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Abstract: Adipose tissue is a complex endocrine organ, with a role in obesity and cancer. Adipose
tissue is generally linked to excessive body fat, and it is well known that the female breast is rich
in adipose tissue. Hence, one can wonder: what is the role of adipose tissue in the breast and why
is it required? Adipose tissue as an organ consists of adipocytes, an extracellular matrix (ECM)
and immune cells, with a significant role in the dynamics of breast changes throughout the life
span of a female breast from puberty, pregnancy, lactation and involution. In this review, we will
discuss the importance of breast adipose tissue in breast development and its involvement in breast
changes happening during pregnancy, lactation and involution. We will focus on understanding the
biology of breast adipose tissue, with an overview on its involvement in the various steps of breast
cancer development and progression. The interaction between the breast adipose tissue surrounding
cancer cells and vice-versa modifies the tumor microenvironment in favor of cancer. Understanding
this mutual interaction and the role of breast adipose tissue in the tumor microenvironment could
potentially raise the possibility of overcoming breast adipose tissue mediated resistance to therapies
and finding novel candidates to target breast cancer.
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1. Introduction

Breast cancer (BC) is the second leading cause of cancer-associated death among women
worldwide—constituting 25% of all cancers and 12% of cancer-associated deaths [1]. The breast
is mainly composed of adipose and fibroglandular tissues. Breast lobules and ducts are laid upon the
background of fibrous and adipose tissues. The breast adipose tissue covers most of the breast from
the collarbone to the underarm and around the center of the ribcage [2]. It plays a major role in the
communication of all components of the breast microenvironment [3]. The main function of breast
adipose tissue is to store the excess energy and release it when required by the body. However, breast
adipose tissue also plays a major role in breast development and maturation. Being a rich energy source,
it also aids the development and progression of BC. Breast adipose tissue secretes several growth
factors which are utilized by cancer cells for their survival. BC typically starts in the epithelial cells
surrounding the ductal and lobular tissues of the breast. It then develops a complex microenvironment,
which involves all the surrounding cells of the breast including adipose tissue. In this review, we will
discuss the importance of the breast adipose tissue ”organ” in breast development through puberty,
pregnancy and lactation, up to age-related involution. Thereafter, we will discuss the importance of

Int. J. Mol. Sci. 2020, 21, 5760; doi:10.3390/ijms21165760 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-2704-5677
http://dx.doi.org/10.3390/ijms21165760
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/16/5760?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 5760 2 of 34

breast adipose tissue as a ”master regulator” of several processes in the physiology of breast cells,
shedding light on the different roles of breast adipose tissue in BC development and progression.
Finally, the role of breast adipose tissue in determining the efficacy of BC treatments currently used in
clinics will be discussed.

2. Adipose Tissue and Its Plasticity

The adipose organ, a dynamic tissue complex and an endocrine organ, consists of adipocytes,
a stromal–vascular fraction consisting of lymphocytes, macrophages, endothelial cells, fibroblasts,
pericytes, extracellular matrix and adipose precursor cells [4]. It is composed of three different
adipose tissues: white, brown and beige. The white adipose tissue (WAT) is the main energy storage
compartment consisting of a large cytoplasmic lipid droplet. It releases energy between meals. It is
also known to produce many pro-inflammatory molecules, many adipokines related to inflammatory
changes and has a low metabolic activity. WAT is characterized by the expression of leptin and S100B
and by the lack of uncoupling protein 1 (UCP-1). The brown adipose tissue (BAT) is supposed to
be only present in hibernating animals and newborns. However, BAT is also identified in small
repositories near the neck and the interscapular region [5]. BAT is characterized by small droplets
of lipids, iron-enriched large-spherical and packed mitochondria and a large number of capillaries,
which are used for oxygen transport to BAT to produce energy and for the distribution of produced
energy to the rest of the body. BAT is responsible for maintaining body temperature by thermogenesis
using mitochondria enriched UCP1 protein. Beige/brite (brown-like) adipose tissue is characterized
by a role in both energy storage as well as thermogenesis. It expresses UCP-1, PPARγ, leptin, and
has a high mitochondrial content compared with WAT [6]. The conversion of WAT to beige/brite
adipose tissue has been reported in response to cold or β3-adrenergic agonists [7]. This process is
often referred to as browning and can happen after the exposure to the PR-domain containing 16
(PRDM16), fibroblast growth factor (FGF) 21, Peroxisome proliferator-activated receptor-γ (PPAR-γ),
PPAR-γ coactivator α (PGCα), irisin, apelin, Cyclooxygenase 2 (Cox2), microRNA 196 (MIR196a) and
MIR28 [8]. The conversion of BAT to beige/brite adipose tissue has also been documented. The process
is often referred to as the whitening of BAT and is usually considered as BAT malfunctioning leading
to death of BAT cells [9]. Furthermore, it has been reported that WAT can trans differentiate to BAT in
a cold environment [10–12].

3. Adipose Tissue in Breast Development

Several studies have demonstrated the role of breast adipose tissue in the morphogenesis of
mammary glands. Breast adipose tissue is a major endocrine system of the breast and secretes many
growth factors and enzymes. It has been shown by in vitro experiments that breast adipose tissue
plays a role in mammary epithelial cell differentiation [13,14]. Experiments using a co-transplantation
system with breast stromal cells have shown that breast adipose tissue is responsible for characteristic
morphogenesis of epithelial cells in the breast [15]. Further, it has been shown that loss of WAT of
breast—using A-ZIP/F1 mouse model—results in reduced fertility and distends mammary ducts [16].
A study by Hu et al. 2002 showed the complete loss of ductal epithelium development when inherited
loss of functional leptin occurs or in the absence of the leptin receptor, whereas the structure of ductal
epithelium is restored with the re-establishment of leptin signaling [17]. On the other hand, abnormal
mammary growth with underdeveloped ducts is observed in the presence of overexpression of
adiponectin in mice [18–20]. Leptin and adiponectin are secreted by breast adipose tissue in the breast.

Landskroner-Eiger et al., 2010 showed that breast adipocytes play a crucial role in mammary
gland development during prepuberty, puberty and adulthood. It is known that during the prepuberty
to puberty phase, rapid ductal branching and terminal end bud (TEB) formation take place, whereas
during adulthood, alveolar buds start to develop side branching (Figure 1) [21]. This study also
highlights that the loss of mammary gland specific adipocytes results in a slowdown of all these
processes, leading to fewer duct branching points, fewer TEBs, excessive lobulation and changes in
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proliferation and apoptosis of TEBs associated with epithelium, pointing towards the importance of
breast adipose tissue in the development as well as the maintenance of the breast [21].
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Figure 1. The role of adipose tissue in breast development. (A) Mature breast adipose tissue secretes
leptin which is essential for ductal epithelial development. High levels of adiponectin inhibit this
process. White adipose tissue (WAT) is essential for the formation of terminal end buds (TEBs) during
prepuberty and puberty stages. After menarche, the breast starts to mature, and the duct starts its side
branching, which requires WAT. (B) During pregnancy, WAT trans differentiates into pink adipose
tissue (PAT). PAT has milk secretory potential. The process of trans differentiation from WAT to PAT is
carried out by the transcription factor SPP1. Moreover, WAT is also essential for alveolar development
during the lactation phase and also for the lactation process. During the phase of pregnancy and
lactation, brown adipose tissue (BAT) trans differentiates to a basal myoepithelial phenotype helping in
the alveolar development. Both trans differentiated cells revert to their original state after lactation with
the aid of the transcription factor PPARγ. (C) There are two stages of breast involution (i) post-lactation
and (ii) age-related. SFRP1 secreted by breast adipose tissue helps in these involution processes by the
apoptosis of luminal epithelial cells. Furthermore, the epithelial cells are replaced by adipose tissue
during the involution process.

4. Adipose Tissue Plasticity during Pregnancy, Lactation and Involution

The trans differentiation of adipose tissue underlines the extraordinary property of adipose tissue
plasticity and is the result of physiological changes [22,23]. A recent study shows a broader view of
this picture in pregnancy [24]. WAT in the breast has been shown to change during the second stage
of pregnancy into milk producing glands containing lipid-enriched elements, an apical surface with
microvilli and fully developed rough endoplasmic reticulum (Figure 1). The milk producing adipose
glands are parenchymal cells of the breast adipose organ [24] and are named Pink adipose tissue (PAT).
PAT arises exclusively in female subcutaneous depots during pregnancy and lactation. It is so-called
this because during pregnancy, the mammary gland looks pink at the macroscopic level. The existence
of PAT in the breast is also confirmed by the presence of the whey acidic protein (WAP) gene, a marker
of the milk-producing epithelial mammary gland only present in pregnant women adipose tissue [25].
Perilipin 2 (Plin2) is also expressed in PAT, but is not present in WAT [26,27]. PAT does not express
Plin1, which is typical of WAT [28]. The trans differentiation of WAT to PAT during pregnancy and
lactation has been confirmed by the expression of these two genes (Plin1 and Plin2) on day 17–18
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of pregnancy in compartmentalized adipocytes or early alveoli from the mammary gland section of
mice [26]. The expression of Plin1 decreases as pregnancy progresses. Another study shows that
10–15% of early post-lactation adipocytes showed the expression of both WAP and S-100B confirming
the PAT to WAT differentiation post-lactation [29]. A study by Couldrey et al., 2002, showed that
the absence of WAT in the breast results in the inhibition of alveolar development and lactation in
mice (Figure 1) [7]. Prokesch et al., 2014, showed that secreted phosphoprotein 1 (SPP1) signaling
through integrin plays a role in WAT to PAT trans differentiation [26]. On the other hand, it has been
shown that PPARγ is a key factor for PAT to WAT trans differentiation in the breast, which occurs
post-lactation during involution (Figure 1) [24]. Another study reported that the downregulation
of PPARγ expression results in a pro-breast tumorigenic environment [30], suggesting that PAT to
WAT trans differentiation is an essential step in proper involution. Furthermore, it has been shown
that partial involution directly results in the malignant transformation of normal breast cells [31].
In addition to partial post-lactation involution [32–34], an increase in breast adipose tissue (replacing
the epithelial cells of glands) [35,36] results in excessive pro-inflammatory mediators, leading to
tumorigenesis. The importance of breast adipose tissue in proper breast involution was also indicated
in the study on Secreted Frizzled Related Protein 1 (SFRP1). SFRP1 is a known adipokine secreted by
adipocytes, and it plays a role in adipogenesis, inflammation and apoptosis [37–39] processes that are
all of significant importance in breast involution (Figure 1). Furthermore, SFRP1 overexpression was
observed in the post-lactation period [40] indicating its role in involution. Gauger et al., 2012, also
suggested that SFRP1 knockout mice show a ductal and lobular branching similar to mid-pregnancy
mice [41]. This further indicates an important role of breast adipose tissue in breast involution and
tumor development.

The role of BAT has also been studied in pregnancy. It was shown that BAT in the breast
changes to a mammary basal myoepithelial phenotype during pregnancy and lactation (Figure 1) [42].
The lineage tracing experiments identified the expression of a gene signature resembling BAT and
myoepithelial cells in 2.5% of the anterior dorsal interscapular mammary myoepithelial cell population.
When traced during the involution process after lactation, 0.8% of BAT was trans differentiated from
myoepithelial cells [42]. A study by Singh et al., 2017, reported a role for BAT and beige/brite adipose
tissue in BC development [43]. Markers for BAT (UCP1, MYF5, EVA1 and OPLAH) and beige (UCP1,
CD137/TNFRSF9 and TBX1) adipocytes were significantly high in BC xenografts [43].

These findings further strengthen the role of breast adipose tissue throughout the development
of the mammary gland and is an essential factor in pregnancy, lactation and involution processes.
A dysregulation in the proper functioning of the mammary adipose tissue has an adverse effect in
breast development, leading to tumorigenesis. Furthermore, the multiplicity of breast adipose tissue
subtypes and its association with breast further highlights the importance of personalized BC care.

5. Transcriptional Regulation of Adipose Tissue

Transcriptional regulation of gene expression is a key factor in adipogenesis and has an important
role in breast development and BC (Table 1).
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Table 1. The role of transcription factors in adipogenesis, breast development and breast cancer.

Transcription Factor Role in Adipogenesis Role in Normal Breast Role in Breast Cancer

PPARγ Terminal differentiation
of adipocytes

Absence leads to complete loss
of WAT [44]

PPARγ expression act as a
tumor suppressor but in a
tumor microenvironment

helps in tumor
progression [45]

c/EBPα Terminal differentiation of
adipocytes

Transcriptional regulation in
early stage of lactation and in
later involution process [46]

Tumor suppressor [46–48]

c/EBPβ

Promotes adipogenesis.
Transcription factor at

pre-adipogenesis. Assist other
adipogenic transcription

factor [49]

Helps in ductal outgrowth,
ectasia, its branching and
secretory activity [50,51]

Associated with ER negative
BC, high grade tumor,

metastasis and poor survival
outcome [50–58]

c/EBPδ Promotes adipogenesis ND Increases BC stemness [59]

SREB1 Promotes adipogenesis ND Tumor metastasis and poor
progression [60]

KLF5/KLF6-SV/KLF4
and KLF7 Promotes adipogenesis ND Tumor progression, EMT and

metastasis [61–63]

KLF2/KLF6/KLF4
and KLF15 Promotes adipogenesis ND

Inhibits proliferation,
metastasis, and cell cycle in

BC [62,64]

GATA2 Promotes adipogenesis ND Promotes BC by inhibiting
PTEN [65]

GATA3 Promotes adipogenesis
Normal development of

mammary gland, specifically
luminal epithelial cells [66]

Tumor suppressor [66]

FoxA2
Inhibits adipogenesis in

pre-adipocytes and increases
glucose metabolism in obesity

ND Inhibits BC [67]

FoxC2
Inhibits adipogenesis by
inhibiting the induction

of PPARγ
ND Promotes BC [68]

CHOP

Changes the fate of
mesenchymal stem cells (MSC)

to myocytes and osteocytes
rather than adipocytes [69,70]

ND Invasiveness [71]

Wnt signaling Inhibits adipogenesis by
changing the fate of MSC

Development of mammary
gland, its branching and

regulating its function [72–77]

High grade tumor and poor
prognosis [78–80]

PREF-1

Important for embryonic WAT
and expression of adult
adipose tissue [80,81]

Maintain preadipocytes state
and inhibits adipocyte
differentiation [81,82]

Depending on the stimuli from
steroid hormones it can

differentiate MSC of breast
into adipocytes or epithelial

cells [83]

High level of PREF-1 inhibits
proliferation and invasion,
whereas low-level of it is

required for these
processes [84]

SIRT-1 Inhibits adipogenesis ND Controversial role in
BC [85,86]

TAZ Inhibits adipogenesis by
repressing PPARγ

Negative regulator of luminal
differentiation [87]

Aggressiveness of BC, role in
migration, invasion and

tumorigenesis [87]

ND = No available data.

Adipogenesis is the term used for the formation of new fat cells. The most important transcription
factor that has a role in adipogenesis is PPARγ. PPARγ is often regarded as the master regulator of
adipogenesis as its expression is significantly induced during adipogenesis. The loss of function of
PPARγ due to mutation can lead to lipodystrophy, insulin resistance and diabetes in humans [88–90].
Wang et al., 2013, showed that in mice, adipocyte-specific deletion of PPARγ results in the complete
loss of WAT [44]. Another important transcription factor in adipogenesis is CCAAT-enhancer-binding
proteins (C/EBP) α. Both PPARγ and C/EBPα regulate each other in a positive feedback loop, leading to
an increase in adipogenesis genes. C/EBPα expression is induced around 2–4 days after adipogenesis,
showing a difference from other C/EBPs which mostly work at a pre-adipogenesis stage. Furthermore,
C/EBPα knockout mice show a reduced expression of BAT and a loss of WAT [91]. There are several
other transcription factors affecting adipogenesis: C/EBPβ, C/EBPδ, CHOP, EBF1/2, SREBP1, KLFs,
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GATA2/3, PREF-1, SIRT-1, TAZ, Wnt, FoxA2 and FoxC2, all having a role in pre-adipogenesis, and
they mediate their effect by altering the expression of PPARγ and c/EBPα [92]. Whereas C/EBPβ,
C/EBPδ, EBF1/2, SREBP1 and KLF3/4/5/6/15 promote adipogenesis [93,94], GATA2/3, CHOP, FoxA2,
FoxC2, Wnt signaling, PREF-1, SIRT-1, TAZ and KLF2/7 have a role in anti-adipogenesis [93,94].
At the pre-adipogenesis stage, C/EBPβ is considered to be the most important transcription factor.
After binding to the adipogenic enhancer sites on PPARγ and C/EBPα, it assists other adipogenic
transcription factors such as the glucocorticoid receptor, STAT5A and RXR 9 to form adipogenic
enhancers [49]. PPARγ and C/EBPα both play a role in the terminal differentiation of adipogenesis and
are both considered tumor suppressors [45–48,95]. However, evidence suggests that PPARγ does not
initiate tumor formation in normal breasts whereas in a tumor environment, the expression of PPARγ
results in tumor progression signaling [45]. Other evidence shows a downregulation of PPARγ due to
the activation of the Wnt signaling pathway in many cancers [95].

In terms of function, most pre-adipogenesis regulators in BC are involved in tumor growth and
proliferation. c/EBPβ has an important role in breast development. C/EBPβ−/−mice showed delayed
ductal outgrowth, ductal ectasia, decreased branching, reduced secretory activity, decreased levels of
milk protein β-casein and WAP [50,51]. An increase in C/EBPβ mRNA is associated with estrogen
receptor (ER) negative BC [52–55]. A significant association is observed with metastatic BC [56], high
grade tumor [55,57,58] and poor survival outcome [56]. Furthermore, Balamurugan et al. 2019, showed
that a downregulation of C/EBPδ leads to a reduction in stemness of BC cells which is mediated
by linking IL-6 and Hif-1α signaling [59]. Studies suggest a tumor suppressive role of Early B Cell
Transcription Factor (EBF)s [96]. On the other hand, Sterol regulatory-element binding protein (SREBP)
1 has been shown to be associated with tumor metastasis and poor progression of BC patients [60].
There is a mixed literature regarding a role for the Krüppel-like family of transcription factors (KLF)
in BC. It has been reported that KLF5, KLF6-SV, KLF4α and KLF7 have a role in tumor progression,
epithelial to mesenchymal transition (EMT) and metastasis [61–63], whereas KLF2, KLF6, KLF4 and
KLF15 inhibit proliferation, metastasis and cell cycle in BC [62,64].

The adipogenesis repressors also display mixed roles in BC. GATA-binding factor (GATA) 2
promotes BC by inhibiting PTEN activity [65], while GATA3 acts as a tumor suppressor and is required
for the normal development of the mammary gland, specifically luminal epithelial cells [66]. Further,
Forkhead Box (Fox) A2 suppresses BC [67], whereas FoxC2 promotes BC [68]. CHOP (C/EBPζ) and
Wnt signaling suppress adipogenesis by promoting the differentiation of mesenchymal stem cells
into myocytes and osteocytes but blocking the commitment to the adipocyte lineage [69,70]. CHOP
correlates with the invasiveness of human colorectal cancer [71], but not much information is reported
in BC. Wnt signaling (dependent or independent of CTNNB1) is required for the development of the
mammary gland, its branching and functions [72–77]. It has been reported that high levels of Catenin
Beta 1 (CTNNB1) lead to high tumor grade and poor prognosis in BC patients [78–80]. Moreover,
Preadipocyte factor 1 (PREF-1), also known as DLK-1, is highly expressed in mesenchymal adipocyte
precursors, which are important for the development of embryonic WAT and the expansion of adult
adipose tissue [81,82]. During breast development, platelet-derived growth factor (PDGF) receptor
α+ (PDGFRα+) and PREF-1+ mesenchymal stem cells, located near the parenchymal epithelium, can
differentiate into adipocytes or epithelial cells depending on the stimuli from steroid hormones [83].
PREF-1 has been shown to exert its effect in a dose-dependent manner in BC, where high levels
of PREF-1 result in a decrease in cell proliferation and invasion, whereas a low-level expression is
necessary for these processes [84]. The role of Sirtuin 1 (SIRT-1) in BC is controversial. Latifkar et
a.l, 2019 showed that a knockdown of SIRT-1 changes the secretome of BC cells, leading to increased
invasiveness and survival [85]. On the other hand, Jin et al., 2018, showed that SIRT-1 expression leads
to tumor promotion by modulating the expression of AKT [86]. Tafazzin (TAZ) is highly expressed in
most aggressive BCs and has a role in BC migration, invasion and tumorigenesis [87].

The regulators of breast adipose tissue have been extensively studied, depicting the importance of
adipose tissue in puberty, breast development, pregnancy and involution. There is a delicate switch
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which balances the outcome of this important organ—breast adipose tissue as a regulator of important
functions, or as a tumor promoter.

6. Adipose Tissue as a Master Regulator

The breast adipose tissue is a known endocrine organ that secretes many factors including
adipokines, cytokines, chemokines and growth factors, therefore controlling various cellular processes.
Factors with a particular significance in BC are discussed in this section (Figure 2).
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Figure 2. Adipose tissue signaling in breast cancer. (A) Leptin, a major adipocytokine released
by adipose tissue binds to the leptin receptor and activates the JAK2-STAT3 pathway leading to
proliferation and stemness of BC cells. Leptin transactivated HER2 receptor in absence of its ligand via
JAK2, which leads to BC survival. Leptin also activates the ER receptor in absence of estrogens and,
furthermore, inhibits its proteasomal degradation. (B) Aromatase secreted by adipose tissue converts
androgens to estrogens leading to an increase in BC risk. (C) Visfatin increases the MAPK-ERK pathway
through an unknown receptor thereby increasing BC proliferation. Activated MAPK also activates
STAT3 signaling. (D) FABP4 expression is transcriptionally activated by the ERK-Ets1 pathway. Upon
activation, FABP4 increases proliferation and migration of BC cells by nuclear accumulation of PPARγ
and SREB2. Furthermore, FABP4 translocates to the cytoplasm where it binds to RA and, therefore,
leads to cell differentiation. (E) Adiponectin increases the insulin signaling, glucose uptake, decreases
glycogen synthesis and inhibits STAT3 and NFκB mediated signaling leading to the inhibition of BC
survival and progression. (F) SFRP1 signaling through the integrin receptor inhibits pro-inflammatory
cytokines, TGFβ and Wnt signaling, thereby inhibiting BC progression.

6.1. Adipocytokines

Adipokines or adipocytokines are cytokines secreted by adipose tissue (both pre- and mature
adipocytes) with autocrine and paracrine functions. There are several adipokines secreted primarily
by adipocytes, namely Leptin, Adiponectin, Resistin and Chemerin.

6.1.1. Leptin

Leptin is a predominantly adipocyte-specific peptide hormone, encoding a 16kDa protein. It has
a dual role as a hormone and a cytokine. It regulates food intake and energy homeostasis leading
to fat degradation in adipocytes. A role for leptin has been reported in puberty, the estrous cycle
and pregnancy. High levels of leptin in obese females result in early menarche [97]. The estrous
cycle in females has been associated with high levels of energy flux and energy balance. If body
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fat is extremely low, it affects leptin levels and in turn the menstruation cycle resulting in poor egg
quality [98], which underlines the importance of leptin in women’s physiology. However, an increasing
amount of data suggests a role for leptin in female cancers including breast, cervical, endometrial and
ovarian [99]. The effect of leptin expression and its association with BC differs between premenopausal
and postmenopausal women. In postmenopausal women, high amounts of leptin have been associated
with BC, whereas in premenopausal women, it is supposed to reduce the risk of BC. In premenopausal
women, leptin has a role in folliculogenesis of the ovary, and high levels of leptin show a protective
role against BC by decreasing the levels of estradiol [100,101]. Leptin mediates its role by binding to
the leptin receptor (obRa-obRf), a class 1 cytokine receptor present in breast cells and overexpressed
in cancer. Leptin activates multiple downstream signaling via SOCS-STAT3 transcription activation,
thereby activating MAPK and AKT pathways, resulting in increased proliferation, angiogenesis
and decreased apoptotic death in cancer cells [102]. It can also activate ER (in the absence of the
ligand) [103,104] and human epidermal growth factor receptor 2 (HER2, by transactivation of EFGR
and JAK2), therefore resulting in tumor progression and resistance to targeted therapies [105,106].

6.1.2. Adiponectin

Adiponectin is an adipocyte-derived protein hormone, with a molecular weight of approximately
30 kDa (244-amino acid, encoded by the ADIPOQ gene), and circulates in the plasma as a low (trimer),
medium (hexamer) and high (multimer) molecular weight protein. It is also secreted from the placenta
during pregnancy [107]. It increases glucose uptake (decreases glucogenesis), fatty acid oxidation,
insulin signaling (by downregulating mTOR pathway), eNOS activity vasodilation and decreases
inflammation (by inhibiting IKK-NFkB-PTEN signaling) [108]. Adiponectin mediates its effect by
binding to adiponectin receptors (AdipoR1 and AdipoR2) as well as T-cadherin. In BC, adiponectin has
been reported to have antiproliferative and proapoptotic effects. Adiponectin activates the cytokine
signaling responsible for the inactivation of leptin-induced AKT and STAT3 activation as well as
Wnt signaling [109,110]. It is suggested that low levels of adiponectin are associated with high grade
tumors, which might be due to an interference in its signaling via AMPK, which has an antiproliferative
effect [111]. Studies also suggest that considering leptin or adiponectin concentration individually
in plasma is not correct, the true measurement is the ratio of the two, as different concentrations of
each can be found in BC cell lines [112–115]. Studies indicate that high ratios of leptin to adiponectin
increase the risk of BC in postmenopausal women [113,114], and also the progression of triple-negative
BC (TNBC) [115].

6.1.3. Resistin

Resistin is another adipose tissue-specific peptide hormone also known as adipose tissue-specific
secretory factor (ADSF) or C/EBP-epsilon-regulated myeloid-specifically secreted cysteine-rich protein
(XCP1). It is a 12.5kDa cysteine rich protein (108 amino acids), which causes an increase in low
density lipoproteins (LDL) and is found in inflammatory zones. It is also secreted by immune cells
(monocytes, macrophages and bone marrow cells) [116,117] and is known to increase inflammation,
resistance to insulin and atherosclerosis [118]. Resistin has been shown to have inverse effects in
various cancers including BC. It is responsible for BC progression and increased stemness properties,
which are primarily mediated by TLR-4 leading to the induction of NF-κB and STAT3 pathways, two
important pathways in cancer progression [119]. It also induces autophagy in BC cells leading to the
resistance of doxorubicin-induced apoptosis [120].

Chemerin is a 14kDa protein also known as retinoic acid receptor responder protein 2 (RARRES2),
tazarotene-induced gene 2 protein (TIG2) or RAR-responsive protein TIG2. It is mainly secreted
by WAT as a pro-chemerin and is cleaved by inflammatory or coagulation serine proteases to its
active form [121]. It functions as a leukocyte chemoattractant by binding to chemokine-like receptor 1
(CMKLR1). It has a role both in adaptive and innate immunity. It is an adipokine that has a function
in adipogenesis as well as adipocyte metabolism [122]. There are conflicts concerning its role in
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BC. A study by Pachynski et al., 2019, suggests that it inhibits BC by recruiting immune effector
cells in the tumor microenvironment [123]. On the contrary, a study by El-Sagheer (2018) shows a
correlation of high chemerin expression with the poor survival outcome of BC patients [124]. Being
a chemoattractant, it can attract natural killer cells and dendritic cells, thus behaving as a tumor
suppressor [125]. On the contrary, it can also induce inflammation and increase angiogenesis [126],
which explains the contradictory behavior of this protein in BC and, therefore, needs to be thoroughly
analyzed in different contexts.

6.2. Other Cytokines Secreted by Adipose Tissue

6.2.1. Lipocalin 2

Lipocalin 2 is an approximately 23kDa secretary glycoprotein also known as oncogene 24p3 or
neutrophil gelatinase-associated lipocalin (NGAL). It was identified in neutrophils, but a recent study
suggests that it is also secreted by adipocytes [127]. Its main function is in the activation of innate
immune response. It also acts as a transporter for small hydrophobic molecules. In BC, lipocalin 2
promotes cancer progression by increasing EMT [128]. Further clinicopathological analyses reveal that
the localization of lipocalin 2 also plays an important role in BC outcome. High cytoplasmic and low
nuclear localization of lipocalin 2 was associated with the worst survival outcome in BC patients [129].

6.2.2. Visfatin

Visfatin is a 52kDa protein, also known as nicotinamide phosphoribosyltransferase (NAmPRTase
or Nampt) and pre-B-cell colony-enhancing factor 1 (PBEF1). It is expressed by many tissues and by
adipocyte tissue macrophages. Visfatin induces BC proliferation via ERK1/2 and AKT pathways [130]
and induces a malignant potential in BC by c-Abl and STAT3 activation [131]. A role for visfatin has
also been seen in BC stemness by upregulating the growth differentiation factor 15 (GDF15) and by the
activation of the AKT pathway [132].

6.2.3. Plasminogen Activator Inhibitor 1 (PAI-1)

Plasminogen Activator Inhibitor 1 is a serine protease inhibitor also known as the endothelial
plasminogen activator inhibitor or serpin E1. It is secreted by various cells including ECs,
megakaryocytes, smooth muscle cells, fibroblasts, monocytes, adipocytes, hepatocytes and other
cell types. Its main function is to inhibit tissue/urokinase plasminogen activator (tPA/uPA) inducing
fibrinolysis [133]. However, it also plays a role in adhesion, migration, signal transduction and
anti-apoptosis [134,135]. In BC, a high expression of PAI-1 has been associated with shorter disease-free
survival [136]. Furthermore, it has been shown that the expression of PAI-1 leads to resistance to the
Src inhibitor via an increase in the secretion of CCL5 in HER2-positive BC cells [137].

6.2.4. Fatty Acid Binding Protein 4 (FABP4)

Fatty Acid Binding Protein 4 is a 15kDa protein, also known as adipocyte protein 2 (aP2). It is
predominantly expressed in adipocytes, macrophages and dendritic cells [138]. Adipocytes release
FABP4 during lipolysis via nonclassical pathways. FABP4 is an intracellular chaperon involved in the
trafficking of lipids [139]. It constitutes 1% of all secreted proteins from adipocytes [140]. A study by
Guaita-Esteruelas et al., 2017, showed that the exogenous expression of FABP4 leads to BC progression
by the activation of MAPK and AKT pathways in combination with the activation of fatty acid
transport proteins [138]. Another study by Apaya et al., 2020, showed that the expression of FABP4
in combination with CYP2C19 and FABP5 is required in both metastasis and stromal interactions of
TNBC. It further shows that in presence of metabolic by-product epoxyeicosatrienoic acid, FABP4
translocate to the nucleus resulting in the nuclear accumulation of PPARγ and SREBP-2, resulting in
increased proliferation, migration, transformation and distant metastasis of TNBC cells [141].
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6.2.5. Interleukins

Interleukins are a group of cytokines first observed in leukocytes. Interleukins are believed to
modulate immune response and inflammation. Adipocytes secrete many interleukins (ILs) such as IL-1,
IL-1β, IL-6, IL-8 and IL-10. IL-1 has a role in both innate and adaptive immunity, where it mediates
the inflammatory response in the presence of different stimuli [142]. In BC, IL-1 and IL-1β have been
reported to induce tumorigenesis and bone metastasis by regulating the tumor microenvironment.
In normal breast biopsy, IL-1 is not detected but is significantly increased in BC along with IL-2,
IL-4, IL-10 and G-CSF [143]. The increase in IL-1 expression in BC is usually considered as poor
progression, since the expression of IL-1 induces a secondary response by activating the secretion of
other inflammatory molecules (cytokines, chemokines), and also by altering the expression of adhesion
molecules that have a predominant role in metastasis [144]. In a tumor microenvironment, IL-1 is mainly
secreted by adipose tissue. It has a role in stimulating the secondary response; therefore, even a very
small amount of IL-1 secretion is considered as a most alarming adipokine response in BC [145]. On the
other hand, IL-6 is considered to be a pleiotropic cytokine, with contrasting effects on BC cells, both
protective and inhibitory [146]. However, recent evidence shows that adipocyte derived IL-6 has a role
in BC proliferation, EMT, stemness, angiogenesis, cachexia and resistance [147–150]. A similar finding
has been observed with IL-8 secreted by adipocytes in BC, where IL-8 secreted by cancer-associated
adipocytes is 2-fold higher than in normal cells. It plays a role in BC growth, progression and also in the
increase in other tumor promoting factors [151]. Furthermore, Vazquez Rodriguez et al., 2018, showed
that breast adipocytes in ER+ BC induce the primary stem cell dissemination leading to metastasis via
the secretion of IL-8, which enhances a pro-inflammatory and pro-tumorigenic environment necessary
for metastasis [152]. Moreover, secreted IL-8 can induce osteoclastogenesis and bone resorption in the
case of bone metastasis of BC cells [153]. IL-10, like IL-6, also has both a protective and an oncogenic
role in BC. Ahmad et al., 2018, showed that both IL-6 and IL-10 expression correlate with a better
survival outcome in early stages of invasive BC [154], whereas other data suggest that the expression
of IL-10 is responsible for BC cell evasion from apoptosis [155]. IL-10 is also the immunosuppressive
cytokine released by BC to evade immune response [156].

6.2.6. Tumor Necrosis Factor (TNF)

TNFα, another cytokine secreted by adipose tissue and macrophages, plays a role in the acute
phase reaction and in many signaling pathways resulting in activation, differentiation, survival and cell
death, and this also holds true in BC. TNFα increases tumorigenesis primarily by altering the expression
of matrix metalloproteases (MMPs) and dipeptidylpeptidases [157,158]. Many studies report the
involvement of TNFα in fibroglandular tissue augmentation [159,160] and BC progression [158,161,162];
however, TNFα expression also has a role in the normal regulation of adipose tissue. It has been shown
that TNF-α plays a physiological role in premenopausal (non-obese) women by regulating adipogenesis
or lipid storage in adipocytes, thereby establishing the total volume of adipose tissue [163,164].

6.3. Chemokines

The adipose tissue secretes many chemokines. Among them are CXCL2, CXCL5, CXCL8, CXCL10,
SDF-1, MCP-1 (CCL2) and MIP-1α (CCL3). Chemokines are cytokines with a chemotactic behavior. They
are widely studied in BC and are usually associated with inflammation and tumorigenesis [165–167].
Zhao et al., 2018, showed that CCL5 secreted by adipose tissue derived stem cells (ADSC) increases
BC proliferation [168]. Furthermore, a study by Picon-Ruiz et al., 2016, shows that BC cells grown in
coculture with immature adipocytes (ADSC differentiated to adipocyte lineage) display a cytokine
profile enriched in IL-6, IL-8, CCL2 and CCL5. These cytokines result in increase in BC cells
tumorigenesis and metastatic potential [148]. Cytokines are not only secreted by the stroma (consisting
of adipose tissue) but also by BC cells themselves [143,169]. For instance, the normal epithelial
cells of the breast do not display the expression of MCP-1, whereas its expression is very high
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in BC cells. This two-way secretion of chemokines increases the inflammatory response in the
tumor-microenvironment, where adipose tissue plays the most significant role. Chemokine secretion
in BC is responsible for increased invasiveness and metastasis [170].

6.4. Growth Factors

Adipose tissue secretes many growth factors including vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), nerve growth factor (NGF), insulin growth factor (IGF) and
PDGF [171,172]. Growth factors are well studied in nearly all cancers including BC. The signaling
mediated by the above-mentioned growth factors has been discovered in BC progression, survival,
angiogenesis, invasion and metastasis [173,174]. Furthermore, the crosstalk between growth factors is
known in BC as well as other cancers, and this leads to resistance to therapies [175–178].

6.5. Other Proteins, Aromatase, Fatty Acids and Cholesterol

Adipocytes express many other proteins such as osteopontin (OPN), SFRP1, Allograft inflammatory
factor 1 (AIF1) and collagene. OPN, also known as SPP1, was first identified in osteoblasts. It plays a
role in matrix remodeling, calcification and as a chemokine to induce immune response [179]. A recent
report highlighted its expression in adipocytes, and a study identified that the expression of SPP1
was significantly higher in the adipocytes near the BC site as compared with adipocytes from normal
breast tissue [180]. Our group has shown that SPP1 is associated with invasiveness of BC and that its
expression in BC increases with the progression of the disease [181]. Furthermore, it also regulates the
function of adipocytes by altering its differentiation and by increasing its inflammatory signaling by
inducing the expression of the integrin, CD44 and inflammatory cytokines [182,183].

SFRP1 is an adipokine mainly expressed in mature adipocytes with a role in adipogenesis [38].
SFRP1 mediates its effect on adipogenesis in a paracrine manner by inhibiting the Wnt/β-catenin
pathway, thereby determining the fate of ADSC to become an adipose tissue [38]. Its expression has
been correlated with mild obesity but significantly decreases with morbid obesity. Furthermore, it has
been shown that SFRP1 expression decreases the expression of IL-6, MCP-1 and adiponectin, thereby
decreasing the pro-inflammatory response of adipose tissue in BC [39]. Klopocki et al., 2004, showed
that the loss of SFRP1 leads to poor prognosis in early stage BC [184]. Another study by Gregory et al.,
2017, identified a role for SFRP1 in regulating the transcription factor Early Growth Response 2 (EGR2)
via the TGFβ pathway [185]; the loss of SFRP1 leads to BC progression by upregulating TGFβ and
thereby EGR2 [185].

A study from our group showed that breast adipose tissue also expresses AIF1 [186]. AIF1 is
a new human adipokine implicated in adipose inflammation in obese women [187] and produced
by macrophages within human WAT [188]. Our study identified two isoforms of AIF1 expression in
breast adipose tissue, namely AIF1 splice variant 1 (AIF1v1) and AIF1v3. The expression of AIF1 was
significantly correlated with the infiltration of lymphocytes in BC tissue, suggesting a role for AIF1 in
the tumor microenvironment [186].

The adipose tissue also consists of an extracellular matrix (ECM) which embeds adipocytes. The
ECM of breast adipose tissue is enriched in Collagen VI [189]. Collagen VI has a role in inflammation,
angiogenesis and EMT [190].

The breast adipose tissue also secretes estrogen synthetase, also called aromatase, which synthesizes
estrogen from androgen. It has been well established that the risk of BC is higher in women with
longer exposure to estrogens [191]. In premenopausal women, the ovary is the main organ producing
estrogens [192]. However, in postmenopausal women, as the ovary becomes nonfunctional for estrogen
production, the adipose tissue becomes the main source of estrogen [193], therefore, extending the
exposure of the body to hormones rendering postmenopausal women more prone to BC. The cytokines
secreted by the adipose tissue itself, namely TNFα and IL-6, can increase the production of aromatase
either in an autocrine or a paracrine manner, thereby increasing the production of estrogen [194].
Moreover, leptin secreted by adipose tissue has been shown to induce the transcription of ER in BC
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cells, independent of estradiol [104]. Leptin further increases the synthesis of the estrogen-inducible
protein pS2, which increases the nuclear localization of ER [195]. These data suggest that the adipose
tissue secretome in postmenopausal women leads to both an increase in ER and its ligand, resulting in
the extended exposure of breast epithelial cells to estrogen hormone, thereby increasing the risk of
BC. In addition, hormonal replacement therapy is often offered to postmenopausal women to provide
relief from menopausal symptoms without considering that this therapy might increase the risk of BC.

Breast adipose tissue is also a source of free fatty acids and cholesterol required as a constant source
of ATP by cancer cells to meet their requirement of increased proliferation and energy requirements [196].

In summary, it is apparent that breast adipose tissue secretion affects different aspects of BC by
affecting tumor progression, angiogenesis, metastasis and the tumor microenvironment. Additionally,
it alters the expression profile of BC cells. As described by Fletcher et al., 2017, when BC cells are
grown in conditioned media from adipose tissue explants from BC patients, there is an increase in the
expression of versican, CD44, ADAMTS1 and adipoR1 in BC cells resulting in increased proliferation,
adhesion and migration. On the other hand, conditioned media from adipose tissue explants from
normal breast cells decrease the migration of BC cells [197]. The study by Fletcher et al., 2017, further
highlights that the natural secretome of breast adipose tissue is not always tumor promoting. The
changes in the secretome profile of breast adipose tissue could be designated as the crosstalk between
breast cells and the adipose tissue. The secretome profile of adipose tissue is also altered in the case of
obesity, leading to increased secretion of inflammatory molecules, thereby resulting in BC progression.

7. Risk and Prognostic Factors for BC and Involvement of Adipose Tissue

There are several risk and prognostic factors associated with BC. In this section, we will discuss
some, with respect to adipose tissue involvement (Figure 3).

7.1. Menarche and Menopause

Early menarche has been considered as a risk factor for BC due to the increased exposure of
breast cells to estrogens. The role of leptin in early menarche in obese patients has been discussed in
the previous sections. Although early menopause means shorter exposure to estrogen, data suggest
that after menopause, the adipose tissue becomes the main secretory organ for estrogens. In obese
women, this becomes a major problem due to the abundance of adipose tissue [198]. Adipose tissue
in the breast produces a high amount of aromatase which converts androgens secreted by the ovary
in postmenopausal women [199,200]. Estrogen secreted in such a fashion in the breast increases the
concentration of estrogen in the breast by 10 times in comparison with the concentration present in the
circulation, thereby increasing the risk of BC [201]. Among BC patients, our group found higher levels
of estradiol in breast adipose tissue of women diagnosed with ER-positive BC as compared to those
with ER-negative BC [202].

7.2. Involution

The breast undergoes two kinds of involution: a post-lactation involution and an age-related lobular
involution (around/after menopause). During pregnancy, breast stroma undergo a massive remodeling
to make room for new growing epithelial cells. This remodeling sometimes results in pregnancy
associated BC (PABC). PABC can occur during pregnancy, lactation, or post-lactation involution.
PABC is usually ER and progesterone receptor (PR) negative, is often diagnosed at later stages and
predominantly has a worse prognosis [203,204]. Data suggest a significant role of adipose tissue in
PABC occurring during lactation or post-lactation involution. McCready et al., 2014, showed that breast
adipocytes present during lactation promote tumorigenesis by increased vasculogenesis. This leads to
an increase in vascular endothelial cells resulting in increased angiogenesis [205]. Furthermore, it has
been shown that leptin can stimulate the growth of ER-negative BCs [206]. Post-lactation involution
resembles wound healing, where an extensive immune response takes place. This leads to apoptosis of
epithelial cells, which are replaced by stromal cells enriched in adipocytes [207]. The site of involution
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is enriched with TGFβ, VEGF, TNFα and IL6 [208], which have all been shown to promote cancer, and
are also secreted by breast adipose tissue. On the other hand, a review from our group has highlighted
that there could be a possible link between the post-lactation overexpression of SFRP1 and complete
involution [37], as mice lacking expression of SFRP1 display a breast morphology that is similar to
mid-pregnancy mice [41]. This could also suggest a protective role of breast adipose tissue against BC.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 13 of 34 
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Figure 3. BC risk factors and prognostic factors and the role of adipose tissue. (A) Early menarche and
late menopause increase the risk of BC by increasing the exposure of breast cells to estrogen hormones.
Breast adipose tissue secretes aromatase which converts androgen to estrogen further complicating the
scenario. (B) Breast adipose tissue secretes SFRP1 which helps in post-lactation involution age-related
breast involution. Involution involves the inflammation process leading to apoptosis of epithelial
cells. High levels of pro-inflammatory molecules secreted by breast adipose tissue lead to partial
involution which increases the risk of BC. (C) Microcalcification is a predisposing factor for BC.
Microcalcifications due to fat necrosis resemble malignant microcalcifications further complexifying
prognosis of BC. Furthermore, SPP1 secreted by breast adipose tissue changes the fate of adipose
derived stem cells (ADSC) to osteogenesis, increasing BC risk. Moreover, breast adipose tissue increases
the inflammatory process accompanying mineralization. (D) During BC progression, BC cells signal
lipolysis of surrounding adipose tissue to meet the energy requirement of BC. Adipose tissue releases
lactate, pyruvate and free fatty acids. WAT also starts to express UCP-1, thereby trans differentiating to
BAT and exhausting the energy source of the body. This leads to cachexia and eventually death. Around
30–50% of cancer-associated deaths are due to cachexia. (E) Obesity is a worldwide problem and known
to increase BC risk. High adipose tissue increases the inflammatory process and hypermethylation
(resulting in inhibition) of tumor suppressor genes. Obesity also increases the expression of estrogen
and estrogen receptors in postmenopausal women, enhancing the risk of BC.

Age-related lobular involution (ARLI) is an irreversible change in the breast which is marked by a
decrease in the number and size of breast lobules [209]. ARLI leads to a decrease in epithelial cells,
which are replaced by stromal cells including adipocytes. The ARLI is inversely correlated with BC
risk, as a very small amount of epithelial cells remains to be transformed into malignant cells after
involution. On the other hand, no involution or partial involution increases the risk of BC [210,211].
A study from our group has shown that high levels of pro-inflammatory molecules in breast tissue can
lead to partial involution and, therefore, could be correlated with high BC risk [212]. The increase in
pro-inflammatory molecules could be attributed to the adipose tissue present in the breast. It has been
reported that in the breast epithelium of premenopausal women, around 10% of epithelial cells are ER
positive; however, 90% of the epithelial cells in postmenopausal women are ER positive [213], which
increases the risk of BC in postmenopausal women. After lobular involution, the breast is enriched
with adipose tissue, leading to an increased production of estrogen via androgens. This combination
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of increased ER and its ligand works in favor of BC after menopause and the complexity increases in
obesity where there is a further increase in adipose tissue.

7.3. Microcalcifications

Microcalcifications in breast are recognized as a possible predisposing factor for BC. Usually,
calcification is indicative of a benign process due to some injury or due to calcium deposition from
serum. However, certain predisposing factors in microcalcification can indicate the possibility of an
emerging cancer smaller in size (< 0.5 mm each). Microcalcifications have varying sizes and shapes,
and are often worrying if they are branching, rod-like, or angular and if they are clustered in one area
of the breast [214]. One cause of microcalcification is fat necrosis. Microcalcifications due to fat necrosis
are pleomorphic, focally clustered and are often undistinguishable from microcalcifications associated
with malignancy [215,216], leading to unnecessary intervention in many instances. However, the
mineralization process which occurs during microcalcification leading to the production of calcium
oxalate or calcium hydroxyapatite is increased by several processes including inflammatory response.
The adipose tissue in breast has been reported to mediate acute inflammatory response in BC leading
to cancer progression. Furthermore, a microcalcification event can be marked by changes in the
transcription factors regulating ADSC, changing their fate to osteogenesis. Studies have shown that
breast adipose tissue is an important site for the presence of ADSC [217,218]. Among the transcriptional
regulators of ADSC is SPP1, which is also secreted by adipose tissue [219]. It has been shown that SPP1
is responsible for the formation of hydroxyapatite crystals in BC cells in response to an osteogenic
cocktail [220]. Furthermore, the expression of SPP1 is significantly elevated in calcified BC [221], and
the expression of SPP1 also aids in bone metastasis of BC cells [222]. Once BC cells metastasize to bone
cells, they colonize in bone-marrow adipose tissue [223], where SPP1 modulates the ECM component
of the bone microenvironment to promote BC progression [224]. Oyama et al., 2002, showed that
infiltration of foam cells expressing SPP1 in the breast is responsible for breast microcalcification and
atypical cystic lobule formation [222]. Foam cells are macrophages present in fat cells. Studies show
that the presence of microcalcifications in BC leads to poor clinical outcome [225–228].

7.4. Cachexia

Cachexia is defined as a gradual decrease in the adipose tissue storage by the body and lean body
mass. Around 30–50% of cancer-associated deaths are due to cachexia. During this process, metabolic
changes occur; cancer cells behave like parasites, taking nutrition from the surrounding tissue leading
to exhaustion of the body’s energy resources [229]. Cancer-associated cachexia not only increases the
rate of mortality but is also responsible for treatment failure [230,231]. The adipose tissue and the
muscle cells play a major role in this process, releasing lactate, pyruvate and free fatty acids upon the
signals received by cancer cells [232]. In BC, it has been shown that exosomes released from cancer
cells trigger cachexia [233]. Moreover, the adipose tissue adjacent to BC cells starts expressing the
UCP-1 gene responsible for the browning of WAT [233], resulting in increased cachexia. Cachexia
is also induced by several cytokines such as TNFα, IL-1, IL-6 and IFNγ [234]. A recent review by
Rybinska et al., 2020, showed an increase in TNFα, IL-6, IL-1β, CCL2, adiponectin and collagen and a
decrease in leptin in BC causing anorexia leading to cachexia. Furthermore, BC mediated cachexia
is also associated with a decrease in adipogenesis transcription factors PPARγ, c/EBPα, GLUT4 and
SREBP-1, and an increase in HSL, an enzyme responsible for lipolytic activity in cachexia [235].

7.5. Obesity

Obesity is defined as an excess accumulation of fat in the body, with great health risk to an
individual. According to the world health organization, there is a three-fold increase in obesity since
1975 [236]. Obesity has been linked to an increase in the risk of BC and also with poor survival
outcome [237,238]. Around 60% of women in the USA are overweight, and research has established a
clear link between Body Mass Index (BMI) and BC [239]. However, BMI is not an absolute parameter,
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as a lean woman could also have a significant depot of visceral fat, which might not be reflected
by BMI measurement. Therefore, the current standard followed in clinical settings also includes
waist-to-hip ratio. Borugian et al., 2003, showed that waist-to-hip ratio measurement in combination
with menopausal and ER status is a predictable marker of BC associated deaths [240]. Moreover, a
study by our group suggests that the weight gained during adulthood could be associated with BC risk
in women with more fatty breast; therefore, a minimum of breast fat may be needed to promote the
development of BC [241]. Besides the known adverse effects of excess adipose tissue in BC, a systemic
review from our group highlighted that the obesity linked hypermethylation of PTPRN2 and ABLIM2
genes in breast tissue could be associated with BC [242].

8. Therapeutic Approaches for BC and the Importance of Adipocytes

There are several approaches under trial to deal with different subtypes of BC. In this section, we
will focus on a few approaches, with adipose tissue at the center of the discussion (Figure 4).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 16 of 34 
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Figure 4. Interaction between BC cells and adipose tissue in the BC microenvironment. Breast
adipose tissue secretes various molecules (green) which increase BC survival, proliferation, migration,
angiogenesis and metastasis. These secretomes also help BC cells in evading chemotherapy mediated
apoptosis and increase the survival of residual cancer cells after chemotherapy. BC cells also secrete
cytokines and chemokines which signal lipolysis of adipose tissue, changing the secretory phenotype
of adipose tissue to a cancer-associated phenotype. The cancer associated adipose tissue aids in BC
survival by releasing inflammatory cytokines, proteases and providing the energy source in the form of
free fatty acids. Studies have identified various approaches to target the crosstalk between BC cells
and adipose tissue (indicated in red). By targeting the differentiation of pre-adipose tissue to mature
adipose tissue, which can be performed by overexpressing adipogenesis regulatory cells (Aregs stop this
differentiation), PDGFRα (changes the fate of pre-adipose tissue to extracellular matrix) or by treatment
with Sulforaphane (which stimulates the regeneration of pre-adipocytes and inhibits its differentiation
to mature adipocytes). Furthermore, the inhibition of fatty acid transporter 4 (BMO309403) inhibits the
transfer of energy from adipose tissue to BC cells. Moreover, the inhibition of CD36 by monoclonal
antibody against CD36 leads to the inhibition of fatty acid uptake by BC cells. Another study showed
that increasing the expression of PPARγ in BC cells could lead to trans differentiation of BC cells into
adipose tissue, thereby inhibiting BC angiogenesis.
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8.1. Targeting Adipose Tissue and BC Cell Crosstalk

Targeting adipose tissue and BC crosstalk can be performed at various levels, by inhibiting (i)
adipogenesis, (ii) the secretome of adipose tissue and (iii) the signals given by BC cells modulating the
behavior of adipose tissue.

Regarding the first approach, a study by Schwalie et al., 2018, reported the presence of adipogenesis
regulatory cells (Aregs) in WAT stromal vascular fraction, characterized by high expression of the
cell surface protein CD142 and the ATP-binding cassette sub-family G member 1 (ABCG1). In their
study, they have shown that Aregs inhibit the differentiation of adipocyte precursor cells (APC) into
adipocytes. Triggering the expression of Aregs in the breast adipose tissue population could be a new
therapeutic approach [243]. Furthermore, Miwa et al., 2018, showed that APC expresses the PDGFR
tyrosine kinase α (PDGFRα), which is absent in mature WAT [244]. The activation of signaling via
PDGFRα in APC represses its differentiation into WAT by converting APC to ECM, which could be a
potential target in inhibiting adipogenesis [245]. Moreover, a drug called Sulforaphane has been shown
to inhibit adipogenesis by activating the self-renewal process of mesenchymal stem cells in BC [246].

Various approaches are ongoing to target the secretome of adipose tissue. Rene et al., 2009,
showed that the leptin peptide receptor antagonist 2 (PEG-LPrA2) shows antitumor activity in
ER-positive/negative BC by suppressing VEGF signaling [247]. The adiponectin receptor agonist
ADP-355 has been shown to inhibit BC cell growth in in vitro and in vivo systems [248].

As BC is marked by a significant increase in inflammatory molecules both within the tumor and in
the microenvironment, anti-inflammatory drugs are being considered with other drugs. Nonsteroidal
anti-inflammatory drugs (NSAIDs) such as ibuprofen, mefenamic acid, celecoxib, aspirin and diclofenac
mediate their action by inhibiting COX (COX-1 and COX-2). COXs are enzymes that play a role in
prostaglandins secretion [249], thereby regulating inflammatory processes such as platelet aggregation.
Gao et al., 2007, identified 3 variants in COX-2 that, when occurring simultaneously, increase the risk
of BC in Chinese women [250]. The use of NSAIDs is still under consideration as it could affect the
gastrointestinal tract, the platelet function and increase the risk of cardiovascular diseases [251,252].
Anti-inflammatory molecules used in the treatment of HIV infection are also under investigation in
BC. For example, maraviroc, vicroviroc and leronlimab targeting CCR5 are under clinical trial for
BC [253]. Furthermore, Cenicriviroc for CCL2 [254], Tocilizumab targeting IL-6R [255], Canakinumab
for IL-1β [256], Infliximab and nanoparticle based CYT-6091 (under clinical trial) for TNF-α [257,258]
can be used as possible anti-inflammatory molecules in BC.

Another possible approach is to hamper the communication between adipose tissue and cancer
cells. A study by Nieman et al., 2011, showed that inhibiting the fatty acid transport from adipose
tissue using an inhibitor of the fatty acid binding protein 4, BMS 309403, could inhibit the energy
supply needed by cancer cells resulting in the suppression of tumor growth and proliferation in
ovarian cancer [259]. Moreover, as the process is bidirectional, inhibiting the transmembrane protein
CD36, which is responsible for the uptake of fatty acids in cancer cells could also inhibit tumor growth.
Pascual et al., 2017, showed that the neutralizing-antibody against CD36 completely inhibits metastasis
in melanoma and BC cells [260]. Moreover, several aromatase inhibitors (AI), namely anastrozole,
letrozole and exemestane have been evaluated in clinical trials in postmenopausal women [261]. It has
been postulated that AI could have different effects on postmenopausal obese women with BC as
compared with postmenopausal non-obese women with BC [262,263]. However, data from our group
show that although there is a significant difference in the estrogen levels between postmenopausal
obese women and postmenopausal lean women, there is no significant difference in estrogen levels
between AI-treated obese and non-obese postmenopausal women with BC [264]. The results from our
group, therefore, do not support the argument that ineffective outcome with AI could be the result of
obesity measured by BMI, where estrogen secretion from excess adipose tissue compensates for the
decrease in estrogen levels achieved by AI.

Furthermore, a recent approach discusses the trans differentiation of BC cells to adipose tissue,
thereby inhibiting BC metastasis. EMT is a major phenomenon in metastasis, highlighting the plasticity
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of the cell. Using this plasticity and changing the fate of the cells by PPARγ, Ishay-Ronen et al.
differentiated BC cells to fat cells, thereby inhibiting BC metastasis [265].

Adipose tissue interaction with available therapies: adipocytes have been shown to confer
resistance to various BC therapies. The breast adipose tissue matrix is enriched in collagen VI which
releases endotrophin (a cleavaged product of the collagen VI(α3) chain). Endotrophin induces EMT
in BC cells. A study by Park et al., 2013, shows that endotrophin secreted by adipose tissue confers
resistance to cisplatin in BC mouse models [266]. Lyes et al., 2019, showed that ADSC secretes FGF2
which activates ERK signaling, thereby promoting the proliferation of chemotherapy residual TNBC
cells through the SDF-1α/CXCR4 signaling pathway [267]. Furthermore, Yeh et al., 2017, showed that
ADSC promotes doxorubicin resistance in TNBC by CXCL1 secretion, which upregulates the expression
of ABCG2, an ATP binding cassette (ABC) transporter [268] responsible for multidrug resistance in
cancers [269]. Duong et al., 2015, showed that adipocytes can induce resistance to trastuzumab by
interfering with interferon γ secretion by NK cells in HER2-expressing BC cells [150]. Furthermore,
adipocytes segment the autotaxin-lysophosphatidic acid signaling which confers resistance to taxol in
BC cells by blocking the binding of Taxol to tubulin [270]. Moreover, the adipose tissue adjacent to a
growing tumor confers resistance of the tumor to radiotherapy by secreting IL-6, which upregulates
Chk1 responsible for a radio-resistance phenotype [271].

8.2. Breast Reconstruction

BC is considered among the most devastating diseases in women. Mastectomy at an early stage is
considered the most reliable treatment option. Breast reconstruction after surgery is, therefore, often
practiced. This is performed by autologous fat grafting using ADSC, with or without enrichment with
the stromal vascular fraction (SVF), PDGF and hormones including insulin [272,273]. To enhance the
efficiency of grafting, ADSC is used. The use of PDGF enhances the proliferation and differentiation
of the graft [274], while SVF increases the angiogenesis in the graft, an important aspect for breast
regeneration [275]. However, all these components (ADSC, PDGF and SVF) have the capacity to
induce tumorigenesis if any residual tumor cells are left, leading to relapse. Therefore, mixed opinions
exist regarding breast reconstruction surgery. However, data so far are not strongly convincing that a
reconstruction surgery with ADSC shows more relapse, but the involvement of SVF or PDGF needs to
be carefully evaluated [276].

8.3. Physical Activity

Physical activity has beneficial outcomes in BC patients. It has been shown that regular exercise
can decrease the risk of BC, BC recurrence and also increase the survival outcome of patients [277].
Results from our team indicate that regular physical activity can reduce the local inflammatory profile
in the breast [278], high involution in ARLI, low dense breast [279] and the decrease in circulating
sex hormones [280], thereby reducing the risk of BC. Furthermore, studies have shown that regular
physical activity can reduce pain, fatigue and increase bone quality, physical functioning of BC patients
and BC survivors [281–285]. Exercise leads to a decrease in body fat mass. A study by Brown et al.,
2016, showed that physical activity reduces the metabolically active, energy-rich adipose tissue and,
therefore, the risk of BC [286]. Furthermore, it has been shown that the secretome profile of adipose
tissue changes depending upon lifestyle: active or sedentary. Physical activity changes the secretome
of adipose tissue, thereby reducing the risk of BC [287].

9. Conclusions

There are multiple layers in the biology of adipose tissue. While we know part of it, a large
amount is still not understood. The present review highlights the absolute importance of adipose
tissue in the normal development of the breast. However, the multilayered complexity of adipose
tissue also serves a major role in BC. Furthermore, the interaction between breast adipose tissue and
cancer cells in the BC microenvironment is a complex network of both the autocrine and paracrine
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effects of secretory molecules from both cell types (adipose tissue and cancer cell), modulating each
other’s function for a common goal, i.e., BC survival and proliferation. A detailed knowledge of this
complexity gives a fair idea about friends (such as PPARγ, c/EBPα, GATA3, KLF2, FoxA2, SFRP1 etc.)
and foes (such as c/EBPδ, KLF5, GATA2, FoxC2 and SPP1) in the process of BC and of where and how
we could use this information in targeting BC. However, the most important factor is to maintain the
balance of nature by maintaining a healthy lifestyle and maintaining energy intake and expenditure, as
various studies show the undeniable positive effect of physical functioning on BC survival [277–287].

10. Major Teaching Points

1. Adipose tissue is required for the development of the breast throughout a life span of a women
(embryonic development, puberty, pregnancy and lactation).

2. Adipose tissue plasticity plays a major role in pregnancy and lactation by converting to PAT and
epithelial cells.

3. Correct involution requires proper adipose tissue functioning.
4. Adipose tissue derived from the breast of BC patients shows different secretory profiles compared

with those isolated from healthy individuals.
5. Adipose tissue plays a major role in BC risk, progression, migration, metastasis and resistance to

available therapies.
6. Targeting the crosstalk between adipose tissue and BC, in combination with known therapies,

could be a possibility to overcome obstacles.
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ECM Extracellular matrix
BC Breast cancer
WAT White adipose tissue
TEBs Terminal end buds
UCP-1 Uncoupling protein 1
BAT Brown adipose tissue
PRDM16 PR-domain containing 16
FGF Fibroblast growth factor
PPAR-γ Peroxisome proliferator-activated receptor-γ
PGCα PPAR-γ coactivator α
Cox2 Cyclooxygenase 2
MIR microRNA
PAT Pink adipose tissue
WAP Whey acidic protein
SPP1 Secreted phosphoprotein 1
SFRP1 Secreted Frizzled Related Protein 1
C/EBP CCAAT-enhancer-binding proteins
ER Estrogen receptor
EBF Early B Cell Transcription Factor
SREBP Sterol regulatory-element binding protein
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KLF Krüppel-like family of transcription factors
EMT Epithelial to mesenchymal transition
GATA GATA-binding factor
Fox Forkhead Box
CTNNB1 Catenin Beta 1
PREF-1 Preadipocyte factor 1
SIRT-1 Sirtuin 1
TAZ Tafazzin
HER2 Human epidermal growth factor receptor 2
TNBC Triple-negative BC
LDL Low density lipoproteins
PAI-1 Plasminogen activator inhibitor 1
FABP4 Fatty acid binding protein 4
IL Interleukin
TNF Tumor Necrosis Factor
ADSC Adipose tissue derived stem cells
OPN Osteopontin
VEGF Vascular endothelial growth factor
HGF Hepatocyte growth factor
NGF Nerve growth factor
IGF Insulin growth factor
AIF1 Allograft inflammatory factor 1
EGR2 Early Growth Response 2
AIF1v AIF1 splice variant
PABC Pregnancy associated BC
PR Progesterone receptor
ARLI Age-related lobular involution
BMI Body mass index
Aregs Adipogenesis regulatory cells
APC Adipocyte precursor cells
PDGF Platelet-derived growth factor
PDGFRα Platelet-derived growth factor receptor tyrosine kinase α

NSAIDs Anti-inflammatory drugs
SVF Stromal vascular fraction
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