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Abstract: In this paper, an ultrahigh-strength marine concrete containing coral aggregates is devel-
oped. Concrete fabricated from marine sources is considered an effective and economical alternative
for marine engineering and the construction of remote islands. To protect sea coral ecosystems, the
coral aggregates used for construction are only efflorescent coral debris. To achieve the expected
mechanical performance from the studied concrete, an optimal mixture design is conducted to
determine the optimal proportions of components, in order to optimize the compressive strength.
The mechanical properties and the autogenous shrinkage, as well as the heat flow of early hydration
reactions, are measured. The hydration products fill up the pores of coral aggregates, endowing our
concrete with flowability and self-compacting ability. The phases in the marine concrete are identified
via X-ray diffraction analysis. The 28-day compressive and flexural strength of the developed marine
concrete achieve 116.76 MPa and 18.24 MPa, respectively. On account of the lower cement content
and the internal curing provided by coral aggregates, the volume change resulting from autogenous
shrinkage is only 63.11% of that of ordinary reactive powder concrete.

Keywords: ultrahigh-strength marine concrete; self-compacting; compressive strength; optimal
mixture design

1. Introduction

The protection of marine reefs plays a great role in the development of island economies,
as well as marine resources. The active demand of infrastructural construction on the
islands accelerates the development of construction materials in the context of forming
a conservation-minded economy and an environmentally sound ecosystem. Due to the
limitation of the utilization of conventional construction materials in terms of time and
transportation expenses, as well as the complex geological conditions of islands, challenges
arise as to the production of alternative cementitious materials. The infrastructure on
islands is situated in an aggressive marine context. They might be subjected to tidal waves
or freeze/thaw actions, presenting more stern requirements on the load-carrying capacity
of materials, as well as the durability and long-term stability of structures.

Concrete fabricated from marine sources (marine sand, seawater, efflorescent coral
debris, etc.) is considered an effective and economical alternative. Coral-based concrete has
been extensively used in building roads, airports, and other structures during and after the
Second World War [1], especially on islands in the western Pacific Ocean [1–5]. The South
China Sea possesses large deposits of weathered coral debris. The coral aggregates can be
used to fabricate concrete when there are limitations in using conventional aggregates [6,7].
Research has demonstrated how coral concrete can be applied to the construction of
breakwaters, sand dykes, bank revetments [8], retaining walls [9], pavements, and building
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foundations [10]. One such aggregate was even used in emergency repair for marine
engineering [11].

Previous studies have shown that the original designed marine concrete has a rel-
atively low compressive strength—approximately 30 MPa (Figure 1) [12–21]. The com-
pressive strength of the marine concrete increases with the increase in the proportions of
cementitious material and mineral admixture [22–24]. It can be observed (Figure 1) that the
maximum compressive strength of 55.7 MPa was achieved with a designated water/binder
ratio (W/B) and cement and mineral admixture contents (see Table 1). However, the
construction of high-rise buildings [25], bridges [26,27], and protective structures [28,29]
on the islands urges the development of high-strength construction materials to meet the
requirements for the improvement of the design flexibility and the building functions.

Figure 1. Compressive strength of marine concrete (30 MPa) [7,13–21] and enhanced marine concrete
(40–50 MPa) [1,22–24].

Table 1. Material contents of specimens shown in Figure 1.

Specimen
Binder (kg/m3)

Coarse Coral
(kg/m3)

Coral Sand
(kg/m3)

Simulated
Seawater (kg/m3)

SP
(kg/m3)

W/BCement
(P.O 42.5R) Slag Fly Ash

S1 [1] 416 80 72 660 990 160 8 0.3
S2 [1] 606 117 59 361 841 216 16 0.28
S3 [1] 786 151 71 302 705 252 20 0.25

S4 [22] 372 1147 NC 678 228 - 0.6
S5 [23] 450 1020 320 228 21.6 0.5
S6 [24] 440 950 704 QS 176 TW 5.28 0.4

NC: normal carpolite; QS: quartz sand; TW: tap water.

The motivation of this study is to design a marine concrete with ultrahigh compressive
strength to facilitate the development of marine and reef engineering. The main objective
is to fabricate a coral-based concrete with a compressive strength of over 100 MPa under
the marine environmental curing conditions. The densification of the studied concrete
mainly counts on its self-compacting ability, rather than vibration in the mixing process.
Meanwhile, the autogenous shrinkage is expected to be reduced by the autogenous curing
provided by coral aggregates. The main ingredients used in the preparation of such
concrete are conventional concrete gel materials, coral rock, coral sand, and seawater. The
concrete mix proportions are defined by using the optimal mixture design method based on
packing density theories [30] and the means of homogeneously arranged particles [31,32].
In this experiment, the mechanical properties, autogenous shrinkage, and heat of hydration
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are measured to quantify the performance of the designed concrete. The microstructures of
the main constituents are identified in order to investigate how these microstructures affect
the physical characterization of our concrete. Then, X-ray diffraction analysis is conducted
to determine its chemical characterization.

This paper is structured as follows: In Section 2, the raw materials and experiments are
introduced in the present study. The single-factor experiments are introduced in Section 3,
and provide an estimated mix proportion for concrete. In Section 4, the optimal mix
proportion is determined by mix designs, and this mix proportion is verified experimentally.
The autogenous shrinkage and hydration heat of the optimized concrete are measured,
and SEM and XRD analyses are provided to investigate the origination of the ultrahigh
strength of our concrete. The concluding remarks are presented in Section 4.

2. Materials and Methods
2.1. Materials

In this study, the main raw materials used in the design of the ultrahigh-strength
marine concrete (USMC) were ordinary Portland cement (OPC), silica fume (SF), cementi-
tious capillary crystalline waterproof material (CCCW), superplasticizer (SP), coral sand,
coral powder, and artificial seawater. The utilization of mineral admixtures such as silica
fume as mineral additives was expected to enhance the engineering properties and the
densification of the studied concrete, improving its mechanical performances [33,34].

2.1.1. Cementitious System

The selection of materials was based on the Chinese National Standards associated
with each material. The chemical constituents of the selected cement and silica fume
agglomerations are listed in Table 2.

Table 2. Chemical properties of raw materials.

CaO SiO2 Al2O3 Fe2O3 MgO Na2O SO3 Loss

Cement (%) 64.13 21.43 2.24 3.78 2.07 0.78 2.25 3.32
Silica fume (%) 0.52 94.51 0.61 0.22 - - - 4.14

Figure 2 shows the particle-size distributions of these two materials, where the particle-
size distribution of the silica fume is between 0.1 µm and 0.3 µm. It is notable that due to
the particle agglomeration in silica fume, the particle-size distribution shown in Figure 2b
is inconsistent with the actual values reported by the manufacturer. CCCW compliant
with Chinese National Standard GB 18445-2012 was employed in this research. The type
of CCCW was “Yingzhi RS-7”, which was produced in the Rising Fine Chemical Factory.
A polycarboxylate-based high-performance superplasticizer was added to the prepared
samples to achieve the target workability, and the dosage in all samples was 2.4% of
binder mass.

2.1.2. Aggregates

For the sake of protection of the sea coral ecosystems, only efflorescent coral debris
was extracted. The coral aggregates were used as fine granules for the preparation of the
ultrahigh-strength concrete. Table 3 shows the determinations of the basic chemical and
physical properties of the selected coral sand. Its main component was calcium carbonate,
with a calcium content of up to 98%.

The abundant pore structures as well as porous microstructures within the selected
coral aggregates are shown in Figure 3. The coral sand and coral powder (Figure 4) were
prepared via shattering and sieving processes. The coral sand with particle-size distribution
of 0.6–1.18 mm and the coral powder of 0.075–0.3 mm were used as granular materials.
The water absorption of the coral sand was 1.13%, and the water absorption of the coral
powder was 2.97%.
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Figure 2. Particle-size distributions of (a) cement, (b) silica fume aggregate, and (c) CCCW.

Table 3. Detected material properties of the coral sand.

Detecting Items Units Detecting Results Detecting Items Units Detecting Results

Moisture content % 0.2 EC value mS/cm 0.140
Organic matter g/kg 2.77 Total nitrogen g/kg 0.174

Available phosphorus mg/kg 6.8 Total phosphorus g/kg 0.075
pH 9.3 Total potassium g/kg 0.991

Bulk density g/m3 1.137 Available boron mg/kg 0.201
Texture Sand Cation-exchange capacity cmol/kg 1.22

Available nitrogen mg/kg 12.0 Available copper mg/kg 0.218
Available potassium mg/kg 7.38 Available zinc mg/kg 0.073

Carbonate g/kg 987 Available iron mg/kg 0.582

2.1.3. Artificial Seawater

The artificial seawater was composed of sea crystal and fresh water. A total of 50 kg
of fresh water and 1.95 kg of sea crystal were mixed to achieve the average salinity of 35‰
of the world oceans.

2.2. Concrete Sample Preparation

To prepare the samples for experiments, a mixing procedure for the raw materials
and the water mixture (mixture of the selected superplasticizer and artificial seawater)
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was performed in accordance with Chinese National Standard GB/T 31387-2015 “reactive
powder concrete” [35], as follows:

(1) All dry-mixing powders (binder particles, coral sand, and coral powder) were stirred
for 3 min;

(2) Water mixture was then added to the mixed dry materials, and the mixture was
stirred for 5 min.

The sequence of preparation is shown in Figure 5. The mixer used was a vertical
cement mixer with a speed of 250 r/min.

Figure 3. (a) Microstructures of coral sand, and (b) partial enlarged representation of the red box area
in (a).

Figure 4. The macro picture of (a) coral sand and (b) coral powder.

Figure 5. The process of preparing reactive powder concrete: (a) put the dry powder into the
container; (b) stir the dry powder; (c) add water for further stirring.
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2.3. Experimental Methods
2.3.1. Strength Tests

All concrete samples were molded into cuboids with a geometry of 40 mm × 40 mm ×
160 mm [36]. The specimens were cured in the artificial seawater for 27 days under
natural conditions.

The strength tests of specimens were performed using a computer-controlled electro-
hydraulic testing machine [37]. For the flexural strength test, the loading rate was set to
50 ± 10 N/s, while for the compressive strength test, the loading rate was 2.4 ± 0.2 kN/s.

In the property measurement, 3 samples were selected for testing each time. When
the three data differed by no more than 15%, the average value was taken; if two of the
three data differed by more than 15%, the data were invalidated and retested.

2.3.2. Autogenous Shrinkage Test

The linear autogenous shrinkage of the designed concrete was measured using
an eddy-current displacement sensor (ECDS) based on the electromagnetic induction
effect [38]. Figure 6 illustrates the schematics of the test setup. The sequences of operation
were as follows:

(1) The inner surfaces of the steel mold (100 mm × 100 mm × 550 mm) were smeared
with grease. The Teflon sheets were placed to eliminate the friction between the inner
surfaces of the steel mold and the concrete specimen;

(2) Two steel target seats were mounted on the proper positions of the bottom surface
of the steel mold. In this study, the distance of the two target seats was 455 mm.
Standard targets were magnetically attached to the steel target seats;

(3) The mixture was poured into the steel mold and encapsulated the steel target seats,
guaranteeing that the target seats would deform simultaneously with the specimen.
The thermocouples were embedded into the center of the specimen to isolate the
autogenous shrinkage from the measured total deformation by monitoring the tem-
perature changes within it;

(4) The top surface of the specimen was sealed with two layers of polyethylene sheets
to avoid the influence of exterior drying. The sensor support was fastened to the
top of the steel mold. By regulating the fitting screw, the ECDS was mounted on
a proper position;

(5) In our measurements, the interval of data acquisition was 1 min;

Figure 6. Non-contact concrete shrinkage deformation testing system (1—steel mold; 2—sensor
support; 3—displacement sensor; 4—standard target).

During the entire testing period, the temperature was maintained at 20 ± 1 ◦C. The
measured autogenous shrinkage was set to zero at the initial setting time determined
by the corresponding pure concrete sample. The results of deformation were obtained
by measuring three specimens in parallel to achieve a better estimation. Results were
compared with reactive powder concrete and original mix proportion concrete [39].
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2.3.3. Hydration Heat

The autogenous shrinkage of samples increases with the concentrated and high hy-
dration heat [40]. The hydration heat experiment was conducted to further analyze the
autogenous shrinkage of samples, as well as to verify the results of the autogenous shrink-
age tests. The hydration heat flows of samples were measured using an eight-channel
TAM Air heat-conduction calorimeter (TAM, Thermometric AB Co. Ltd., Kista, Sweden).
The thermogravimetric (TG) and differential scanning calorimetry (DSC) curves of the
pure sample that came from the same batches in the TAM semi-adiabatic calorimeter were
obtained by using a TA Q50 instrument. In order to minimize the influence of temperature
increase caused by external operations, the hydration heat was measured 1 h after the
mixing procedure. The testing took 72 h. During the testing, the operating temperature
was kept at 20 ◦C. The results were normalized by the weight of the sample.

2.3.4. Scanning Electron Micrograph

In order to compare the content and distribution of pores in the cement samples [41],
the micrographs of samples were taken using a JSM-6490LV scanning electron microscope
(Japan Electronics Co. Ltd., Tokyo, Japan). In order to image the surfaces accurately, the
samples were sprayed with gold powder to increase their to conductivity. The voltage was
12 kV and the working distance was ~12 mm. The instrument was vacuumized for 10 min
prior to testing.

2.3.5. X-ray Powder Diffraction

X-ray powder diffraction was used for characterization of the coral sand and identifica-
tion of the minerals in the specimens [42]. Data were collected from 5◦ to 80◦ at a scan rate
of 4◦/min. The angular step was 0.02◦. The phases were analyzed using Jade 6.0 software.

3. Results and Discussion
3.1. The Effect of a Single Binder on Mechanical Properties

The single-factor experimental designs were performed to quantify the independent
effects of the materials of the binder on the mechanical performance of the studied concrete.
The single-factor designs prescreen and determine the range of each of the material contents,
which can be beneficial to the enhancement of the mechanical strength of our concrete.

Via a series of preliminary experiments, the primary material constituents and mixing
proportion were determined (Table 4) for the preparation of the designed ultrahigh-strength
marine concrete.

Table 4. The original mix proportions.

Sample
Binder (Mass Fraction)

Coral Sand a Coral Powder a SP a W/B
Cement Silica Fume

S1 0.8 0.2 0.88 0.35 0.024 0.14
a. Fraction by binder mass.

The mixing proportions prepared for single-factor experiments are given in Table 5.
The measured compressive strength and flexural strength of each sample are shown in
Figures 7 and 8, respectively.

It can be observed from Figure 7and Figure 8 that both compressive strength and flex-
ural strength monotonically decrease with an increase in W/B. A part of the water hydrates
the cement, while the remaining free water forms bubbles or pores after the evaporation
process [43]. These bubbles or pores reduce the homogeneity of the concrete [31]. Addi-
tionally, the stress concentration is observed around the pores under external loads [44].
The lower the W/B, the denser the concrete, and the higher its strength [31]. However, the
low W/B (0.14) also reduces the workability of the concrete, impeding the formation of
the concrete into the required configuration. Thus, for the following mixing proportion
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experiments, the moderate W/B of 0.16 was chosen to achieve the designated criterion
of high strength on the one hand, and to maintain the workability of the concrete on the
other hand.

Table 5. Mixing proportions of samples.

Sample
Binder (Mass Fraction)

Coral Sand a Coral Powder a SP a W/B
OPC SF CCCW

S1 0.8 0.2 - 0.88 0.35 0.024 0.14
S2 0.8 0.2 - 0.88 0.35 0.024 0.16
S3 0.8 0.2 - 0.88 0.35 0.024 0.18
S4 0.9 0.1 - 0.88 0.35 0.024 0.16
S5 0.7 0.3 - 0.88 0.35 0.024 0.16
S6 0.6 0.4 - 0.88 0.35 0.024 0.16
S7 0.9 - 0.1 0.88 0.35 0.024 0.16
S8 0.8 - 0.2 0.88 0.35 0.024 0.16
S9 0.7 - 0.3 0.88 0.35 0.024 0.16

a. Fraction by binder mass.

Figure 7. Compressive strength of USMC with different admixtures: (a) W/B, (b) Silica fume,
(c) CCCW.

Figure 8. Flexural strength of USMC with different admixtures: (a) W/B, (b) Silica fume, (c) CCCW.

The high cement content gives rise to the high temperature increase of hydration, as
well as autogenous shrinkage of the concrete [45]. To enhance the strength of the concrete
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and to reduce its autogenous shrinkage [46], two ultrafine powders were used as alternative
admixtures to partially replace the cement: silica fume [47], and CCCW [48].

Silica fume is an ultrafine globular active material; its average particle size is 0.1–0.5 µm,
which is 100 times smaller than that of the cement. Such fine silica fume can fill the gaps
between the cement particles, which can greatly promote the particle packing density
effect [49]. A total of 90% of the composition of the silica fume is active silica, which shows
strong volcanic activity at room temperature [50]. The silica can react with the calcium
hydroxide produced by the hydration of the cement, as shown in Equations (1)–(3) [51],
which produces C-S-H gel and further facilitates the hydration process of the cement [52,53].
It can be seen that the strengths show complex variations. The influence of the silica fume
is polymorphic. As the silica fume increases, the strengths are increased and exhibit a peak
value. They then show significant reductions when the proportion of the silica fume
increases to 40%. The lower proportion of the cement reduces the cementation between the
aggregates and the particles, which can reduce the homogeneity of the concrete [31].

3 CaO·SiO2+n H2O = x CaO·SiO2·y H2O+(3 − x) Ca(OH)2 (1)

2 CaO·SiO2+n H2O = x CaO·SiO2·y H2O+(3 − x) Ca(OH)2 (2)

SiO2+x Ca(OH)2+n H2O = x CaO·SiO2·y H2O (3)

The Ca2+ and SiO3
2− in the cementitious capillary crystalline waterproof material

(CCCW) can react with the unhydrated or partially hydrated cementitious materials and
produce tobermorite [54]. The penetration of the CCCW into the gaps and pores of the
concrete leads to the reaction of the active compounds in CCCW with the free ions (such
as SO4

2− and AlO2−) and compounds (such as CaO) in the concrete, which produces
dendritic crystallines (such as hydrated sodium silicate) [55] that are not soluble in water
(see Figure 9). Due to the high porosity of coral aggregates, the produced crystallines can
fill the pores within the coral, thus improving the densification of the coral aggregates [56].
Increasing the CCCW content raises the compressive strength and flexural strength up to
a threshold value of CCCW content, beyond which a further increase in CCCW content,
with a corresponding reduction in the cohesiveness of the concrete, lowers the homogeneity
and strengths of the concrete.

Figure 9. The SEM image of the hydration products of CCCW in USMC.

3.2. The Influence of Multiple Combined Binders on Mechanical Properties

The single-factor experiments determine the optimal range of each of the constituent
contents of the binder for the enhancement of the mechanical strength of the studied con-
crete. For this section, the mix designs were performed to find the optimal mix proportion
for the development of the ultrahigh-strength concrete. Due to the more diverse and
significant effects on the compressive strength, the ordinary Portland cement, silica fume,
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and CCCW are considered as the main design parameters in the mixing system in the
present study. The mass fractions of these three constituents are described in Equation (4).
For CCCW, the optimal range of mass fraction was set to 0.1–0.2, while for silica fume it
was 0.15–0.25. It should be noted that excessive cement constitution leads to intensive
release of the hydration heat, which can result in a severely autogenous shrinkage and
generate fine cracks within the concrete [39]. The mass fractions of the cement in the
fabricated ultrahigh-strength concretes listed in Table 2 are all higher than 0.73. To reduce
the autogenous shrinkage while maintaining the high strength performance of our concrete,
a range of mass fractions of 0.55–0.7 was chosen for the cement. The 28-day compressive
strength is considered as a design parameter and an optimization criterion.

0.55 ≤ A ≤ 0.70
0.10 ≤ B ≤ 0.20
0.15 ≤ C ≤ 0.25

A + B + C = 1

(4)

where A, B, and C represent the fractions of OPC, CCCW, and SF, respectively.
To determine the optimal mix proportions, w built a hybrid regression model and

obtained the response surface with the help of the Design-Expert software [57]. The IV-
optimal design method was implemented, and 16 mix proportions as well as the consequent
compressive strength were determined [58] (see Table 6). It should be noted that there
were 5 spectral points located in the same position; thus, only 11 points are presented
in Figure 10.

Table 6. Mix proportions and compressive strengths of optimal mixture design.

Sample
Binder (Mass Fraction)

Coral Sand a Coral Powder a SP a W/B
Y: Compressive
Strength (MPa)A: OPC B: CCCW C: SF

S1 0.70 0.10 0.20 0.88 0.35 0.024 0.16 114.21
S2 0.60 0.15 0.25 0.88 0.35 0.024 0.16 108.04
S3 0.65 0.1 0.25 0.88 0.35 0.024 0.16 100.42
S4 0.59 0.19 0.22 0.88 0.35 0.024 0.16 100.66
S5 0.63 0.16 0.20 0.88 0.35 0.024 0.16 105.43
S6 0.7 0.15 0.15 0.88 0.35 0.024 0.16 115.51
S7 0.66 0.13 0.21 0.88 0.35 0.024 0.16 103.82
S8 0.55 0.2 0.25 0.88 0.35 0.024 0.16 88.58
S9 0.66 0.16 0.18 0.88 0.35 0.024 0.16 104.22
S10 0.70 0.10 0.20 0.88 0.35 0.024 0.16 114.21
S11 0.62 0.20 0.18 0.88 0.35 0.024 0.16 104.62
S12 0.63 0.16 0.20 0.88 0.35 0.024 0.16 105.43
S13 0.65 0.20 0.15 0.88 0.35 0.024 0.16 108.64
S14 0.63 0.16 0.21 0.88 0.35 0.024 0.16 105.43
S15 0.70 0.15 0.15 0.88 0.35 0.024 0.16 115.51
S16 0.60 0.15 0.25 0.88 0.35 0.024 0.16 108.04

a. Fraction by binder mass.

The regression equation (Equation (5)) is determined by using a select cubic model
for the mix designs. The results predicted by the regression equation fit the experimental
data very well (Figure 11), indicating that the selected model can successfully identify the
correlation between the mixture components.

Y = 165.65 A + 68.12 B + 85.57 C − 32.67 AB − 101.01 AC + 45.75 BC
+242.01 ABC − 210.58 AB(A − B) − 133.35 AC(A − C) − 131.31 BC(B − C)

(5)
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Figure 10. Spectral points of optimal mixture design.

Figure 11. Predicted compressive strength vs. experimental compressive strength.

The discrepancy between R2 and AdjR2 is 0.0036, which further indicates the reliability of the
cubic model [59]. To quantify the effects of the interaction of parameters and identify the significance
of the mix model, analysis of variance was performed [60]; results are given in Table 7. The model
F-value of 276.45 implies that the model is significant. P-values of “Prob > F” less than 0.05 indicate
that the model terms are significant [61]. In our case, the linear mixture components AC, AB(A−B),
AC(A−C), and BC(B−C) are significant model terms.

The response surface illustrates the effects of the three independent parameters on the compres-
sive strength (see Figure 12). It can be seen that the Portland cement plays the most important role
in the enhancement of the compressive strength. Additionally, the contribution of the silica fume is
higher than that of the CCCW.

Based on the results calculated by the Design-Expert software, an optimal mix proportion
associated with the targeted high compressive strength was attained. To verify the optimized mix
proportion [62], the three tests were conducted to estimate the compressive strength. It is notable that
the three simultaneously repeated measurements are used to increase the confidence in experimental
data and decrease the uncertainty in our estimation. The mix proportions, compressive strength,
and flexural strength are given in Table 8; the average compressive strength is 116.76 MPa, which
achieves our expectation, and is higher than that of the original mix proportion. The average flexural
strength is 18.24 MPa.
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Table 7. Analysis of variance results of parameter interaction.

Source Sum of Squares df Mean Square F-Value p-Value Prob > F

Model 703.45 9 78.16 276.45 <0.0001
Linear

mixture 457.24 2 228.62 808.61 <0.0001

AB 0.095 1 0.095 0.34 0.5826
AC 1.76 1 1.76 6.21 0.0471
BC 0.12 1 0.12 0.41 0.5464

ABC 1.5 1 1.5 5.31 0.0608
AB(A−B) 9.69 1 9.69 34.27 0.0011
AC(A−C) 6.92 1 6.92 24.48 0.0026
BC(B−C) 2.71 1 2.71 9.59 0.0212
Residual 1.70 6 0.28 - -
Lack of

Fit 1.70 1 1.70 - -

Pure
error 0.000 5 0.000 - -

Cor total 705.15 15 - - -

Figure 12. Response surface of the effects of cement, CCCW, and silica fume on the compressive strength: (a) contour;
(b) 3D surface.

Table 8. Experimental results of the optimal mix proportions.

Binder (Mass Fraction)
Coral Powder Coral Sand a W/B SP a Compressive

Strength (MPa)
Flexural

Strength (MPa)OPC CCCW SF

0.70 0.15 0.15 0.35 0.88 0.16 0.024 116.68 18.53
0.70 0.15 0.15 0.35 0.88 0.16 0.024 119.34 18.94
0.70 0.15 0.15 0.35 0.88 0.16 0.024 114.27 17.25

a. Fraction by binder mass.

3.3. Microstructure Characterization and Performance Test of Optimized Concrete

The cement dosage in the original mix proportion was 858 kg/m3, while this was
decreased by 12.47% (751 kg/m3) in the optimal mix proportion. The high compressive
strengths of these concretes are attributed to their high binder content, high ultrafine
powder content, and low W/B. Due to the low W/B and high content of silica components,
the hydration heat of the concrete is relatively high; thus, the internal relative humidity
decreases quickly [63]. Such intensive hydration reactions can result in high early-age
autogenous shrinkage and shrinkage cracking, which negatively affect the strength devel-
opment of the concrete [64].

Figure 13 illustrates the autogenous shrinkages of the reactive powder concrete, con-
crete with the original mix proportions, and concrete with the optimized mix proportions.
Compared with the autogenous shrinkages in the reactive powder concrete and in the
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original mix proportions, the autogenous shrinkage is reduced by 36.89% and 4.65%,
respectively, using the optimized mix proportions.

Figure 13. The autogenous shrinkage properties of the three different concretes.

The hydration heat reduces with a decrease in the cement content, which leads to
a reduction in the autogenous shrinkage. Additionally, by means of the internal curing
within the coral sand, the autogenous shrinkage reduces further. The fine pore structures
of the coral sand play a decisive role in the inhibition of the autogenous shrinkage [65].

The hydration heat flows of samples are depicted in Figure 14. For all three concretes,
the hydration heat flow decreases gradually during the first 7 h, and then increases to the
maximum value between 30 h and 38 h. The highest heat flow and the cumulative heat
of the concrete with the optimized mixture proportions are both lower than those of the
reactive powder concrete (in Table 9) and the concrete with the original mix proportions
(see Figures 14 and 15). Due to the retardation of the high content of the superplasticizer,
the highest heat flow of the concrete with the optimized mixture proportions is maintained
for a relatively longer time (Figure 14) [66].

Figure 14. The heat flow test of the three different concretes.
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Table 9. The mix proportions of the reactive powder concrete.

Sample
Binder (Mass Fraction)

Quartz Powder a Quartz Sand a W/B SP a
Cement Silica Fume

Reactive
powder
concrete

0.8 0.2 0.34 0.88 0.2 0.024

a. Fraction by binder mass.

Figure 15. The cumulative heat test of the three different concretes.

A scanning electron microscope was employed to investigate the microstructures of
the concrete with the optimal mix proportions (see Figure 16). The microstructures of the
coral sand, the sample, and the interfacial area can be seen clearly in Figure 16a. Nearly no
obvious defects in the interfacial zone between the coral sand and sample are observed [67].
There are numerous pores in the coral sand, while the great majority is filled with the
inorganic compounds generated by the reactions within the concrete (see Figure 16b).
Judging by the osmotic crystallization of CCCW in the pores, these compounds may be
the products of the CCCW hydration. The sample is packed with compact microstructures
(Figure 16c). There are nearly no gaps or defects within the sample [68]. The crystals of
the hydration products can be seen in Figure 16d. In addition to the Ca(OH)2, C-S-H, Aft,
and AFm generated by the hydration reaction of the cement, the additive silica fume can
also react with Ca(OH)2 and produce C-S-H gel [69]. Crystals are produced by the reaction
between the CCCW and H2O (see Figure 16d).

The X-ray diffraction of the coral sand and the concrete are shown in Figures 17 and 18,
respectively. The aragonite and calcio-olivine are identified in the coral sand (Figure 17).
The quartz, berlinite, ettringite, thadeuite, and calcium silicate hydrate are characterized in
the concrete (Figure 18). The highest peak position in quartz indicates the siliceous nature of
the designed concrete. Quartz fills the pores of the concrete, resulting in the improvement
of its compactness [70]. Ettringite and calcium silicate hydrate are the hydration products
of the Portland cement and CCCW; they are the main hydration products that contribute
significantly to the physical and chemical properties of the concrete [71–73]. Berlinite and
thadeuite can be the reaction products between calcio-olivine and other compounds, which
also fill the pores and reduce the pore size to modify the microstructures and enhance the
strengths [49]. The absence of aragonite in the X-ray diffraction of the concrete results from
the relatively small fraction of the coral sand in the selected sample. The peak position is
too low to be identified.



Materials 2021, 14, 5871 15 of 19

Figure 16. The microstructures of USMC: (a) Interface area, (b,c) Paste area, (d) hydration prod-
ucts area.

Figure 17. Mineral composition of the coral sand bulk.

Figure 18. X-ray diffraction pattern of USMC.
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4. Conclusions

An ultrahigh-strength coral aggregate concrete for marine engineering and construc-
tion of remote islands has been developed. An average compressive strength of 116.76 MPa
and flexural strength of 18.24 MPa are attained by the optimization of the mix proportions
for our concrete. The autogenous shrinkage and the heat flow of early hydration reactions
of the designed concrete were measured. On account of the lower cement content and
the internal curing provided by coral aggregates, the volume change resulting from the
autogenous shrinkage was only 63.11% of that of ordinary reactive powder concrete. The
highest heat flow and the cumulative heat of the concrete with optimized mixture propor-
tions were both lower than those of the reactive powder concrete and the concrete with
the original mix proportions. The microstructures of the main constituents, as well as the
interfacial zone between the coral sand and the sample, were characterized via SEM. Our
concrete gains flowability and self-compacting ability through the packing of the pores of
coral aggregates with hydration products of CCCW. The dense structures observed in the
sample and in the interfacial zone facilitate the development of the strength of the designed
concrete. The phases formed in our concrete were identified via XRD analysis.

Our present study demonstrates the feasibility of production of the ultrahigh-strength
(over 100 MPa) concrete with coral aggregates, and of reducing the autogenous shrinkage
through the internal curing provided by coral aggregates.
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