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In the last years, there has been a significant growth in the literature exploiting transcranial magnetic stimulation (TMS) with the
aim at gaining further insights into the electrophysiological and neurochemical basis underlying vascular cognitive impairment
(VCI). Overall, TMS points at enhanced brain cortical excitability and synaptic plasticity in VCI, especially in patients with
overt dementia, and neurophysiological changes seem to correlate with disease process and progress. These findings have been
interpreted as part of a glutamate-mediated compensatory effect in response to vascular lesions. Although a single TMS
parameter owns low specificity, a panel of measures can support the VCI diagnosis, predict progression, and possibly identify
early markers of “brain at risk” for future dementia, thus making VCI a potentially preventable cause of both vascular and
degenerative dementia in late life. Moreover, TMS can be also exploited to select and evaluate the responders to specific drugs,
as well as to become an innovative rehabilitative tool in the attempt to restore impaired neural plasticity. The present review
provides a perspective of the different TMS techniques by further understanding the cortical electrophysiology and the role of
distinctive neurotransmission pathways and networks involved in the pathogenesis and pathophysiology of VCI and its subtypes.

1. Background

The modern concept of vascular cognitive impairment
(VCI), which encompasses any degree of vascular-related
cognitive decline [1], is deemed to be the most common cog-
nitive disorder, with a growing impact on social and health
care expenses [2]. Moreover, early onset of VCI is also highly
frequent in older stroke survivors, as showed in different
studies [3-5]. The VCI construct includes not only vascular
dementia (VaD), but also mixed dementia (vascular and
degenerative) and vascular cognitive impairment-no demen-
tia (VCI-ND), which refers to a subgroup of patients who

manifest cognitive decline resulting from cerebrovascular
injury but do not satisfy the diagnostic criteria of dementia
[1, 2]. In addition to cognitive impairment, mainly involving
processing speed and executive functioning [6], VCI patients
also show behavioral (i.e., apathy, irritability, psychomotor
agitation, disinhibition, and aberrant motor behavior) and
mood deficits (namely depression, with or without anxiety)
that correlate with worsening of both cognitive and func-
tional status [7]. Moreover, strokes of the basal ganglia and
internal capsule increase significantly the risk of poststroke
depression and executive dysfunction [8]. Dementia after
stroke may encompass all types of cognitive disorders [9],
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whereas a state of cognitive dysfunction before the index
stroke is termed “pre-stroke dementia,” which may entail
vascular changes as well as insidious neurodegenerative
processes.

As known, white matter hyperintensities, commonly seen
on brain T2-weighted magnetic resonance imaging (MRI),
are associated with varying degrees of cognitive impairment
in patients with stroke, cerebral small vessel disease, and
dementia [10], although the pathophysiological mechanisms
within the white matter accounting for cognitive dysfunction
remain unclear. Nevertheless, the strong relationship
between vascular white matter lesions (WMLs) and nonmo-
tor sequelae has been established in large community-based
populations [11-14], showing that cognitive and mood-
behavior abnormalities may arise from the ischemic disrup-
tion of the prefrontal cortical-subcortical circuits [15].
Medial temporal lobe atrophy was also found to be a signifi-
cant imaging predictor of early cognitive dysfunction in
stroke survivors [16]. A novel association between irrevers-
ible astrocyte injury and disruption of gliovascular interac-
tions at the blood-brain barrier in the frontal white matter
and cognitive impairment in elderly poststroke survivors
has been recently proposed. In particular, clasmatodendrosis
was suggested as another pathological substrate linked to
frontal white matter hyperintensities, which may contribute
to poststroke or dementia due to small vessel disease [17].

However, cognitive dysfunction and functional limita-
tions are also associated with depressive disorder in stroke
survivors [3, 5, 7, 18]. Even subcortical ischemic vascular dis-
ease, including silent lacunar infarcts and WMLs, may be
associated with late-life depression, often referred as “vascu-
lar depression” [19]. In 1997, Alexopoulos et al. [20] named
“depression-executive dysfunction syndrome of late life” a
clinical picture characterized by psychomotor retardation,
difficulties at work, apathy, lack of interest, and limited
depressive ideation and insight, together with prominent
executive dysfunction at neuropsychological tests (i.e., plan-
ning, working memory, and set-shifting).

Brain imaging widely support these findings and provide
the neuroradiological correlate of VCI and vascular depres-
sion [21-23]. Patients with vascular depression associated
to WMLs show distinctive clinical-psychopathological find-
ings with respect to those with lacunar lesions [13, 19, 24—
28], with different prognostic implications as well [21, 26,
29]. In particular, whereas depressive symptoms are similar
between the two groups, executive dysfunction and deficit
of information processing speed are more frequently
reported in patients with WMLs than in those with lacunar
state [19, 25, 26]. Moreover, depressed subjects with WMLs
showed a more rapid decline of cognitive and motor perfor-
mances, as well as the presence of gait abnormalities and uri-
nary disturbances [24]. It is also noteworthy that the severity
of subcortical WMLs, rather than lacunar state, is associated
with development of depressive symptoms [28] and to a his-
tory of late-onset depression [13]; similarly, microstructural
white matter abnormalities of frontostriatal-limbic networks
are related to executive dysfunction and late-life depression
[25]. Finally, different reports emphasize that WMLs and
executive dysfunction are linked to both poor response to
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treatment and progression to chronic depression compared
to those with lacunar infarcts [21, 26, 29].

Although the understanding of different aspects concern-
ing VCI grows over time, as reflected into a considerable
body of literature published every year, VCI still remains a
broad concept whose borders are not always well defined
[30]. Probably, the most pressing challenge is the difficulty
in discriminating the different forms of VCI and in recogniz-
ing the earliest stages from normal brain aging [31, 32]. Cur-
rently, the diagnosis of VCI, whether at the stage of VCI-ND
or an overt picture of VaD, is mostly based upon clinical and
neuropsychological evaluation, together with structural and
functional neuroimaging. The pathological diagnosis of sus-
pected clinical VaD requires adequate postmortem brain
sampling and rigorous assessment methods to identify the
commonly observed substrates [33]. The need for screening
and early diagnosis tools have focused the search to identify
early biological and instrumental markers of disease process
and progress. In this context, systematic neurophysiological
assessment of VCI can aid the diagnosis and predict the
response to drugs. Among neurophysiological techniques,
transcranial magnetic stimulation (TMS) emerged as valu-
able noninvasive method for the functional evaluation of
cerebral cortex and neurotransmission pathways involved
in a number of psychiatric and neurological disorders,
including cognitive impairment and dementia [34].

The present review provides a perspective of the different
TMS techniques by further understanding the cortical elec-
trophysiology and the role of distinctive neurotransmission
pathways and networks involved in the pathogenesis and
pathophysiology of VCI and its subtypes.

2. Transcranial Magnetic Stimulation: Basic
Principles and Application in Cognitive
Neuroscience

Clinically introduced approximately 30 years ago as a diag-
nostic tool to study the central motor pathways, today,
TMS goes well beyond the simple assessment of the corti-
cospinal tract. Indeed, it is able to provide novel insights
into the pathophysiology of the neural circuitry underlying
neurological and psychiatric diseases and to give in vivo
information about the excitability of the human brain cortex
and the conduction along corticospinal tract as well as the
functional integrity of intracortical neuronal and callosal
fibers [35-37]. TMS has also a strong talent to unveil and
monitor motor system impairment in the preclinical phase
of several neurological disorders [34] or systemic diseases with
the central nervous system (CNS) involvement [38, 39].
Moreover, integrated approaches using neurophysiological
techniques together with structural and functional imaging
have allowed us to study the connectivity across motor and
nonmotor areas [40-43]. Finally, by evaluating the effects
of agonists or antagonists for specific neurotransmitters,
TMS can selectively and noninvasively explore the function
of glutamatergic, gamma-aminobutyric acid- (GABA-) ergic,
monoaminergic, and cholinergic central circuits (the so-
called “pharmaco-TMS”) [44, 45].
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TMS can be delivered to the same or different brain
areas as single pulse, pairs of stimuli, paired cortical and
peripheral stimulation, or as trains of repetitive stimuli at
various frequencies.

2.1. Single-Pulse TMS. A single magnetic pulse applied to the
primary motor cortex at adequate stimulator intensity elicits
a motor evoked potential in contralateral target muscles, thus
providing a functional assessment of the corticospinal con-
duction [46]. In particular, the latency of motor evoked
potentials and the central motor conduction time, defined
as the time interval difference between the motor evoked
potentials induced by motor cortex stimulation and those
evoked by motor root stimulation, are indexes of integrity
of the corticospinal pathways. The motor evoked potential
amplitude reflects an aggregate measure of the excitation
state of output cells in the motor cortex, nerve roots, and
the conduction along the peripheral motor pathway to the
muscles [47].

The resting motor threshold is considered a global
parameter of human brain excitability, as it is a compound
measure of the membrane excitability of cortical motor neu-
rons, neural inputs into pyramidal cells within the cortex, as
well as the excitability of spinal motor neurons, neuromuscu-
lar junctions, and muscles [47, 48].

A suprathreshold TMS pulse applied to the primary
motor cortex during a tonic voluntary contraction of contra-
lateral muscles results in a suppression of the electromyo-
graphic (EMG) activity of those muscles lasting few
hundred milliseconds [49]. This phenomenon, called contra-
lateral cortical silent period, is exploited as a functional
measure of intracortical inhibitory circuits [50, 51], mainly
mediated by GABA-B transmission [52]. Conversely, the
ipsilateral silent period, evoked by stimulating the muscle
and hemisphere of the same side, is considered to reflect
the interhemispheric corticocortical inhibitory mechanisms,
and it is thought to be modulated by transcallosal output
neurons projecting to contralateral GABA-ergic interneu-
rons [35, 36].

2.2. Paired-Pulse TMS. The paired-pulse TMS paradigm [53]
allows the assessment of measures of intracortical interneu-
ronal functions and interactions, such as the short-latency
intracortical inhibition and intracortical facilitation of the
motor response [53, 54]. Short-latency intracortical inhibi-
tion is probably mediated by the activity of intracortical
GABA-A interneurons [55]; intracortical facilitation is more
complex being probably related to the activation of a cortical
circuit projecting upon corticospinal cells different from that
preferentially activated by single-pulse TMS, and it seems
dependent to a great extent on the activity of glutamatergic
excitatory interneurons [56, 57].

2.3. Sensory-Motor Modulation and Plasticity. Using specific
TMS techniques, it is possible to investigate the sensory-
motor interaction within the cerebral cortex as well as the
cortical phenomenon of the short-latency afferent inhibition
and long-latency afferent inhibition. Short-latency afferent
inhibition is thought to reflect the integrity of central

cholinergic neural circuits, as it has been shown to be reduced
or abolished by the muscarinic antagonist scopolamine in
healthy subjects [58, 59] whereas it is positively modulated
by acetylcholine [60]. It has been suggested that it may
depend on the integrity of circuits linking sensory input
and motor output [61], given that other neurotransmitters
(such as dopamine) are supposed to play a modulatory role
in the cholinergic transmission [62]. Long-latency afferent
inhibition is probably related to the cortical-cortical connec-
tions involving the motor cortex and both primary and sec-
ondary somatosensory cortical areas [61].

TMS also allows us to study the synaptic plasticity
phenomena at different levels. In healthy subjects, a mag-
netic stimulus applied after a brief period of exercise reveals
phenomena of “post-exercise facilitation” and “delayed
facilitation” that provide valuable information on cortical
excitability and intracortical synaptic reorganization under-
lying motor learning [63].

2.4. Repetitive TMS. Single TMS pulses delivered in trains are
the principle of repetitive TMS (rTMS), an approach that can
transiently modulate the functioning of stimulated and con-
nected brain areas mainly depending on the frequency of
stimulation [36, 64, 65]. For this reason, rTMS might have
therapeutic and rehabilitative applications since the effects
of repeated sessions may persist in time [40, 48, 66-70].
The mechanisms of these changes are not completely clear
but seem to be related to the phenomena of synaptic long-
term potentiation (LTP) and long-term depression (LTD)
within the CNS [71, 72]. Similarly, it is possible to induce
LTP-like changes in the sensory-motor system by means of
the paired associative stimulation [73], which induces a
lasting increase of corticospinal excitability that can be con-
sidered as a marker of cortical plasticity [73, 74].

2.5. TMS in Dementia. Although the single neurophysiologi-
cal abnormality revealed by TMS is not disease-specific [36],
distinctive set of electrocortical changes that cosegregate spe-
cifically in different neurological and psychiatric disorders
has been found, suggesting the involvement of specific bio-
logical substrates in their pathogenesis [34, 75, 76]. In the last
years, a number of studies have shown abnormalities in TMS
assays of cortical function in dementias, namely an increased
excitability of the motor cortex in both Alzheimer’s disease
(AD) [77] and VaD [78].

Even if not always clinically evident, the involvement of
motor areas in dementia has been demonstrated by clinical,
neuropathological, and neuroimaging studies. Changes in
motor areas may be secondary to the direct structural alter-
ations caused by the disease process but, more often, they
are the consequence of indirect remodeling mechanisms
[34]. In this context, increasing evidences support the
hypothesis that the phenomena of brain plasticity are
involved in different kinds of dementia, related to functional
and structural components, each entailing a number of cellu-
lar mechanisms operating at different time scales, synaptic
loci, and developmental phases within an extremely complex
framework [79]. However, the exact relationship between



brain plasticity and excitability of cortical areas and their
connections is not completely understood yet.

Table 1 summarizes all the TMS studies in patients with
VCI and its subtypes [76, 80-97].

3. TMS Correlates of VCI Subtypes

3.1. TMS in Vascular Dementia. The majority of TMS studies
indicate that the motor cortex of VaD patients is hyperexcit-
able (reduced resting motor threshold) [78], a common fea-
ture shared by AD [77]. This finding has been considered
as part of a plastic compensatory mechanism in response to
neuronal loss and/or ischemic injury [34, 40]. Accordingly,
the enhanced excitability and plasticity might counteract
cognitive decline and shed light on the reasons underlying
decline or preservation of cognitive domains in dementing
population [87, 88]. This hypothesis has been demonstrated
by means of TMS mapping study in AD patients, which
showed a frontal and medial shift of the motor cortical out-
put center of gravity, suggesting a functional reorganization
of cortical brain areas, at least in the early stages [98]. A sim-
ilar pattern has been also observed in subcortical ischemic
VaD [84], which encompasses a homogeneous subtype of
patients of particular interest because of the relatively slow
progression, often making the differentiation from AD diffi-
cult [1, 2].

However, although a cortical reorganization similar to
that occurring in AD was hypothesized also in VCI, it was
not clearly demonstrated yet. Based on this assumption,
Guerra and coworkers explored the relationship between
excitability and plasticity in subcortical ischemic VaD [94].
Although obtained from a small sample size, they found that
motor cortex had enhanced excitability in patients with AD
and subcortical ischemic VaD with respect to controls. How-
ever, more interestingly, the motor cortex was plastically
rearranged in both groups of patients, although with a
slightly lesser center of gravity frontal shift in those with sub-
cortical ischemic VaD compared to AD. Moreover, a signifi-
cant direct correlation between parameters associated to
cortical excitability and those associated to cortical plasticity
was evident [94]. This would suggest the existence of mecha-
nisms that partially overlap and probably act in the same
neurophysiological way although they are, at least in princi-
ple, different both in location (subcortical versus cortical)
and origin (vascular versus degenerative). The authors con-
cluded that AD and subcortical ischemic VaD can share a
common neurophysiological platform, related to the progres-
sive neuronal loss within motor areas and to the ischemic dis-
connection, respectively [94]. This alteration could finally
promote a functional rearrangement that allows the preser-
vation of motor programming and execution despite disease
progression [90, 94].

3.2. TMS in Vascular Cognitive Impairment-No Dementia. A
crucial issue is whether it is possible to early identify VCI-ND
subjects at risk for clinical progression. In a previous study on
nondemented elderly patients with subcortical vascular
disease and clinical-cognitive profile of VCI-ND [87], it
was found that the ischemic interruption of prefrontal-
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subcortical loops implicated in executive functions and
mood/affection regulation might result in functional
changes of intracortical excitatory neuronal circuits, specif-
ically an enhanced intracortical facilitation. Moreover, it
has been shown that transcallosal inhibitory mechanisms
were spared in patients with leukoaraiosis, a finding which
differs from those with degenerative dementia (such as AD),
in whom a functional callosal impairment is observed even in
the preclinical or early stages [89].

A pilot TMS study after a 2-year follow-up has been
performed on the same participants with VCI-ND [88]; com-
pared to baseline, they showed an increase of global cortical
excitability (reduction of the median resting motor thresh-
old), along with a significant worsening of neuropsychologi-
cal tests evaluating frontal lobe abilities, although without
reaching a substantial functional impairment. We considered
these findings to be part of the plastic compensatory mecha-
nisms following the loss of motor cortical neurons, support-
ing the concept of VCI as a dynamic condition and some
TMS changes as indexes of motor cortex plasticity [74].
Accordingly, it has been hypothesized that the critical point
at which the resting motor threshold becomes abnormal
might represent a “neurophysiological cut-off” to discrimi-
nate VCI patients advancing to VaD from those cognitively
stable. If these patients show a “hyperfacilitation” at baseline,
this would be considered as a trend of electrocortical dys-
function in “brain at risk” during the transition from normal
brain aging to VCI, up to an overt VaD [30, 88].

More recently, intriguing findings come from the investi-
gation of central cholinergic circuit functioning by means of
short-latency afferent inhibition. Unlike AD, the role of cho-
linergic involvement in VaD is indeed still under debate, and
TMS data are limited and often conflicting [81, 82, 85]. In a
recent paper aiming at the evaluation of short-latency affer-
ent inhibition in a sample of VCI-ND patients with predom-
inant WMLs, central cholinergic circuitry was found to be
not clearly involved in patients compared to age-matched
controls [95], suggesting a distinctive profile of the choliner-
gic pathway with respect to primary cholinergic forms of
dementia (namely, AD), even in the early stage [99]. A rea-
sonable explanation is that VCI may exhibit considerable
interindividual variation in the location of subcortical
infarcts and, therefore, in the distribution and magnitude of
the resultant cholinergic denervation [100]. This study also
supports the role of short-latency afferent inhibition in pro-
viding useful insight in the diagnosis and prognosis of difter-
ent dementing process and in the identification of responders
to acetylcholinesterase inhibitors [95].

3.3. TMS in Vascular Depression. Also at the TMS level, avail-
able data support the “vascular depression hypothesis” as a
different syndrome with respect to nonvascular early-onset
major depressive disorder. In particular, the depressive syn-
drome in vascular depression should be regarded as one of
the clinical manifestations in the wide symptom spectrum
of subcortical cerebrovascular disease rather than being a pri-
mary disease [76, 86]. Consistent with this hypothesis, an
increased intracortical facilitation was observed not only in
nondepressed VCI patients but also in those with late-onset
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vascular depression [76, 86]; conversely, the level of intracor-
tical facilitation in patients with early-onset major depression
and without evidence of cerebrovascular disease was similar
to healthy controls [76]. This result suggests that the disrup-
tion of frontal-striatal circuits by vascular lesions may predis-
pose, precipitate, or perpetuate late-life depression. In
particular, the vascular “disconnection” at the level of the
dorsolateral prefrontal cortex (DLPFC) or the dorsal portion
of the head of the caudate nucleus may affect the presentation
and course of vascular depression [29].

However, at present, little is known about the impact of
late-onset depression on plastic changes that could contrib-
ute to the preservation of cognitive functions in VCI patients.
To better characterize the possible role of depression in
cognitive decline of patients with vascular damage, we have
recently investigated the relationship between the progres-
sion of the neurophysiological changes and cognitive
impairment in patients with VCI-ND with those obtained
in a group of patients with vascular depression and
controls [96]. A high level of intracortical facilitation at
baseline was found in nondepressed patients only, and it
has been considered to be protective from cognitive
decline, possibly through an enhancement of glutamate-
related neuroplasticity. At follow-up, a hyperexcitability
was observed in both groups of patients, pointing out an
involvement of glutamatergic neurotransmission as well,
but without a specific neurophysiological change that
parallels cognitive decline in depressed patients. This indi-
cates that the mechanisms that contribute to cognitive
deterioration in vascular depression might be related either
to subcortical changes produced by vascular lesions or to
the lack of compensatory functional cortical [96].

3.4. TMS in CADASIL. The cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopa-
thy (CADASIL) is due to mutations in the Notch3 gene on
chromosome 19 and causes progressive cognitive decline till
dementia, cerebral ischemic events, psychiatric disorders,
and migraine. It reasonably represents a pure genetic model
of VaD; these patients are therefore particularly suitable for
exploring the relationship between ischemic brain injury,
clinical manifestations, and TMS changes [78].

In 2008, Manganelli et al. [83] first demonstrated a dys-
function of motor cortex excitability and cholinergic innerva-
tions in terms of reduced resting motor threshold and short-
latency afferent inhibition. The recurrent vascular insults and
the lesion burden in strategic areas typically involved in
CADASIL [101], such as the external capsule [102], may lead
to the interruption of corticosubcortical cholinergic circuits.
Therefore, it has been hypothesized that the cortical hyperex-
citability in CADASIL might be caused by cholinergic,
GABA-ergic, and glutamatergic neuron dysfunction, sup-
porting the hypothesis of several neurotransmitter system
involvement in CADASIL, similar to other forms of demen-
tia [78]. More recently, short-latency afferent inhibition was
found to be significantly reduced in both AD and CADASIL
patients, although administration of L-3,4-dihydroxypheny-
lalanine (L-Dopa) was able to significantly increase short-
latency afferent inhibition in the AD group only, suggesting
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that relationship between acetylcholine and dopamine sys-
tems may be specifically abnormal in AD [92].

The study of different intracortical circuits and sensory-
motor plasticity using TMS protocols confirmed that acetyl-
choline and glutamate are involved in CADASIL and that
abnormal plasticity correlates with the neuropsychological
profile [91]. Similarly, cathodal transcranial direct current
stimulation (tDCS) revealed no evidence of cortical dysplas-
ticity in CADASIL, suggesting that increased rapid-onset
cortical plasticity may contribute to largely preserve cognitive
and motor functions despite extensive ischemic subcortical
vascular disease [103].

4. The Contribution of Neuromodulatory
Techniques

Repetitive TMS and tDCS are emerging as promising tools to
modulate cortical circuits and related neurochemical path-
ways in dementing illnesses [104-106]. Several studies,
although methodologically heterogeneous, have shown that
specific paradigms of stimulation might improve cognitive
performance and mood-behavioral symptoms, possibly
becoming an alternative to conventional neuroleptic therapy
for psychiatric symptoms of dementia [104]. Current phar-
macological treatment, indeed, suffers from significant limi-
tations, such as nonspecific mode of actions, an insufficient
tailoring to the individual, and a number of adverse effects.
The targets for an ideal nonpharmacological neuromodula-
tory treatment would be (a) modulation of activity in the tar-
geted area, (b) modulation of activity in a dysfunctional
network, (c) restoration of adaptive balance in a disrupted
network, (d) guiding plasticity for best behavioral outcome,
and (e) suppression of maladaptive changes for functional
advantage.

In AD, there is a general trend for improvements across a
wide range of cognitive outcome measures following treat-
ment with rTMS and tDCS, probably mediated by compen-
satory mechanisms supporting the residual abilities, even
with long-lasting effects [104]. Typical sites of stimulation
include the DLPFC, temporal regions, temporoparietal
regions, or a combination of multiple regions. Interestingly,
the benefits may be highly task-specific (i.e., action naming
versus object naming and visual recognition versus spatial
recognition), taking into account that dementia severity
may affect the clinical response. Combining these techniques
with cognitive rehabilitation might influence learning in a
neuroplastic fashion [104].

In patients with vascular-related cognitive decline, rTMS
data are very few. In a randomized controlled pilot study on
patients with subcortical ischemic vascular disease and clini-
cal picture of VCI-ND, Rektorova et al. [107] showed that
high-frequency stimulation over the left DLPFC improved
executive performance and hypothesized that long-lasting
effects could be due to an indirect activation of monoaminer-
gic neurons located in the midbrain (dopamine) and/or the
brainstem (noradrenaline and serotonin) and their cortical
and subcortical targets [107]. Among individuals with vascu-
lar depression, rTMS is mentioned as a nonpharmacological
option, although WMLs load and global vascular risk profile
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are predictors of poor response [108]. Finally, a recent
systematic review evaluating the effectiveness of rTMS in
improving vascular depression and poststroke depression
concluded that it was beneficial in treating depression among
individuals with cerebrovascular disease over the short term.
However, heterogeneous populations and variability in study
design and protocol as well as a limited number of investiga-
tions challenge the ability to draw firm conclusions on the
effectiveness of rTMS [109].

Very recently, exciting results come from preclinical
studies showing the restorative effect of rTMS on cognitive
ability in murine model of VaD and its impacts on hippo-
campal synaptic plasticity [110, 111]. In this context, another
possible mechanism of action of noninvasive brain stimula-
tion in dementia is represented by the modulation of neuro-
trophin release. Indeed, experimental studies in rat models of
AD have shown that tDCS can improve learning in mice
through secretion of brain-derived neurotrophic factor
(BDNF) and activation of tyrosine kinase B receptor [112].
Moreover, low-frequency rTMS might improve cognitive
deficits through the upregulation of the hippocampal BDNF
and the expression of the glutamate receptor for N-methyl-
D-aspartate (NMDA) [113]. Finally, low-frequency rTMS
in VaD model rats may improve learning and memory,
protect pyramidal cells from apoptosis, and promote hippo-
campal synaptic plasticity through increased expression of
the Bcl-2 and reduced expression of Bax [114].

5. Limitations, Critical Aspects, and Possible
Solutions

Although innovative, the approach based on noninvasive
brain stimulation in vascular-associated cognitive impair-
ment includes a number of potential criticisms:

(a) One is difficulties in recruitment of a sufficient
number of age-matched controls without evidence
of cerebrovascular disease at neuroimaging (that is
strikingly prevalent among elderly) or with any cog-
nitive impairment at neuropsychological evaluation.

(b) The correlation between different TMS patterns of
cortical excitability and anatomical distribution and
severity of vascular lesions has not been systemati-
cally investigated; therefore, without the contribution
of advanced imaging, neuronavigated systems, or
other electrophysiological techniques (i.e., high-
density EEG), the spatial resolution of TMS remains
quite low. However, the majority of patients enrolled
in the studies here reviewed exhibited predominant
WMLs within the frontal lobes, thus partially limit-
ing this variability.

(c) TMS-related measures of cortical excitability do not
provide specific clinical information but are sensitive
to the “global weight” of several neurotransmitters,
as well as to subcortical and cortical motor inputs
[40, 57]. As a consequence, the description of TMS
findings observed in the different VCI subtypes

(d)
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cannot be linked to behavioral changes. It is worth
to highlight that the available TMS evidences in
vascular-related cognitive disorders point out the
possibility to identify a profile of cortical excitabil-
ity related to each VCI subtype rather than a spe-
cific behavioral deficit. On the other hand,
behavioral changes are common in all VCI
patients, and therefore, the identification of a dis-
tinctive TMS correlate is challenging. On the con-
trary, studies in vascular depression allowed us to
identify a more specific pattern of cortical excit-
ability, thus suggesting the role of some TMS mea-
sures as putative markers of disease process and
progress compared to nondepressed subjects.

The available results on relatively small sample size
might not be confirmed on larger populations,
although most of them have been obtained from
homogeneous samples in terms of demographics,
clinical and neuroradiological features, and age
matching with healthy controls.

The hypothesis to identify a characteristic signa-
ture in patients with subcortical vascular disease
at risk for developing VaD or mixed dementia
could be risky given the paucity of previous data
and the difficulty of similar approaches in other
dementing conditions, such as non-AD dementias;
consequently, the identification of a pattern of cor-
tical excitability rather than single marker of the
disease process and progress would be more reli-
able and reproducible [34].

As known, vascular lesions, even in the absence of
any motor deficit, give a significant contribution to
the development and progression of degenerative
dementia, so that it cannot be excluded that some
patients enrolled in the studies here reviewed had a
mixed form of dementia rather than a pure VaD. In
this respect, TMS is not currently able to clearly
distinguish VaD from AD based only on their neuro-
physiological profile or to clearly disentangle the
vascular from degenerative burden [30].

Elderly population usually takes a number of drugs
for the treatment/control of vascular risk factors
(i.e., antithrombosis agents, antihypertensive drugs,
statins, and oral antidiabetes therapy) which may
affect the measures of cortical excitability and con-
ductivity. The same holds for psychotropic drugs
often taken for the treatment of anxiety and depres-
sive disorders (i.e., benzodiazepines, antidepressants,
antipsychotics, and mood stabilizers) [44, 45, 57].
Therefore, the study design should consider patients
under medicaments which, to the best of current
knowledge, have no or limited influence at the level
of TMS.

Finally, a usual limitation in TMS research is the
threshold of sensitivity and specificity of the TMS
measures when used as a diagnostic tool. In order
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to adequately define sensitivity and specificity, the
individual measures in all the patients and controls,
not only the mean values, would be required. More-
over, to estimate the number of false positives, the
whole subject population needs to be followed up
independently to assess if they show clinical deterio-
ration [34]. Up to now, very few studies fulfill these
requirements, and the application of TMS in demen-
tia needs future studies with methodological
improvement and high degree of standardization.
Nevertheless, in view of the exponential growth of
new and sometimes not concordant data, this review
aimed to consolidate, wherever possible, the available
knowledge on TMS and VCL

6. Conclusion, Translational Value, and Future
Perspectives

To date, the development of dementia cannot be accurately
predicted by conventional investigations [115]. However,
unlike degenerative dementias, VaD can be prevented, at
least in part, in most of the patients through a careful preven-
tion and a close monitoring of vascular risk factors. Prevent-
ing VCI means to prevent vascular accidents and future
dementia, to reduce mortality, disability, and institutionaliza-
tion rates, to maintain an acceptable functional status in the
elderly, and, ultimately, to save clinical-social costs [116].

The effect of conventional treatment on VCI and VaD is
not well established. Moreover, the heterogeneous construct
of VCI constitutes a challenge in the selection of appropriate
outcome measures in clinical trials of pharmacological inter-
ventions. Therefore, the discovery of new early targets to
prevent or treat VaD is desirable. In this context, despite
the fact that patient cohorts and methodologies are not
always homogeneous between studies, much of the literature
agrees on the utility of TMS in dementias [34]. Although a
single measure is not sufficient to define a diagnosis, all
together the parameters of interest are footprints of specific
pathophysiological processes that affect motor and nonmo-
tor areas in various forms of dementia. Taken together, the
available TMS evidences point out the possibility to identify
a specific profile of cortical excitability each related to a
VCI subtype, and in particular to predict conversion of the
so-called “brain at risk” for VaD into an overt dementia. This
will be of pivotal importance when designing trials of disease-
modifying drugs and innovative nonpharmacological
approaches based on brain stimulation. Conversely, in
patients with overt dementia, TMS can be exploited to select
and evaluate the responders to specific drugs and might also
become a rehabilitative tool in the attempt to restore
impaired brain plasticity.

Although it is not possible at the moment to determine
whether findings from the studies here reviewed are reflected
in decision-making in the care of patients, TMS might
prompt a design of an instrument for screening of population
at risk, studying drug-induced changes in the electrical prop-
erties of the human cortex, probing models of brain connec-
tivity, and testing neuromodulatory therapeutic tools for
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cognitive rehabilitation. When patients at risk are identified,
a more careful prevention and control of vascular risk fac-
tors should be considered. Further longitudinal studies
combining TMS with other neurophysiological techniques
(including high-density EEG and event-related potentials)
and advanced structural and functional imaging data (such
as functional MRI and diffusion tensor imaging), as well as
serum and CSF biological markers will clarify the impact
of vascular cognitive, mood, and behavioral deficits on
cortical excitability and synaptic plasticity.
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