibroblasts (CAFs), which dominate the TME
in abundance (15).

CAFs are thought to arise predominantly from pancreatic
stellate cells (PSCs) and bone-marrow derived mesenchymal
stem cells. Their formation has been shown to be secondary to
tumor signals (16). Several attempts have been made to target
CAFs and the stroma; however, they have not been successful
despite promising preclinical studies (9, 17). For example,
genetic depletion of alpha-smooth muscle actin (aSMA)
myofibroblasts in the stroma resulted in undifferentiated and
invasive tumors with diminished survival (18). In metastatic
PDAC patients, treatment with a pegylated recombinant human
hyaluronidase (PEGPH20) combined with modified fluorouracil,
leucovorin, irinotecan, and oxaliplatin (mFOLFIRINOX) did not
improve progression-free or overall survival (19). Trials using
hedgehog (Hh) pathway inhibitors in combination with
gemcitabine showed that the addition of Hh inhibitors was not
superior to gemcitabine alone, and one study was prematurely
terminated as patients treated with the Hh inhibitor did worse
than the control arm (20–22). Despite these failures, targeting
and modifying CAFs and the ECM continues to remain a topic of
interest due to the substantial roles they play in tumor
development, growth, and metastasis (23).

The cross-regulated and interacting networks of ECM
proteins are fundamental to tumor homeostasis and
tumorigenic activity like growth and metastasis (24–27) and
must be further understood. This dynamic environment provides
a reservoir for signaling molecules and prompts tumor cell
activity via mechanical forces and biochemical signaling. This
review covers the composition and general roles and regulation
of the ECM in PDAC, key proteins in the ECM, and potential
and ongoing targeting strategies.
ECM OVERVIEW

The ECM is a non-cellular component present in all tissue and
provides the essential physical scaffolding, as well as biochemical
and biomechanical cues to the surrounding cellular components.
Consisting of water, proteins, and polysaccharides, the ECM
composition adjusts based on the needs of the surrounding
microenvironment. Most tissue require an ECM as an
interstitial matrix in which the ECM is a 3-dimensional lattice
supporting the surrounding cells of the stroma or a basement
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membrane in which the ECM is a matrix between epithelial and
stromal layers of cells. Change in ECM architecture is a result of
malignant cell transformation in many cancers, thus
demonstrating the influence of biomechanical cues from the
ECM (28, 29).

Tumor stroma has often been portrayed as a contributor to
the development of the disease and tumor progression. However,
several recent preclinical and clinical studies have shown that
stroma-depletion can lead to a more aggressive disease (11, 18,
20, 30, 31). In patients, we and others have found that increased
stroma correlates with improved survival and that stroma
content at solid organ metastases is decreased (13, 14).
Reduction of ECM through lysyl oxidase (LOX) inhibition in
mouse models led to accelerated tumor growth (13).

Thus, the stroma and ECM play a dichotomous role in the
TME as a tumor-promoting and tumor-inhibiting component,
and selectively targeting the stroma and ECM may be the key.
However, a more complete understanding of the stroma and the
TME is necessary for this to succeed. The PDAC ECM is
primarily composed of collagens, integrins, proteoglycans,
glycoproteins, and proteases which all interact with tumor cells
through a variety of mechanisms (32, 33) (Figure 1). Among
these, collagens are the most abundant component.
COLLAGENS

The PDAC ECM contains combinations of type I, III, IV, V, and
XV collagens (32, 34, 35). The interaction between collagen and
the basement membrane proteins within the ECM plays an
important role during malignant transformation (36, 37).
Increased desmoplasia is thought to contribute to disruption of
the basement membrane leading to increased exposure of PDAC
cells to interstitial collagens and reduction of basement
membrane collagens (33). In PDAC, lower collagen I and IV is
associated with undifferentiated PDAC tumors (38). Basement
membrane proteins are suggested to be tumor-inhibiting by
restricting the epithelial-to-mesenchymal transition (EMT),
whereas interstitial collagens may promote tumor growth
through other mechanisms. Preclinical studies have shown that
collagen may contribute to therapy resistance by modulating
signaling pathways (39–41). In patients, studies have found that
imaging characteristics may be reflective of stroma content and
patient outcome (14, 42).

Collagens I, III, IV, and V
Collagen I is among the most abundant collagen in PDAC
stroma and is generally suggested to be responsible for most of
the desmoplastic reaction and has been associated with reduced
survival in PDAC patients (43–45). However, when C-terminal
prodomains of collagen I are cleaved by procollagen C-
proteinase activity, collagen I may restrain tumor growth (46,
47). In addition, the presence of collagen I in the TME does not
appear to inhibit T-cell infiltration (48), further suggesting the
stroma has roles beyond a physical barrier. Collagen III is the
second most abundant collagen present in the PDAC ECM (32).
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Like collagen I, collagen III may suppress tumor growth when
cleaved (32). In addition, the ratio of collagen III to collagen III
peptide fragments may be predictive of improved patient survival
(49). Collagen IV, a collagen commonly found in the interstitial
space, is overexpressed and deposited in the stroma by PDAC
cells (50). In vitro assays using a1(IV)-siRNA demonstrated that
collagen IV silencing reduces tumor cell proliferation and
migration and increases apoptosis (51). Lastly, the fibrillar
collagen, collagen V, is often identified as PSC-derived in
PDAC and can be blocked by inhibiting b1-integrin signaling.
Genetic knock-down of collagen V in orthotopic mouse models
demonstrated reduced tumor metastasis and angiogenesis (52).

Collagen Signaling
ECM collagens interact with signaling integrins expressed on the
surface of PDAC cells. Collagens bind with the a- and b-subunits
of integrins depending on the integrin specificity of the collagen
subtype (53). Interstitial collagens I, IV, and V have a high
affinity for integrin a2b1, and the interaction between collagen I
or V with a2b1 promotes proliferation and migration of PDAC
cells (51, 52, 54–56). Like integrin-mediated signaling, collagens
also interact with the cell surface receptor discoidin receptor 1
(DDR-1), a tyrosine kinase overexpressed by PDAC cells. Active
DDR-1 activates FAK-related protein tyrosine kinase
(PYK2) (57).

Collagen as Nutrients
Proliferating tumor cells require a constant supply of nutrients
which are scarcely present in the dense desmoplastic tissue.
Furthermore, the TME is generally hypoxic due to increased
Frontiers in Oncology | www.frontiersin.org 3
intra-tumoral oncotic pressure that decreases tissue perfusion.
To adapt, PDAC cells may use large macropinosomes to non-
specifically take up nutrients from the surrounding TME in bulk
(58–60). In this way, PDAC cells are thought to actively scavenge
the TME’s breakdown products and use collagen-derived proline
as a primary source of energy in the absence of glucose (61, 62)
(Figure 1). Likewise, proline oxidase (PRODH1) is
overexpressed in proline catabolizing PDAC cells (62).
INTEGRINS, PROTEOGLYCANS, AND
GLYCOPROTEINS

In addition to collagen, the TME also contains integrins,
proteoglycans, and glycoproteins. Integrins mediate the
interactions between TME cell-types and ECM proteins like
proteoglycans and glycoproteins. Both proteoglycans and
glycoproteins undergo post-translational glycosylation which
modulates their functions and conformation. Aberrant
glycosylation, a hallmark of several cancers, modifies the
behavior of proteoglycans and glycoproteins in the TME;
therefore, it is expected that the two classes of proteins play
several modified roles in the TME (63).

Integrins
Integrins are transmembrane cell-surface receptors that
heterodimerize upon binding ECM glycoproteins like
fibronectin (FN1) and vitronectin (VN), collagens, and laminin
(64). These cell-surface receptors are the major cell-adhesion
receptors that interact with the ECM. In addition to directly
FIGURE 1 | The dichotomous role of the stroma and common interactions between PDAC tumor cells, the ECM, and CAFs. The stroma’s ECM plays both a tumor
promoting role (left) and a tumor suppressive role (right). Tumor promoting roles may include integrin, TGFb/SMAD, and DDR-1 signaling, as well as providing
nutrition via collagen fragments. Tumor suppressive roles may include providing a barrier to metastases and increasing immune response. The ECM (middle) is
deposited by CAFs and modulated by MMP, LOX, TG2, HA, and others. CAF, cancer associated fibroblasts; TGF- beta, transforming growth factor beta; HA,
hyaluronan; FN-1, fibronectin 1; VN, vitronectin; DDR-1, discoidin receptor 1; PYK2, FAK-related protein tyrosine kinase; FAK, focal adhesion kinase; TG2, tissue
transglutimase; LOX, lysyl oxidase.
October 2021 | Volume 11 | Article 751311

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Perez et al. The PDAC Extracellular Matrix Proteome
contacting the ECM, activated integrins recruit the adhesome to
the cytosolic tail of the integrin, a complex assortment of
signaling, scaffolding, and cytoskeletal proteins (65–67).
Differentially expressed in several solid tumors including
PDAC, integrin roles are multi-faceted and participate in the
metastatic cascade (68–70). Integrin-to-ECM contact points serve
as molecular clutches to propel tumor cells forward by converting
actin-polymerization into traction force (71, 72). In addition, by
promoting the expression of matrix metalloproteinases (MMPs),
integrins increase the proteolytic activity within the ECM and may
facilitate the release of individual cancer cells or cell clusters from
the TME (73). Integrin expression on cancer cells and endothelial
cells has also been implicated in extravasation (74). In particular,
PDAC zebrafish and mouse models demonstrated that the
interaction between a5 integrin and neuropilin-2 facilitates the
binding of cancer cells to the endothelium (75). Knockdown using
lentiviral RNA-interference reduced cell adhesion, migration, and
proliferation in vitro and vivo (76). In PDAC mouse models, the
galectin-3 (GAL3) interaction with avb3 integrin may serve as an
underlying mechanism of KRAS addiction and increase nutrient
uptake via micropinocytosis (77). Altogether, PDAC has
demonstrated overexpression of members of the integrin family
like b1, b3, and b6 compared to normal pancreas (64, 69).

Glycoproteins and Proteoglycans
The glycoprotein galectin-1 (GAL1) has been found to be
upregulated in the PDAC TME, alongside other glycoproteins
like periostin and fibulin and is lowly expressed in long-term
(≥10 years) survivors of PDAC (78–80). Loss of GAL1 in murine
models leads to reduced stromal activation and increased
cytotoxic T-cell infiltration (81). FN1 and VN are thought to
serve as scaffolding proteins in the PDAC TME and regulate
cellular processes (82, 83). FN1 enables tumor cells to infiltrate
the basement membrane, stimulates their proliferation, and
bridges the interactions between ECM collagens and integrins
(84–86) (Figure 1). FN1 is also known to stimulate transforming
growth factor-b (TGFb) secretion, in turn promoting the
activation of the stroma (87). Secreted protein acidic and rich
in cysteine (SPARC) is another major glycoprotein in the PDAC
stroma that modulates ECM organization by directly binding to
collagens I, III, IV, and V (88, 89). In addition, SPARC, expressed
in the stroma from fibroblasts, regulates the interactions between
integrins and ECM proteins by binding a5b1 focal adhesion sites
(90). SPARC deficient mice demonstrated reduced collagen
fibrillogenesis, and elevated metastasis (88).

The glycoprotein subclass, proteoglycans, often modulate the
hydration level of the interstitial fluid, and in turn interstitial
pressure, through its interactions with hyaluronic acid (HA)
(91). However, HA modulation of interstitial pressure is
suggested to be dependent on the collagen-richness of the
TME and may not occur in collagen-replete TMEs (92). The
TME of PDAC overproduces an abundance of HA beginning at
the pre-malignant intraepithelial neoplasia (PanIN) stage (17).
When HA is enzymatically depleted in mouse models, the
delivery of cytotoxic therapies is enhanced, likely due to a
compromised ECM lacking HA (17, 93).
Frontiers in Oncology | www.frontiersin.org 4
Secretome Studies
PDAC secretome analyses aim to examine the surrounding
PDAC environment to identify aberrant proteins or molecules
that may be influence tumor progression. A meta-analysis of
20 PDAC secretome studies from cell lines and patient tissues
found that proteins associated with extracellular exosomes,
blood microparticles, membrane-bound, secretory lumen and
cytoplasmic membrane-bound vesicles, were most commonly
found (94). Notable proteins found among the secretome and
proteome across 20 secretome studies and 35 proteome studies
include TGFb induced (TGFBI), vimentin, and fibronectin
(94). Using 3D organotypic cell cultures, Biondani et al.
demonstrated that incubating cells with increasing type I
collagen promoted the secretion of pro-angiogenic and
growth factors like epidermal growth factor (EGF), matrix
metalloproteinase 9 (MMP9), and vascular endothelial growth
factor (VEGF) (95).
REGULATION OF THE ECM

PSCs are thought to maintain the balance between ECM
synthesis and degradation and serve as a cellular reservoir for
vitamin A and lipids (96). In the presence of tumor cells, PSCs
assume an “activated” state in which they excessively deposit
ECM proteins; become elongated in shape; and demonstrate
increased expression of aSMA, collagens, immune-modulating,
and other tumor-promoting genes (96). The formation of CAFs
from PSCs is thought to be mediated by the PDAC secretome,
which is abundant in fibroblast growth factor 2 (FGF2), TGFb,
and the paracrine and autocrine signaling regulator, sonic
hedgehog (Shh) (97, 98). Shh functions to attract and activate
PSCs, as PSCs demonstrate enhanced migration towards Shh
overexpressing PDAC cells (98, 99). PSC activation through
paracrine signaling has been shown to be inhibited with
metformin, an activator of AMP-activated protein kinase
(AMPK) (100).

TGFb may suppress tumor growth in the early stages of
carcinogenesis by inhibiting the proliferation of epithelial cells
(101). However, in late stages of carcinogenesis, TGFb
promotes ECM deposition and tumor progression (101). A
potent activator of PSCs, TGFb mediates the interaction
between the TME and tumor cells by binding TGFb cell
surface receptors. In PDAC, TGFb promotes the deposition
of several ECM proteins including fibronectin and collagens
(102). On the surface of tumor cells, TGFb receptor bind
TGFb to regulate downstream Smad-mediated gene
transcription (103). PDAC-secreted TGFb1 and FGF2 then
promote ECM deposition by PSCs, as well as a positive
feedback loop whereby PSCs secrete additional TGFb1 that
bind to TGFb1-receptors found on the surface of PSCs. Once
activated, PSCs, also known as CAFs, further modulate the
ECM through a variety of mechanisms.

Tissue stiffness has been shown to enhance tumor cell
proliferation in models of breast cancer (104). Stiff ECM
matrices modulate vimentin, E-cadherin (CDH1), and ECM
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MMP activity (105, 106). Stiffening of the stroma is enhanced by
collagen cross-linking carried out by LOX and tissue
transglutaminase 2 (TG2) (107, 108) (Figure 1). LOX
expression is increased under hypoxic conditions and
systematic neutralization of LOX results in reduced
proliferation and improved survival in mouse models (13,
107). On the other hand, TG2 secreted into the ECM promotes
collagen I cross-linking and stimulates CAFs to produce
additional collagen I (108, 109). In pancreatic tissue, TG2 is
mildly expressed unless malignancy is present (108). Similar to
stiffness, increased collagen fiber thickness is associated with
poor patient outcome (110). The additional cross-linked collagen
and stiff ECM, prompted by TG2 and/or LOX, activates yes-
associated protein (YAP) and the transcriptional coactivator
with a PDZ-binding motif (TAZ) that enhances cell
proliferation (105). It is suggested that the YAP/TAZ signaling
is the central hub for the cellular response to external mechanical
cues, highlighted by increased nuclear localization of YAP/TAZ
in response to mechanical stiffness (111–113).
Frontiers in Oncology | www.frontiersin.org 5
TARGETING THE ECM

Hyaluronic Acid
The rationale for targeting the ECMas an adjunct to chemotherapy
inPDACrelies onour understanding of the roles that ECMplays in
promoting tumorigenesis. Early studies in mouse models showed
that tumors with a high HA content had increased interstitial
pressure that resulted in vascular collapse and diminished tumor
perfusion. Treating these mice with a hyaluronidase inhibitor
reversed these effects, creating an amenable environment for
intra-tumoral drug delivery (17, 114). Since HA contributed to
intra-tumoral pressure which in-turn affected drug delivery, the
hypothesis was that targetingHAwould improve drug delivery and
efficacy. In SWOG S1313 (NCT01959139), PEGPH20 was
evaluated in combination with mFOLFIRINOX and in the HALO
trial (NCT02715804), in combination with nab-paclitaxel plus
gemcitabine (Table 1) (19, 115). Unfortunately, some patients
experienced strong adverse reactions to PEGPH20 and those who
tolerated it did not have an improvement in overall survival (115).
TABLE 1 | Selected clinical trials evaluating stroma and ECM targeting.

NCT registry
number

Agent Targets Study population Phase Recruitment status

NCT01959139 PEGPH20 + modified FOLFIRINOX HA + chemotherapy Metastatic PDAC I/II Active, not recruiting
NCT02715804 PEGPH20 + nab-Paclitaxel + Gemcitabine HA + chemotherapy Hyaluronan-high Stage IV

untreated PDAC
III Terminated (sponsor

decision)
NCT01195415 Vismodegib + Gemcitabine Shh pathway + chemotherapy Advance PDAC II Completed
NCT01088815 Vismodegib + Gemcitabine + nab-Paclitaxel Shh pathway + chemotherapy Metastatic PDAC II Completed
NCT01064622 Vismodegib + Gemcitabine Shh pathway + chemotherapy Recurrent or metastatic

PDAC
I/II Completed

NCT01383538 IPI-926 + FOLFIRINOX Shh pathway + chemotherapy Advance PDAC I Completed
NCT01585701 AT13148 Muti-AGC kinases including

ROCK-AKT
Advance solid tumors I Completed

NCT03519308 Paricalcitol + Nivolumab + nab-Paclitaxel +
Gemcitabine

Vitamin D Receptor + PD-L1 +
chemotherapy

Resectable PDAC I Recruiting

NCT04617067 Paricalcitol + Gemcitabine + nab-Paclitaxel Vitamin D Receptor +
chemotherapy

Advance PDAC II Recruiting

NCT04524702 Paricalcitol + Hydroxychloroquine +
Gemcitabine + nab-Paclitaxel

Vitamin D Receptor + autophagy +
chemotherapy

Advance or metastatic PDAC II Recruiting

NCT03331562 Paricalcitol + Pembrolizumab Vitamin D Receptor + PD-1 PDAC (maintenance) II Completed
NCT02930902 Paricalcitol + Pembrolizumab + Gemcitabine +

nab-Paclitaxel
Vitamin D Receptor + PD-1 +
chemotherapy

Resectable PDAC I Active, not recruiting

NCT02030860 Paricalcitol + nab-Paclitaxel + Gemcitabine Vitamin D Receptor +
chemotherapy

Resectable PDAC NA Completed

NCT03138720 Paricalcitol + nab-Paclitaxel + Gemcitabine +
Cisplatin

Vitamin D Receptor +
chemotherapy

Advance PDAC II Active, not recruiting

NCT03415854 Paricalcitol + nab-Paclitaxel + Gemcitabine +
Cisplatin

Vitamin D Receptor Metastatic PDAC II Active, not recruiting

NCT02754726 Paricalcitol + Nivolumab + nab-Paclitaxel +
Gemcitabine + Cisplatin

Vitamin D Receptor + PD-L1 +
chemotherapy

Active, not recruiting

NCT01646203 LY3022859 Tbrii Advance solid tumors I Completed
NCT00557856 PF-03446962 Tbri Advance solid tumors I Completed
NCT04296942 Bintrafusp alfa Tbrii + PD-L1 Advance solid tumors I Completed
NCT01682187 Galunisertib Tbri Advance solid tumors I Completed
NCT01373164 Galunisertib + Gemcitabine Tbri + chemotherapy Inoperable or metastatic

PDAC
I/II Completed

NCT02154646 Galunisertib + Gemcitabine Tbri + chemotherapy Inoperable or metastatic
PDAC

I Completed

NCT02734166 Galunisertib + Durvalumab Tbri + PD-L1 Metastatic PDAC I Completed
NCT03192345 SAR438459 + Cemiplimab Tgfb1, tgfb2, and tgfb + PD-L1 Advance solid tumors I Active, recruiting
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Hedgehog Pathway
Treating mice with Shh inhibitors in addition to chemotherapy
improved tumor microvascular density and survival (9). The
addition of Shh inhibitors to either FOLFIRINOX or gemcitabine
in clinical trials failed to improve overall survival and, in some cases,
was associated with a worse outcome (Table 1) (20, 30). These studies
were done prior to our understanding of CAF heterogeneity, and
recent work has been done to further elucidate the underlying biology
responsible for the discrepancy in clinical findings. Recent studies
suggest that blocking the Shh signaling pathway may shift the stroma
CAF populations from myofibroblast-CAFs (myCAFs) to
inflammatory CAFs (iCAFs) and promote an immunosuppressive
TME (116).

Rho Kinase Inhibitors
Rho kinase (ROCK) inhibitors alter PDAC cell cytoskeletal
contractility and CAF contractility and may enable more
favorable drug delivery in PDAC as well as inhibit PDAC
metastasis. ROCK inhibition resulted in a disorganized ECM
that blunted PDAC migration and invasion in vitro. In vivo
models including both subcutaneous and intrasplenic injection
found that administering ROCK-inhibitors prior to
chemotherapy resulted in increased primary tumor response to
chemotherapy and helped prevent the growth and establishment
of liver metastases (117–120). A phase 1 study using a kinase
inhibitor, AT13148, with anti-ROCKI/II activity was carried out
in patients with metastatic solid tumors, but did not proceed
further due to toxicity (Table 1) (121).

Vitamin D
Vitamin D halts the secretion of collagen in several cell types,
possibly by disrupting TGF-b signaling (103, 122). The vitamin
D receptor (VDR) has been shown to regulate transcription of
PSCs and CAFs (123, 124). Treatment with VDR ligand,
calcipotriol, reprograms the stroma, decreases inflammation
and improves response to gemcitabine (123). Other studies
have shown that while calcipotriol decreases CAF migration
and inflammation, it also may negatively affect T cell effector
functions (125, 126). Several studies of paricalcitol, a vitamin D
analogue, in combination with chemotherapies and
immunotherapies are ongoing (Table 1).

TGFb
Preclinical experimental data has suggested that blocking TGFb-
mediated signaling likely enhances antitumor effects in solid
tumors. Further, PDAC is often characterized by high TGFb
expression levels (101). Several clinical trials have attempted to
target TGFb in a variety of cancers, but no TGFb-targeting
Frontiers in Oncology | www.frontiersin.org 6
inhibitor has been approved for use (127). There is currently at
least one ongoing clinical trial targeting TGFb in PDAC
(Table 1) that is investigating the pharmacokinetics,
pharmacodynamics, and anti-tumor activity of SAR439459
alone and in combination with cemiplimab. SAR439459 is a
pan-TGFb neutralizing antibody that targets the three TGFb
isoforms (TGFb1, 2 and 3) and their interaction with type II
TGFb cell surface receptors (128).
CONCLUDING REMARKS

The ECM plays an important role in PDAC tumor growth,
metastasis, and therapy resistance. Accumulating preclinical
studies with patient-derived specimens indicate that targeting
the dense desmoplastic ECM proteins of PDAC may provide
promising clinically useful therapies. In clinical practice, we have
yet to successfully target the ECM in a way that improves overall
survival. The clinical shortcomings of once promising therapies
are a humble reminder of the underlying complexity of tumor
biology. Learning from these failures and developing a deeper
understanding of the fundamental biology allows researchers to
identify further vulnerabilities that should be considered when
developing treatments. Tumor and CAF subtypes have been
identified that were previously not known and will likely improve
the outcome of ECM modulating studies if performed using
reproducible subtyping methods and tailored targeting
techniques (15, 16, 129–133). Recent advances foster hope that
ECM-modulating therapies are likely to become a crucial part of
the toolkit for oncologists in the next few decades.
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