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Abstract

Background and aims: Transdermal alcohol sensors carry immense promise for the con-

tinuous assessment of drinking but are inconsistent in detecting more fine-grained indi-

cators of alcohol consumption. Prior studies examining associations between transdermal

alcohol concentration (TAC) and blood/breath alcohol concentration (BAC) have yielded

highly variable correlations and lag times. The current review aimed to synthesize trans-

dermal validation studies, aggregating results from more than three decades of research

to characterize the validity of transdermal sensors for assessing alcohol consumption.

Methods: Databases were searched for studies listed prior to 1 March 2022 that exam-

ined associations between transdermal alcohol sensor output and blood and breath-

based alcohol measures, resulting in 31 primarily laboratory-derived participant samples

(27 precise effect sizes) including both healthy and clinical populations. Correlation coef-

ficients and lag times were pooled using three-level random-effects meta-regression.

Independent raters coded study characteristics, including the body position of transder-

mal sensors (ankle- versus arm/hand/wrist-worn device) and methodological bias

(e.g. missing data).

Results: Analyses revealed that, in this primarily laboratory-derived sample of studies,

the average correlation between TAC and BAC was large in magnitude [r = 0.87, 95%

confidence interval (CI) = 0.80, 0.93], and TAC lagged behind BAC by an average of

95.90minutes (95% CI = 55.50, 136.29). Device body position significantly moderated

both TAC–BAC correlation (b = 0.11, P = 0.009) and lag time (b = −69.41, P < 0.001). Lag

times for ankle-worn devices were approximately double those for arm/hand/wrist-worn

devices, and TAC–BAC correlations also tended to be stronger for arm/hand/wrist-worn

sensors.

Conclusions: This meta-analysis indicates that transdermal alcohol sensors perform

strongly in assessing blood/breath alcohol concentration under controlled conditions,

with particular promise for the newer generation of wrist-worn devices.
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INTRODUCTION

Transdermal alcohol sensors have the potential to substantially bol-

ster our toolkit of measures within addiction science. Although exis-

ting measures of alcohol consumption have contributed valuable

knowledge to our understanding of drinking behaviors, all are associ-

ated with limitations. Blood-based alcohol measures are highly accu-

rate, but invasive and impractical for use in the field [1, 2].

Breathalyzer readings demand motivated action on the part of the

user and, when used improperly, can be impacted by residual mouth

alcohol [1–4]. Self-reports of drinking, although cost-effective and

widely employed in alcohol research, are nonetheless subjective and

vulnerable to bias [5–9]. Leveraging the fact that approximately 1%

of ingested alcohol is expelled from the skin in the form of water

vapor, transdermal sensors complement extant tools by assessing

drinking via a device that rests on the skin’s surface [2, 10, 11]. Thus,

transdermal sensors have the potential to assess drinking continu-

ously, passively and unobtrusively by measuring the concentration of

alcohol in sweat and insensible perspiration. In addition to their exis-

ting application as abstinence monitors in the criminal justice system

[12, 13], a range of additional uses have been proposed for transder-

mal sensors, including as relapse-detecting monitors capable of

prompting ‘just-in-time’ addiction intervention [14, 15], as drinking

risk-level indicators to inform the advisability of driving [14, 16, 17]

and as continuous trackers capable of unobtrusively assessing drink-

ing during the course of months and even years for implementation

in research studies [5, 18–20].

The current moment represents an exciting time for transdermal

alcohol sensing technology. The use of transdermal abstinence moni-

tors has burgeoned in recent years to encompass hundreds of thou-

sands of individuals globally [13]. Further, a new generation of sleek,

smartphone-integrated transdermal sensor has recently emerged that

promises to exponentially expand the range of applications for alcohol

biosensors [14, 16, 21–23]. At the same time, the current moment

represents a perplexing time for researchers seeking to understand

the potential of transdermal sensors, as the relationship between

transdermal alcohol concentration (TAC) and blood/breath alcohol

concentration (BAC1) is complex, and the performance of transdermal

technology in detecting more fine-grained indicators of alcohol con-

sumption has emerged as inconsistent. Indeed, reflecting this com-

plexity, extant studies in the literature have produced TAC–BAC

correlations ranging from moderate [27, 28] to extremely strong

[29, 30], and lag times between peak TAC and peak BAC varying from

30minutes [31–33] to several hours in duration [34]. Further compli-

cating the task of understanding the potential of transdermal technol-

ogy, the extent to which limitations and complexities observed with

respect to data produced by older sensors might apply equally to the

newer generation of transdermal technology is currently unclear [12].

Of note, despite more than three decades of empirical research

devoted to validating transdermal sensor output, there has not previ-

ously been a quantitative synthesis of the literature exploring the

TAC–BAC association. The current meta-analysis is aimed at filling

this gap.

Transdermal sensor types and factors impacting
transdermal alcohol detection

Since their first conception several decades ago [11], transdermal

alcohol sensors have undergone considerable evolution. Among the

first transdermal sensors made widely available to researchers was

the Secure Continuous Remote Alcohol Monitor (SCRAM) (AMS, Den-

ver, CO; see Fig. 1a [13]). SCRAM is a relatively bulky ankle bracelet

intended primarily for use with criminal justice-involved populations

[18, 37, 38]. SCRAM devices have demonstrated discriminative valid-

ity in detecting drinking episodes [12], albeit with limited ability to

detect low level drinking [39–42], and thus appear well suited to their

primary intended purpose as abstinence monitors in forensic settings

[12, 43]. However, SCRAM ankle monitors have properties that may

make them less well suited to tasks requiring fine-grained and/or time

sensitive estimation. The relationship between TAC and BAC can vary

depending on where on the body TAC is assessed [32, 44]. A range of

factors that vary across body locations can impact transdermal sensor

performance, including sensor–skin distance variability, skin thickness,

sweat gland density and blood vessel distribution, and some have the-

orized that the ankle positioning of SCRAM may be suboptimal for

sensitive transdermal assessment of BAC [12, 21, 32, 44, 45]. Further,

SCRAM devices rely on a pump to actively generate airflow across the

transdermal sensor, restricting the transdermal sampling interval to a

relatively sparse 30minutes. Probably due in part to this sparse

1Note that the amount of alcohol measured in blood is not the same as the amount of

alcohol measured in breath. However, these two are highly correlated and breath alcohol

measures are often used as a proxy for blood alcohol concentration [24–26]. Thus, within

this manuscript we use the abbreviation ‘BAC’ to refer to both blood and breath alcohol

concentration.

F I G U R E 1 (a) Secure Continuous Remote
Alcohol Monitoring (SCRAM) ankle monitor
([35]; left); (b) BACtrack Skyn ([36]; right)
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sampling schedule, SCRAM-measured TAC has been found to lag

behind BAC by extended periods, with studies indicating that the

delay between BAC and SCRAM-measured TAC can extend up to 5

hours [34]. Such protracted lag times have sometimes been presumed

to be also physiologically based, thus potentially extending beyond

only SCRAM to encompass all transdermal sensors [46, 47]. As some

of the more critical applications of transdermal alcohol sensing tech-

nology require detection of drinking episodes in near real-time

(e.g. just-in-time intervention/relapse prevention, applications for

determining driving advisability), these extended lag times have been

cited as a key factor limiting the utility of transdermal alcohol sensors

more broadly [21, 23, 46].

Although the SCRAM ankle monitor is currently the most widely

researched transdermal sensor, researchers have also examined a

range of monitors that employ alternative designs, with the availability

of these alternative sensors burgeoning in recent years. While the

majority of alternative devices examined in research have been wrist-

worn, some earlier iterations of these devices were affixed to the palm

or worn as an arm band [27, 30]. Wrist-worn devices have ranged from

early sensors such as Giner WriSTAS (Giner Inc., Newton, MA, USA;

resembling a wrist watch, now discontinued [33, 34, 48]) to new-

generation devices such as the BACtrack Skyn (from BACtrack/KHN

Solutions Inc., San Francisco, CA, USA; see Fig. 1b [16, 21, 23, 49]),

featuring smartphone connectivity and sleek, fitbit-like designs

[14, 16, 23, 46]. Wrist- and arm-worn devices have traditionally

employed sensors that rely on passive (rather than active pump-gen-

erated) airflow across the sensor, which has diminished demands on

battery life and so permitted faster sampling speeds. TAC sampling

intervals for wrist-worn transdermal sensors are relatively brief when

compared with ankle-worn devices, ranging from 5 minutes (WrisTAS

[31]) to 20 sec (BACtrack Skyn [16, 23]). Early research with wrist-

worn devices indicated high failure rates, although newer devices

demonstrate substantial improvement [21, 34]. Little research has

permitted direct comparison between ankle- and arm-worn devices,

and the research that does exist has had low power for such compari-

sons [21, 34, 49]. However, some early research points to the possibil-

ity of improved temporal sensitivity for new-generation wrist-worn

devices over old-generation ankle monitors indicating that, when

combined with machine-learning models capable of forecasting read-

ings into the future, such devices might permit drinking episode

detection in near real-time [21].

Besides the body position of the transdermal devices themselves,

a range of contextual and individual characteristics have been theo-

rized to impact the TAC–BAC relationship. Transdermal sensors are

sensitive to a variety of contextual factors, including temperature,

motion and interfering gases [32]. These factors are considerably less

variable in laboratory (versus real-world) contexts, where the majority

of transdermal sensor validation research has thus far taken place

[27, 29, 50–52]. Further, studies assessing the validity of transdermal

sensors via objective means have relied upon a range of approaches

for assessing alcohol consumption, including both blood- and breath-

based measures of intoxication. Although blood- and breath-based

alcohol measures are highly correlated [24–26], breath measures

assess alcohol levels via indirect means and thus it remains possible

that measured TAC–BAC associations could vary across these assess-

ment techniques [2]. Finally, characteristics of the research partici-

pants themselves, including biological sex and also drinking history

(e.g. heavy drinkers versus social drinkers), can impact the metabolism

of alcohol and so cause variability in the TAC–BAC relationship,

thereby affecting the performance of transdermal alcohol sensors

[51, 53]. However, in a literature characterized by extremely small

sample sizes (average n < 20), individual studies have generally had

insufficient power to explore moderators of the TAC–BAC link.

The current study

The current review aims to organize and synthesize the literature

examining the validity of transdermal alcohol sensors for the assess-

ment of BAC. Interest in transdermal alcohol measurement has surged

in recent years, with seven reviews of transdermal sensor research

published in the past 2 years alone [5, 14, 16, 17, 22, 46, 54]; for a

registered report, see also Kiarnersi et al. [55]. Although numerous

narrative reviews exist, no meta-analysis has quantified the associa-

tion between TAC and BAC. In the current review, by examining stud-

ies employing objective assessment of alcohol intoxication we aim to

explore associations between ingested alcohol and alcohol that can be

detected at the skin’s surface via transdermal means. More specifi-

cally, the aims of the current review are to: (1) quantify the magnitude

of the TAC–BAC correlation across samples and studies; (2) quantify

the magnitude of the TAC–BAC lag time across samples and studies;

and (3) explore the extent to which device body position (ankle, arm,

etc.), study type (laboratory versus ambulatory), alcohol measures

(BAC versus BrAC; alcohol dose) and sample characteristics (gender

composition; healthy versus clinical/heavy drinking) moderate these

TAC–BAC correlations and lag times.

METHODS

Systematic review and meta-analytical procedures employed Preferred

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines [56]. The databases PubMed and PsycInfo were searched

for articles published prior to 1March 2022. The following search

terms were used: ‘alcohol’ AND ‘transdermal’. Bibliographies of stud-
ies meeting inclusion were scanned for additional eligible studies, as

were the reference sections of three review articles [21, 22, 37]. A

protocol for meta-analytical procedures can be accessed at https://

osf.io/nq6fc/. The meta-analysis was not pre-registered.2 In total,

1804 records were screened for inclusion (see Fig. 2).

Studies were required to meet the following eligibility criteria:

(1) examine data collected from human participants; (2) include mea-

surement of TAC via a wearable device assessing alcohol

2Work on this review was initiated before pre-registration of meta-analyses was standard

practice. Note that we test aims here, not directional hypotheses.
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concentration within sensible/insensible perspiration; (3) include mea-

surement of alcohol intoxication via objective means—e.g. via breatha-

lyzer or direct blood/plasma measure; (4) examine the relationship

between TAC and BAC; and (5) report available in English language.

Studies featuring transdermal devices that were not clearly ‘wearable’
(e.g. [57]) and also studies featuring sweat patches or tattoos

(e.g. [58]) were excluded. Studies that did not measure BAC directly

but rather estimated BAC from self-reports or quantity of ingested

alcohol (e.g. [59]) were also excluded. If multiple reports were publi-

shed based on the same exact participant sample, the first publication

was included.

All eligible studies were coded by two independent raters for the

following characteristics: (1) sample size; (2) sex composition: % female

participants in final sample; (3) study type: laboratory versus ambula-

tory; (4) target population: healthy versus clinical/heavy-drinker sample;

(5) body position: ankle- versus arm/hand/wrist-worn transdermal sen-

sor; (6) alcohol measure: breathalyzer (breath), direct measure of alcohol

content in blood or plasma (blood), or a combination of these methods;

(7) peak BAC: for laboratory studies featuring fixed dosing, average

peak BAC across all alcohol conditions; (8) publication year; (9) average

lag (in minutes) between peak BAC and peak TAC; and (10) correlation

between BAC and TAC.3 We also assessed methodological quality/bias

of included studies through three items, based loosely on tools

employed in the literature (e.g. Cochrane risk-of-bias tools; [60]) includ-

ing: (1) random assignment: whether or not doses were randomly

assigned and/or counterbalanced across subjects (laboratory studies);

(2) missing data: proportion of initial participant sample represented in

final sample analyzed; and (3) number of drinking sessions: average

number of drinking sessions/events per participant. The average inter-

rater agreement was 84% (range = 71–100%). Disagreements were

resolved by a third rater.

3In most cases authors reported the association between raw TAC and BAC, but in other

cases they also reported associations between BAC and a transformed version of TAC

intended to more closely approximate BAC. We took an inclusive view to coding effect sizes,

so effects reported in this review encompass associations with both raw and transformed

versions of TAC.

F I GU R E 2 Preferred Reporting Items
for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram
illustrating the process of identifying
eligible studies
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Statistical analysis

We employed three-level random-effects meta-regression models

accounting for non-independence of effect sizes within samples

[61–63]. Studies included in this meta-analysis sometimes produced

several effect sizes, reporting data derived from more than one trans-

dermal device type or alcohol measurement method within the same

participant sample, and this three-level meta-analytical framework

enabled us to assess moderators that varied at not only the

between-sample but also the within-sample level. Moderators were

first explored in single-predictor regression models, and effects that

reached significance (P < 0.05; two-tailed tests) were then entered

into multivariable regression models to account for possible covaria-

tion across predictors. The significance of level 2 (σ2L2; within-sam-

ple) and level 3 (σ2L3; between-sample) variance parameters were

assessed using log-likelihood tests comparing models with and with-

out these variance components. As the significance of such tests is

impacted by the number of samples/observations, we also calculated

I2 values representing the proportion of total variance captured at

each level. To test for publication bias, Egger’s test of the intercept

[64] and the trim-and-fill method [65] were conducted at the level of

the sample. Cook’s distance was examined to detect influential

datapoints [66].

RESULTS

Descriptives

The search process yielded a total of 31 independent participant

samples derived from 21 reports. The final group of studies for

which effect size estimation was possible included a total of 16 cor-

relation coefficients derived from 14 independent samples and

11 lag times derived from nine independent samples. Of this final

group of studies, 16 samples assessed intoxication using only

breathalyzer measures, three samples using only blood/plasma mea-

sures and one using a combination of breath and blood measures.

Eight samples employed only the SCRAM (ankle-worn) device, nine

studies employed only arm/hand/wrist-worn devices, and three

studies employed both wrist- and ankle-worn devices within the

same participant sample. Most studies included in this review

employed laboratory study designs: all samples yielding lag time

effect sizes (k = 9) utilized a laboratory methodology, whereas

within studies yielding a correlation coefficient effect size (k = 14),

one employed an ambulatory design. Three samples yielding lag

time effect sizes and five samples yielding a correlation coefficient

effect size examined clinical/heavy-drinker samples. The average

number of drinking sessions per participant within reviewed studies

was three. See Table 1 for sample descriptives. All data and codes

needed to replicate the results presented here are provided at

https://osf.io/nq6fc/.

Aggregated effect size and moderator analyses

Analyses revealed that the average correlation between TAC and

BAC was large in magnitude (r = 0.87, 95% CI = 0.80, 0.93). The

majority of variability in correlation coefficients was observed at

the within-sample level (σ 2
L2 = 0.004, P = 0.037; σ 2

L3 = 0.002, P =

0.378). Inspection of I2 values indicated that 48.3% of variance

was within-samples and 20.9% was between-samples (the

remaining 30.8% of variance was attributable to sampling error).

Moderator analyses indicated significant effects of body position in

predicting the strength of TAC–BAC correlations (b = 0.11, P =

0.009). Specifically, TAC–BAC correlations tended to be larger

when TAC was measured using a device positioned on the arm,

hand or wrist (r = 0.93, 95% CI = 0.87, 0.99) versus the ankle (r =

0.82, 95% CI = 0.75, 0.89). In analyses focused on variability within

the arm/hand/wrist subgroup, we found no significant differences

in the strength of correlations for devices worn on the hand versus

arm versus wrist (F(2, 4) = 4.05, P = 0.109). In addition to body posi-

tion, three other variables emerged as significant in single-predictor

moderator analyses: missing data (b = 0.36, P = 0.040), publication

year (b = −0.004, P = 0.017) and alcohol measure (b = −0.12, P =

0.040). However, when all significant predictors were included in

the same model, only body position and missing data remained sig-

nificant, indicating that the effects of alcohol measure and publica-

tion year were probably non-independent. No other moderators

reached significance in predicting the strength of TAC–BAC corre-

lations (see Table 2). See Fig. 3 for aggregated effects according to

device body position and Supporting information, Fig. S1 for a for-

est plot of sample-level effects.

Analyses of lag times indicated that TAC lagged behind BAC

by an average of 95.90minutes (Mdiff = 95.90, 95% CI = 55.50,

136.29).§ There was variability in the size of this effect (σ 2
L2 =

2043.73, P < 0.001; σ 2
L3 = 996.95, P = 0.264). Inspection of I2

values indicated that 65.3% of variance in effect sizes was within-

samples, whereas 31.9% of variance was between-samples (the

remaining 2.9% of variance was attributable to sampling error).

Moderator analyses revealed that the amount of time by which

TAC lagged behind BAC was significantly impacted by the body

position of the transdermal sensor (ankle versus arm/hand/wrist; b

= −69.41, P < 0.001) (Table 2). TAC lagged behind BAC by an aver-

age of 135.84minutes when TAC was assessed using an ankle-

worn sensor (Mdiff = 135.84, 95% CI = 105.69, 165.99), whereas

TAC lagged behind BAC by a comparatively brief 66.43minutes

when measured using a device positioned on the hand, arm, or

wrist (Mdiff = 66.43, 95% CI = 39.97, 92.89). In analyses focused on

the arm/hand/wrist subgroup, we found no significant differences

in lag times for devices worn on the hand versus arm versus wrist,

(F(1, 5) = 0.018, P = 0.899). No other moderators reached signifi-

cance. See Fig. 3 for aggregated effects according to device body

position and Supporting information, Fig. S1 for a forest plot of

sample-level effects.
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Influence diagnostics and publication bias

In light of variable sample sizes across studies reviewed here, we con-

ducted additional influence diagnostics to explore the extent to which

individual effect sizes might exert an outsized influence on effects.

Investigation of Cook’s distance plots (see Supporting information,

Fig. S2) indicated several datapoints potentially exerting a large influ-

ence within aggregated analyses of correlation coefficients, as well as

within our moderator analyses of body position. Leave-one-out ana-

lyses indicated that the moderating effect of body position in

predicting correlation coefficients remained largely consistent across

model iterations, but effects were no longer significant when either

effect size from a single large sample [49] were removed. However,

these same analyses indicated that overall correlation coefficients (rs

ranging from 0.85 to 0.88), overall lag times (lags ranging from 86.30

to 103.22), and also results of moderator analyses on lag time (bs

ranging from 64.40 to 88.60) remained consistently significant even

after each of the large influence datapoints was omitted.

Egger’s test of the intercept did not provide evidence of signifi-

cant publication bias in either analysis of correlation coefficients (b =

0.62, 95% CI = −0.87, 2.10) or for lag times (b = −1.36, 95% CI = −9.21,

6.48). The trim-and-fill method produced an imputed point estimate

of r = 0.81 (95% CI = 0.73, 0.87) for correlation coefficients and an

estimate of Mdiff = 92.93 (95% CI = 61.61, 120.58) for lag times. Fun-

nel plots for both correlation coefficients and lag times are provided in

Supporting information, Fig. S3. Taken as a whole, analyses indicated

publication bias was unlikely to have had a major impact on findings.

DISCUSSION

The current review synthesizes more than three decades of research

to yield initial validity estimates for transdermal alcohol biosensors.

Results indicated that, within the sample of studies reviewed here,

which focused mainly upon laboratory-based methodologies, the

average cross-sample correlation between TAC and BAC emerged as

extremely strong (r = 0.87). The average interval by which peak TAC

lagged behind peak BAC was 96minutes in duration. Moderator ana-

lyses indicated that correlations were significantly higher and lag

times significantly shorter within studies employing arm/hand/wrist-

worn versus ankle-worn devices.

Of note, the time interval by which TAC lagged behind BAC

increased by a factor of nearly twofold when studies estimated TAC

via an ankle- versus arm-worn sensor. The lag time derived specifically

from arm-worn sensors was measured as lasting only 66minutes,

whereas the average lag time for ankle-worn devices was estimated

at a comparatively long 136minutes. Note that, as a variety of factors

aside from body position vary across extant ankle- versus arm-worn

transdermal devices—e.g. the sampling interval of TAC, mechanical

properties of the sensor, the recency of sensor development—this

review is incapable of pinpointing the exact mechanism driving these

differential lag times. Nonetheless, in light of individual reports

suggesting the TAC–BAC lag can average as long as 5 hours [34],T
A
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these aggregate cross-study lag estimates offer a relatively auspicious

view of the temporal sensitivity of transdermal alcohol biosensors.

When considered together with prior research indicating promise for

modern computational approaches such as machine learning in yield-

ing real-time transdermal BAC estimates from new-generation sensors

[33, 49, 71], these findings suggest that transdermal sensors might

potentially be employed in applications requiring alcohol-use informa-

tion in near real-time.

In addition to these lag-time effects, results of this review suggest

TAC–BAC correlations may be stronger in magnitude for arm/hand/

wrist- versus ankle-worn devices. Of note, however, only two studies

contributed a within-sample comparison of ankle- versus arm-worn

devices to these correlation analyses (i.e. arm- and ankle-worn devices

worn by the same sample in the same study), and the influence of

diagnostics further indicated that individual larger samples within our

review may have played a sizeable role in driving these aggregate

body position correlation effects. More research is needed to directly

compare TAC–BAC correlations yielded by arm- versus ankle-worn

sensors within the context of the same study/sample.

To date, the majority of studies exploring the validity of trans-

dermal sensors have been conducted in a laboratory context, and

thus studies included in this review focus on laboratory methodolo-

gies. Laboratory methods allow researchers to collect highly precise

estimates of BAC, including via direct blood/plasma samples, making

these methods well suited to this first-stage of research exploring

the validity of transdermal alcohol biosensors. However, given con-

textual effects on TAC–BAC associations, correlations between TAC

and BAC are almost certain to be lower when assessed in real-world

contexts versus when assessed in the laboratory. Of note, the TAC–

BAC associations yielded in this initial quantitative synthesis were

remarkably high. Transdermal sensors demonstrating substantially

lower sensitivity to BAC—e.g. sensors capable of simply detecting

drinking versus non-drinking in near real-time or those capable of

retroactively tracking broad, day-level risk level—might still have a

range of key applications (e.g. as relapse trackers in just-in-time inter-

vention, as long-term health trackers in prevention initiatives [14]).

Thus, in light of the wide range of applications for transdermal sen-

sors, including sensors demonstrating lower levels of accuracy and

temporal sensitivity, this review indicates strong potential for these

devices. Nonetheless, transdermal validation research is needed fea-

turing large participant samples and objective BAC tracking in real-

world contexts.

T AB L E 2 Results of moderator analysis

B t-value P-value 95% CI

Correlation coefficients (rs)

Study type (neffects = 16) −0.291 −1.294 0.217 (−0.774, 0.191)

Alcohol measure (neffects = 16) −0.116* −2.268 0.040 (−0.226, −0.006)

Body position (neffects = 16) 0.111** 3.011 0.009 (0.032, 0.191)

Publication year (neffects = 16) −0.004* −2.710 0.017 (−0.007, −0.001)

Sex composition (neffects = 14) 0.001 1.059 0.311 (−0.001, 0.004)

Random assignment (neffects = 13) 0.089 1.269 0.231 (−0.065, 0.244)

Target population (neffects = 16) −0.032 −0.528 0.606 (−0.161, 0.097)

Missing data (neffects = 16) 0.355* 2.266 0.040 (0.019, 0.690)

Peak BAC (neffects = 10) 0.452 0.162 0.875 (−5.977, 6.882)

Number of drinking sessions (neffects = 14) 0.002 0.129 0.899 (−0.034, 0.038)

Lag time (minutes)

Alcohol measure (neffects = 11) 47.865 0.722 0.489 (−102.153, 197.883)

Body position (neffects = 11) −69.407*** −7.001 <0.001 (−91.833, −46.981)

Publication year (neffects = 11) 0.371 0.163 0.874 (−4.787, 5.528)

Sex composition (neffects = 11) −0.433 −0.225 0.827 (−4.775, 3.909)

Random assignment (neffects = 11) 10.386 0.255 0.805 (−81.913, 102.685)

Target population (neffects = 11) −7.492 −0.185 0.857 (−99.014, 84.030)

Missing data (neffects = 11) 97.299 1.351 0.210 (−65.642, 260.240)

Peak BAC (neffects = 10) 1456.034 0.960 0.365 (−2041.555, 4953.624)

Number of drinking sessions (neffects = 11) 7.865 0.615 0.554 (−21.053, 36.784)

Study type was excluded in the analysis of lag time due to no variability across studies. neffects = number of effect sizes. BAC = blood/breath alcohol

concentration; CI = confidence interval.

*P < 0.05;

**P < 0.01;

***P < 0.001.
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Limitations of the current review should be noted. Similar to most

meta-analytical reviews, we did not have access to participant-level

data and thus were limited to examining many of our individual-level

moderators (e.g. biological sex) aggregated at the level of the sample.

Such sample-level comparisons can obscure effects and, in some cases,

may be especially likely to lead to confounds. Future participant-level

analyses might usefully re-examine some of the moderators identified

here, especially factors such as biological sex that have emerged in

prior studies as probable moderators of the TAC–BAC link [51]. Fur-

ther, young, healthy, social drinkers were disproportionately represen-

ted in samples included in our review. Although approximately 35% of

samples featured populations of heavy drinkers and/or those hospital-

ized for disordered drinking, the majority were healthy individuals.

Future empirical research should explore the validity of transdermal

alcohol sensors in older and clinical populations. Relatedly, although

our sample of studies was sufficiently large to examine many of the

effects of interest here, in the case of some moderator analyses, sub-

samples of studies became quite small (e.g. comparison of wrist- ver-

sus arm-versus hand-worn devices). More research will need to accrue

before some of these moderators can be productively examined in

meta-analysis. Additionally, some studies included in this review

involved disproportionately large samples [49] and effect sizes [34]

with the potential to influence findings. Beyond the influence of single

effect sizes, several studies included in our analysis were from the

same research group (e.g. [21, 49, 68] and [51, 52]). In this nascent

field, it remains possible that results of specific research groups might

be exhibiting an outsize influence on effects.

In summary, results of the current meta-analysis indicate the

strong performance of transdermal alcohol sensors in assessing BAC

under controlled conditions. When considered together with the wide

range of applications for unobtrusive alcohol biosensors, including

those requiring lower accuracy and temporal-specificity levels, results

of this review present a relatively positive initial view of the potential

of transdermal alcohol sensing technology. Future research is needed

to assess the validity of these sensors in real-world contexts.
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