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Monoclonal immunoglobulin produced by clonal plasma cells is the main

cause in multiple myeloma and monoclonal gammopathy of renal

significance. Because of the complicated purification method and the low

stoichiometry of purified protein and glycans, site-specific N-glycosylation

characterization for monoclonal immunoglobulin is still challenging. To profile

the site-specific N-glycosylation of monoclonal immunoglobulins is of great

interest. Therefore, in this study, we presented an integrated workflow for

micro monoclonal IgA and IgG purification from patients with multiple

myeloma in the HYDRASYS system, in-agarose-gel digestion, LC-MS/MS

analysis without intact N-glycopeptide enrichment, and compared the

identification performance of different mass spectrometry dissociation

methods (EThcD-sceHCD, sceHCD, EThcD and sceHCD-pd-ETD). The

results showed that EThcD-sceHCD was a better choice for site-specific N-

glycosylation characterization of micro in-agarose-gel immunoglobulins (~2

mg) because it can cover more unique intact N-glycopeptides (37 and 50 intact

N-glycopeptides from IgA1 and IgG2, respectively) and provide more high-

quality spectra than sceHCD, EThcD and sceHCD-pd-ETD. We demonstrated

the benefits of the alternative strategy in site-specific N-glycosylation

characterizing micro monoclonal immunoglobulins obtained from bands

separated by electrophoresis. This work could promote the development of

clinical N-glycoproteomics and related immunology.
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Introduction

Human serum or plasma contains abundant disease-related

glycoproteins as candidate biomarkers for diagnosis,

stratification and prevention (1, 2). However, the dynamic

range of serum proteins can exceed 109, and most

glycoproteins have very low abundance at the protein and

glycan levels (1). For example, in multiple myeloma or

monoclonal gammopathy of renal significance, monoclonal

immunoglobulin plays an important role in the injury of

target organs, but pathogenetic monoclonal immunoglobulins

are complicated to purify and have low stoichiometry, despite

high levels of total immunoglobulins in serum (3). Coupled with

the microheterogeneity and macroheterogeneity of N-

glycosylation modification, site-specific N-glycosylation

(including glycoprotein, glycosite, and glycan information)

analysis of these micro immunoglobulins is extremely

challenging (4).

In the last few decades, researchers have made great

contributions to the study of site-specific N-glycosylation of

th e human se rum g l y cop ro t eome . Fo r examp l e ,

immunodepletion technologies and ProteoMiner protein

enrichment methods have been used to remove abundant

plasma proteins (5–7). Many enrichment materials have been

developed to remove nonglycopeptides in plasma (4, 8). These

methods and materials are beneficial to the study of serum

glycoproteomics. For targeted serum glycoproteins, there are still

many difficulties in glycoprotein preparation, mass spectrometry

analysis, data processing, etc (9–11). The classical research

methods are as follows: First, tens to hundreds of micrograms

of serum proteins were purified and digested into peptides. Tens

to hundreds of micrograms of proteins were needed as a starting

amount because only 2~5% of the total peptide contents were

glycopeptides. Second, intact N-glycopeptides were enriched

using hydrophilic interaction liquid chromatography (HILIC)

or other enrichment materials to avoid interference from non-

glycopeptides. Third, enriched intact N-glycopeptides should be

analyzed by advanced LC-MS/MS and professional software

(12). However, the content of many disease-related serum

proteins is difficult to reach tens to hundreds of micrograms.

To solve this problem, recombinant expression of the target

glycoprotein in human derived cells can provide sufficient

protein. Nonetheless, it is time consuming and laborious, and

may be difficult to detect disease-related glycosylation changes

(13). The other strategy is to isolate and purify one target

glycoprotein from enough serum. For example, Yu et al. used

jacalin affinity chromatography, a protein G affinity column, and

Sephacryl S-300 gel filtration chromatography to obtain purified

polymer IgA1 and monomer IgA1. However, they need to

consume hundreds of milliliters of blood per patient (14). In

addition, the glycoprotein based on an antibody affinity
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purification strategy also has difficult meeting the common

requirement for protein content unless industrialized (15). For

micro proteins, only a few glycosylation modifications can be

analyzed. Hence, we urgently need a strategy for in-depth and

site-specific N-glycosylation analysis of micro proteins.

In recent years, a novel fragmentation mode (EThcD-

sceHCD) has appeared as a valuable approach for

glycoproteomics (16). EThcD means fragment parent ions via

ETD first, and then the products ions were fragmented via HCD

(17). sceHCD means the stepped collision energy HCD (10).

EThcD-sceHCD means an alternative fragmentation which

switch modes between the EThcD and sceHCD in a duty

cycle. This combined fragmentation strategy capitalized on the

advantages of both EThcD and sceHCD to produce two types of

MS2 spectra (EThcD spectra and HCD spectra). In other words,

EThcD-sceHCD can produce more rich and useful ions for the

accurate identification of intact glycopeptides than EThcD and

sceHCD alone. For example, site-specific N/O-glycosylation of

the HIV-1 Env protein gp120 was characterized by EThcD-

sceHCD because EThcD-sceHCD can increase the number of

identified glycopeptides and produce more comprehensive

fragment ions. Moreover, EThcD-sceHCD had a higher

Byonic score in the top-scoring identification than did the

sceHCD and EThcD spectra of the same intact N-glycopeptide

(16). Site-specific N-glycosylation patterns of serum IgGs based

on EThcD-sceHCD revealed that intact N-glycopeptides were

differentially expressed in healthy controls (HCs) and chronic

kidney disease (CKD) patients (18). In addition, EThcD-

sceHCD can be used for complex clinical sample (e.g., plasma,

urine, cells, and tissues) glycosylation studies and outperforms

previous approaches (EThcD, sceHCD, HCD-pd-ETD, and

sceHCD-pd-ETD) in the balance of depth and accuracy of

intact N-glycopeptide identification (19, 20). However, these

comparative studies used tens to hundreds of micrograms of

proteins based on filter-aided sample preparation (FASP)

digestion and intact glycopeptide enrichment strategies. We do

not know if EThcD-sceHCD is more applicable to micro in-gel

proteins than other methods.

Herein, we aim to provide an alternative strategy for site-

specific N-glycosylation analysis of micro disease-related

monoclonal immunoglobulins (1~10 µg) based on in-gel

digestion and without intact glycopeptide enrichment. More

precisely, we integrated human serum monoclonal IgA and

IgG preparations based on the HYDRASYS system, and LC-

MS/MS analysis after in-agarose-gel digestion and compared the

intact N-glycopeptide identification performance of different

mass spectrometry dissociation methods (EThcD-sceHCD,

sceHCD, EThcD and sceHCD-pd-ETD). Finally, we

determined that EThcD-sceHCD is a better choice for site-

specific N-glycosylation characterization of micro in-

gel immunoglobulins.
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Experimental section

Biospecimen collection

This study was approved by the medical ethics committee at

the First Affiliated Hospital of Xi’an Jiaotong University, and

conducted in adherence to the Declaration of Helsinki. Serum

samples from patients with multiple myeloma were collected

and stored at -80°C before use. Written informed consent

was collected.
Preparation of microscale glycoproteins

Serum samples from two patients with multiple myeloma

were collected. Serum monoclonal IgA and IgG were purified by

using the HYDRAGEL 4 IF kit (Sebia, Cedex, France) in the

semiautomated agarose electrophoresis and immunofixation

HYDRASYS system. We modified the manufacturer ’s

instructions for monoclonal immunoglobulin purification in

the HYDRASYS system. In brief, for protein electrophoresis, a

10 mL volume of 2-4 times diluted serum samples was applied

manually to the applicator wells. The applicator was placed into

the wet storage chamber with the teeth up and samples were

allowed to diffuse into teeth for 5 min. Then protein migration

was completed in the HYDRASYS system with the applicators

placed. After electrophoresis, all wells were incubated with

fixative solution, except one with IgA antiserum or IgG

antiserum as positive control. Next, we removed the remaining

fixative solution and antiserum by filter paper, washed the

agarose gel with HYDRASYS wash solution three times and

stained it with amidoblack stain for 15 minutes at room

temperature. Distaining was performed using 0.1% acetic acid

and ddH2O. Finally, referring to the control band with IgA or

IgG antiserum incubation, the bands of monoclonal IgA or IgG

(~2 mg) were excised from lanes fixed only with fixative solution.
Decolorization, reduction, alkylation
and digestion

The monoclonal IgA and IgG glycoproteins (~2 mg) were
proteolyzed using an in-agarose-gel digestion protocol. Briefly,

the bands of monoclonal IgA or IgG were cut into 1 mm3 pieces.

A total of 150 mL of destainer (50% ACN in 50 mM NH4CO3

buffer) was used for shock decoloration. Then, 150 mL of 100%

ACN was added for dehydration. After carrying out the

reduction reaction by adding 100 mL of 20 mM DTT for 45

min at 56°C, the alkylation reaction was carrying out by adding

100 mL of 50 mM IAA and incubating in the dark for 30 min.

Then, 200 mL of destainer and 100% ACN were used to wash out

these salts. These microscale glycoproteins were digested for 18 h
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at 37°C after adding 50 mL of trypsin (10 ng/mL) to each filter

tube. The peptides were collected and combined by washing

three times with 200 ml of buffer A (1% FA, 2% ACN), buffer B

(1% FA, 50% ACN), and buffer C (100% ACN). Meanwhile, all

samples were processed by ultrasound (Kunshan, China) every

time. The ultrasound instrument was set as follows: power = 100

W; frequency = 25 KHZ; total time = 10 min; on = 7 s; off = 3 s.

The processed samples were centrifuged at 13,000×g for 15 min

at 4°C. The peptides were dried and stored at -80°C.
LC-MS/MS analysis

The peptides from each microscale glycoprotein were

resuspended in 20 mL of 0.1% FA individually. Four

microliters of peptides were separated on a column (ReproSil-

Pur C18-AQ, 1.9 mm, 75 mm inner diameter, length 20 cm; Dr

Maisch) over a 30-min gradient (0–2 min, 5–12% B; 2–7 min,

12–22% B; 7–21 min, 22–32% B; 21–22 min, 32–90% B; 22–30

min, 90% B) at a flow rate of 350 nL/min, and analyzed on an

Orbitrap Fusion Lumos Mass Spectrometer (Thermo Fisher,

USA). Four different fragmentation modes (EThcD-sceHCD,

sceHCD, EThcD and sceHCD-pd-ETD) were used for peptide

analysis. The parameter details of these modes can be found in

our previous descriptions (19).

Specifically, EThcD-sceHCD-MS/MS was performed using

an alternative fragmentation between the EThcD and sceHCD

modes in a duty cycle (3 s). In the EThcD duty cycle (2 s), MS1

was analyzed using 800–2000 m/z at an Orbitrap resolution of

60,000. The RF lens, AGC target, maximum injection time

(MIT), and exclusion duration were 40%, 2.0 e5, 50 ms, and

15 s, respectively. MS2 was analyzed with 2 m/z at an Orbitrap

resolution of 30,000. The AGC target, MIT, and EThcD type

were standard, 150 ms, and 35%, respectively. In the sceHCD

duty cycle (1 s), MS1 was analyzed using 800–2000 m/z at an

Orbitrap resolution of 60,000. The RF lens, AGC target, MIT and

exclusion duration were 40%, standard, auto, and 15 s

respectively. MS2 was analyzed with 1.6 m/z at an Orbitrap

resolution of 30,000. The AGC target, MIT, and HCD collision

energies were 200%, auto, and 30%, respectively. In addition, the

sceHCD mode was turned on with an energy difference of ±10%

(20-30-40%).
Data analysis

The RAW data files were searched using Byonic software

(version 3.10.10, Protein Metrics, Inc.). The human IgG or IgA

Uniprot database was chosen. The mass tolerances for

precursors and fragment ions were set as ± 6 ppm and ± 20

ppm, respectively. The fragmentation type was set as “Both HCD

& EThcD”, “HCD”, “EThcD” or “Both HCD & ETD”. Two
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missed cleavage sites were allowed. Carbamidomethyl (C) was

set as fixed modification. Oxidation (M) and Acetyl (Protein N-

term) were set as variable modifications. The “182 human N-

glycans” was set as the N-glycan modification. Protein groups

were filtered to 1% FDR. Quality control methods for intact N-

glycopeptide identification included a Byonic score of over 200, a

logProb value of over 2, and at least 5 amino acids. Each

spectrum of intact N-glycopeptide should be confirmed

manually by checking the oxonium ions and b/y/c/z ions to

ensure the correct identification of the peptide sequence and

attached glycan compositions. The RAW Data can be obtained

via ProteomeXchange with identifier PXD035757.
Results and discussion

Multiple myeloma (MM), as the second most common adult

hematological malignancy with skeletal components as its

primary site, is a cancer characterized by the proliferation of

monoclonal plasma cells derived from the bone marrow (21).

Recently, N-glycosylation of immunoglobulin G or A was shown

to have a significant correlation with the development of many

cancer types (22–24). Several published studies have investigated

the N-glycosylation profiles of serum total or polyclonal IgA or

IgG in MM (25). However, the N-glycosylation profiles and their

potential prognostic value, as well as the pathogenesis of specific

N-glycosylation of monoclonal immunoglobulin involved in

MM remain unclear. Therefore, more research is needed to

modify the purification method of monoclonal immunoglobulin

and explore their site-specific N-glycosylation analysis by

mass spectrometry.

Over the past year, we have proven that EThcD-sceHCD has

a better performance than other dissociation methods in the
Frontiers in Immunology 04
intact glycopeptide analysis of HIV-1 gp120, IgG subclasses, and

complex clinical samples (16, 18–20). However, it remains to be

seen whether EThcD-sceHCD is more applicable to micro in-gel

immunoglobulins from human serum than other methods. For

this purpose, the following experiment was designed (Figure 1).

We collected serum samples from MM patients and purified

monoclonal IgG or IgA in the HYDRASYS system. The baseline

characteristics of two patients with multiple myeloma included

in the study were shown in Table 1. Monoclonal IgG or IgA from

MM patients will appear as a clear band on the agarose gel,

unlike normal human serum polyclonal immunoglobulin

protein with a diffuse band. After reducing, alkylating, and

digesting the target band, peptides were obtained and analyzed

by LC-MS/MS with a 30-min separation gradient and four

different dissociation methods (EThcD-sceHCD, sceHCD,

EThcD and sceHCD-pd-ETD).

Monoclonal rather than polyclonal IgG and IgA were chosen

because monoclonal immunoglobulins are more associated with

the development of MM. To purify monoclonal IgG and IgA, the

HYDRASYS system was used rather than SDS-PAGE. The

reason is that SDS-PAGE cannot distinguish monoclonal and

polyclonal IgG or IgA. However, the HYDRASYS system can

display unique monoclonal immunoglobulin band scanning

features with the advantages of high resolution, good

precision, simple and fast. It is worth noting that the content

of monoclonal IgG or IgA in an agarose band is very low (~2 mg).
The content is well below the amount of protein previously

required for glycoproteomics (26). Hence, we presented an

integrated workflow for micro serum monoclonal IgA and IgG

preparation in the HYDRASYS system, in-agarose-gel digestion,

LC-MS/MS analysis without intact N-glycopeptide enrichment,

and compared the identification performance of different mass

spectrometry dissociation methods (EThcD-sceHCD, sceHCD,
FIGURE 1

Schematic representation of the workflow for the intact N-glycopeptide analysis of microscale human serum monoclonal IgA and IgG from
patients with multiple myeloma using four different dissociation methods.
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EThcD and sceHCD-pd-ETD) (Figure 1). N-glycosylation is a

very complex post-translational modification. Intact

N-glycopeptide characterization based on advanced LC-

MS/MS can probe microheterogeneity by localizing N-

glycans to asparagine residues (N-X-S/T/C, X≠P). Hence, it is

becoming a major part of modern N-glycoproteomic

analysis (10).

In this study, we selected serum samples from MM patients

diagnosed with monoclonal IgA lambda and IgG kappa by

immunofixation electrophoresis. Theoretically, each

monoclonal immunoglobulin should have just one specific

heavy chain and one matched light chain. Our EThcD-

sceHCD mass spectrometry results using the micro proteins

showed that both monoclonal immunoglobulins had high

abundance and coverage (IgA1 with 98.9% relative abundance

and 82.72% coverage, IgG2 with 99.6% relative abundance and

87.12% coverage) in the total detected proteins, which supported

the high degree of purity in the agarose gel band with our

modified purification method by using the HYDRASYS system

(Supplementary Materials). Previous studies have shown that

IgA1 contains two N-glycosites (N144 and N340), and IgG2

contains one N-glycosite (N174) (27). In this study, we

specifically identified and compared the data of all N-

glycosites in equal quantities of micro monoclonal IgA1 and
Frontiers in Immunology 05
IgG2 by EThcD-sceHCD, sceHCD, EThcD and sceHCD-pd-

ETD. However, the N-glycosite (N144) in IgA1 can only be

identified by EThcD-sceHCD and sceHCD. EThcD and

sceHCD-pd-ETD missed this N-glycosite probably because it

is too poorly glycosylated in MM patients (Supplementary

Materials). Furthermore, we compared the N-glycosylation

modifications of human serum monoclonal IgA1 and IgG2

using four different dissociation methods. As shown in

Table 1, 37 unique intact N-glycopeptides of IgA1 with 124 N-

glycoPSMs and 24 N-glycans were identified by EThcD-

sceHCD. Meanwhile, there were 50 unique IgG2 intact N-

glycopeptides with 119 N-glycoPSMs and 27 N-glycans were

identified by EThcD-sceHCD. The order in terms of the number

of identifications was EThcD-sceHCD, sceHCD, sceHCD-pd-

ETD and EThcD. Hence, the results indicated that EThcD-

sceHCD outperformed the other three common modes (EThcD,

sceHCD and sceHCD-pd-ETD) in the depth of N-glycoPSM, N-

glycan, and intact N-glycopeptide identification with micro

protein (Table 2).

To our knowledge, sceHCD has been the most popular mode

for intact N-glycopeptides because it generally provides higher

quality spectra and scanning speed. Special software, such as

pGlyco2.0, has been developed to analyze the data produced

(28). In addition, EThcD can be more suitable for site-specific O-
TABLE 1 Baseline characteristics of patients with multiple myeloma included in the study.

Characteristics Patient 1 Patient 2

Age (ys) 72 63

Gender Male Male

Monoclonal immunoglobulin type IgA kappa IgG lambda

Concentration of monoclonal immunoglobulin (g/l) 43.0165 94.64

IgG (g/L) 3.05 98.7

IgA (g/L) 68.2 <0.27

IgM (g/L) <0.19 <0.19

C3 (g/L) 0.5 0.32

C4 (g/L) 0.08 <0.07

Lambda chain (g/L) 0.36 25.5

Kappa chain (g/L) 3.24 0.18

Free lambda chain (mg/L) 8.44 46.9

Free kappa chain (mg/L) 21.9 5.25

Free Lambda/Kappa 2.59 0.11

Serum albumin (g/L) 28.7 15.5

Serum creatinine (mmol/L) 68 68

Hemoglobinuria (g/L) 100 69

Serum b2 microglobulin 4560 3271.6

Abnormal plasma cell (%)* 27 23

ISS stage# II II
fro
*Abnormal plasma cell by bone marrow biopsy; # The International Staging System (ISS).
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glycosylation and intact N-glycopeptides with more than one

glycosite analyses because it can retain intact glycan moieties

with few glycan dissociation events (29, 30). However, sceHCD-

pd-ETD may be suitable for intact N/O-glycopeptides from

complex samples without enrichment analyses because it

makes use of glycopeptide-specific oxonium ions derived from

glycan fragmentation scans to trigger subsequent ETD

fragmentation (31). Until recently, EThcD-sceHCD has

arguably become the most dazzling N/O-glycoproteomic

method because it makes full use of the advantages of both

sceHCD and EThcD (16). Compared with EThcD, sceHCD,

HCD-pd-ETD, and sceHCD-pd-ETD, EThcD-sceHCD has been

determined to be applicable and superior in site-specific

glycosylation analyses of simple glycoproteins (IgGs and

gp120) and complex clinical samples (plasma from prostate

cancer patients, urine from immunoglobulin A nephropathy

patients, human hepatocarcinoma cell lines, and thyroid tissues

from thyroid cancer patients) (16, 18, 20). Therefore, we are the

first to explore whether EThcD-sceHCD is more suitable for the

site-specific N-glycosylation analysis of micro in-agarose-gel

proteins in this study.

Different fragmentation methods can produce abundant

fragment ions with distinct features. For example, all methods

provided confident N-glycosite (N340) localization and

abundant information about the N-glycan composition

[HexNAc(4)Hex(5)NeuAc(1)] of a peptide (322LAGKPTHVN

VSVVMAEVDGTC352) from human serum monoclonal IgA1

(Figure 2). Their spectra included glycan fragments, b/y or/and

c/z-type peptide backbone fragments, Y ions, and so on. Hence,

all of these methods can correctly analyze this intact N-

glycopeptide. However, when we compared these spectra in

detail, EThcD-sceHCD provided more ion information with a

larger Byonic Score (568.3). As the “raw” indicator of PSM

correctness, it reflects the absolute quality of the peptide-

spectrum match (Figure 2). The same holds true for IgG2. All

methods provided confident N-glycosite (N174) localization and

abundant information about the N-glycan composition

[HexNAc(4)Hex(3)] of a peptide (172EEQFNSTFR180) from
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human serum monoclonal IgG2 (Figure 3). The spectrum of

EThcD-sceHCD also had a larger Byonic Score (641.4). In

addition, only EThcD-sceHCD and sceHCD can provide

confident N-glycosite (N144) localization in IgA1. Considering

the number of N-glycoPSMs, N-glycans, and intact N-

glycopeptides identified by these methods, we canconclude

that EThcD-sceHCD is a better choice for site-specific N-

glycosylation analysis of micro in-gel proteins.

Finally, we profiled the site-specific N-glycosylation of

serum monoclonal IgA1 and IgG2 from patients with MM

based on the comprehensive glycoproteomic information

obtained in this work. As shown in Figure 4A, the N144 site

of IgA1 was modified by 2 kinds of N-glycans. The other N340

site of IgA1 was modified by 29 kinds of N-glycans. For IgG2,

there were 25 different N-glycan compositions attached to the

N174 site (Figure 4B). These results imply that our strategy can

decipher the microheterogeneity and macroheterogeneity of N-

glycosylation from micro in-gel proteins.
Conclusions

Site-specific N-glycosylation of micro proteins has always been

a challenge but an important research hotspot in the

glycoproteomics field. Herein, we proved the reliability and

superiority of EThcD-sceHCD in the site-specific N-glycosylation

characterization of micro in-agarose-gel immunoglobulins (~2 mg).
By integrating serum monoclonal IgA and IgG from patients with

multiple myeloma preparation in the HYDRASYS system and in-

agarose-gel digestion without intact N-glycopeptide enrichment,

we compared the identification performance of four different mass

spectrometry dissociation methods (EThcD-sceHCD, sceHCD,

EThcD and sceHCD-pd-ETD). We proved that EThcD-sceHCD

performed better in the identification number of N-glycoPSMs,

N-glycans and intact N-glycopeptides. In addition, it can

provide more high-quality spectra than sceHCD, EThcD and

sceHCD-pd-ETD. Hence, we presented an alternative strategy in

site-specific N-glycosylation characterizing micro disease-
TABLE 2 Comparison of the N-glycosylation modifications of human serum monoclonal IgA1 and IgG2 from patients with multiple myeloma
using four different dissociation methods.

Dissociation mode EThcD-sceHCD sceHCD EThcD sceHCD-ETD

Sample type IgA1 IgG2 IgA1 IgG2 IgA1 IgG2 IgA1 IgG2

Number of N-glycoPSMs 124 119 73 70 21 15 27 30

Number of N-glycans 24 27 23 27 7 13 14 17

Number of intact N-glycopeptides 37 50 32 44 9 15 16 26
frontie
The bold values means the number of identifiers under EThcD-sceHCD fragmentation mode is highlighted.
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FIGURE 2

Comparison of EThcD-sceHCD (A), sceHCD (B), EThcD (C), and sceHCD-pd-ETD (D) spectra of one intact N-glycopeptide
(322LAGKPTHVNVSVVMAEVDGTC352-HexNAc(4)Hex(5)NeuAc(1)) from serum monoclonal IgA1.
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FIGURE 3

Comparison of EThcD-sceHCD (A), sceHCD (B), EThcD (C), and sceHCD-pd-ETD (D) spectra of one intact N-glycopeptide [172EEQFNSTFR180-
HexNAc(4)Hex(3)] from serum monoclonal IgG2.
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related immunoglobulins obtained from bands separated by

electrophoresis. This study may provide a robust method of N-

glycosylation analysis for micro glycoproteins and promote the

development of research on the N-glycoproteome.
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