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Accurate surface ultraviolet 
radiation forecasting for clinical 
applications with deep neural 
network
R. Raksasat1,2, P. Sri‑iesaranusorn1,3, J. Pemcharoen4, P. Laiwarin5, S. Buntoung5, S. Janjai5, 
E. Boontaveeyuwat4, P. Asawanonda4, S. Sriswasdi2,6* & E. Chuangsuwanich1,2*

Exposure to appropriate doses of UV radiation provides enormously health and medical treatment 
benefits including psoriasis. Typical hospital‑based phototherapy cabinets contain a bunch of 
artificial lamps, either broad‑band (main emission spectrum 280–360 nm, maximum 320 nm), or 
narrow‑band UV B irradiation (main emission spectrum 310–315 nm, maximum 311 nm). For patients 
who cannot access phototherapy centers, sunbathing, or heliotherapy, can be a safe and effective 
treatment alternative. However, as sunlight contains the full range of UV radiation (290–400 nm), 
careful sunbathing supervised by photodermatologist based on accurate UV radiation forecast is vital 
to minimize potential adverse effects. Here, using 10‑year UV radiation data collected at Nakhon 
Pathom, Thailand, we developed a deep learning model for UV radiation prediction which achieves 
around 10% error for 24‑h forecast and 13–16% error for 7‑day up to 4‑week forecast. Our approach 
can be extended to UV data from different geographical regions as well as various biological action 
spectra. This will become one of the key tools for developing national heliotherapy protocol in 
Thailand. Our model has been made available at https ://githu b.com/cmb‑chula /SurfU VNet.

Phototherapy using artificial light sources is one of the standard treatments for various skin  conditions1–3. With 
established national guidelines and standard dosimetry protocols, hospital-based phototherapy provides safe 
and effective treatment for a wide variety of patients. However, many skin patients in Thailand still lack access to 
hospital-based phototherapy due to the limited number of phototherapy centers as well as shortage of qualified 
phototherapy practitioners across the country.

Heliotherapy, or phototherapy using natural sunlight, has been reported effective for treating diverse health 
 issues4–6 and skin  conditions7–9 since 1890s. Several clinical studies have also shown success outcomes of super-
vised heliotherapy in mostly European countries, including the Canary Islands, Spain, Helsinki, Finland and 
Davos,  Switzerland10–15. Despite clear benefits of heliotherapy, a key issue that limits its effectiveness is the 
substantial variation in surface UV radiation throughout the year and time of day. Therefore, accurate estimates 
of UV radiation, in conjunction with treatment action spectrum and dosimetry, are essential for developing a 
safe and effective heliotherapy protocol in long-term use for a particular geographical  region16–18. To date, a few 
studies have explored the prospect of quantitative heliotherapy planning based on UV radiation  forecast17,19.

Prediction of surface UV radiation can roughly be categorized into three groups: modeling based on the 
physics of UV radiation, a hybrid between the physics and empirical techniques, and deep learning. Modeling 
approaches based on the physics of UV radiation calculate the amount of solar UV radiation that arrives at a 
certain location on Earth at a certain time mainly based on the Earth–Sun distance and the thickness of the 
Earth’s ozone  layer19–21. This is also known as the clear-sky UV radiation. Then, to obtain the amount of radiation 
on the Earth’s surface, the clear-sky estimates are multiplied by factors such as Cloud Modification  Factor19,22 to 
account for reflection and scattering of UV in the atmosphere. Hybrid approaches rely on Physics knowledge 
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to define UV-related factors, such as total ozone column, zenith angle, and weather conditions, but incorporate 
numerical simulations and regressions to estimate the contribution of these factors to the amount of surface 
UV radiation in a data-driven  manner22–25. In contrast, deep learning approaches attempt to predict surface UV 
radiation data directly from past observations with little to no constraint on how UV-related factors  interact26–29. 
Although deep learning is effective for forecasting time  series30 because of its ability to learn complex non-linear 
relationship between the input and output data, it requires a large amount of data to train, lacks interpretability, 
and does not perform well on new datasets with different distributions. It is expected that deep learning model for 
UV forecasting needs to be retrained for each geographical region. Recent works in the energy domain have suc-
cessfully utilized recurrent neural network (RNN)31 architectures, such as Long Short-Term Memory (LSTM)32 
and Gated Recurrent Unit (GRU)33, to predict solar photovoltaic power  production26,27,34–36.

Study of surface UV radiation in  Thailand37,38 showed that this region has sufficient UV radiation year-
round, indicating that heliotherapy is a promising treatment alternative for skin patients in the country. In this 
work, we developed a deep learning model for surface UV radiation forecasting based on the encoder–decoder 
 architecture39 and 10-year surface UV radiation data collected at Nakhon Pathom, Thailand (13.82° N, 100.04° 
E) from 2009 to 2019. The model requires only past UV radiation data as input and is able to predict antipsoriatic 
effective  irradiance17 at 10-min intervals from 8 AM to 4 PM with about 10% error for 24-h forecast and 13–16% 
error for 7-day up to 4-week forecast. As the model’s performances are well within the acceptable error range 
of 10–25% indicated in broadband UVB phototherapy guidelines  worldwide1,40, our work serves as a key step 
toward the establishment of the national heliotherapy protocol in Thailand.

Methods
Surface UV and weather data acquisition. Surface UV radiation, total ozone column, cloud coverage, 
and aerosol optical depth at 500 nm (AOD500), were collected at the Faculty of Science, Silpakorn University, 
Nakhon Pathom, Thailand (13.82° N, 100.04° E) from January 2009 to May 2019. UV intensity was measured 
every 10  min from 5AM to 7PM at 1-nm wavelength interval from 280 to 400  nm in mW/m2 unit using a 
DMc150 double monochromator (Bentham Instruments, Berkshire, UK). AOD500 and cloud coverage data 
were collected from 6 AM to 6 PM from January 2011 to December 2018. Hourly AOD500 data were measured 
by a ground based CE318 sunphotometer (Cimel Electronique, Paris, France) and calibrated by the Aerosol 
Robotic Network (NASA, Washington, DC, USA). Cloud coverage data were estimated on a 0–10 scale from 
recorded images of the sky every hour through a PSV-100 skyview instrument (Prede Company, Tokyo, Japan). 
Total ozone column data were measured daily in Dobson unit (DU) via an OMI/Aura satellite (NASA, Wash-
ington, DC, USA) from January 2011 to December 2019. The distributions of UV radiation, cloud, ozone and 
AOD500 in Nakhon Pathom throughout the year are shown in Fig. 1a–d, respectively.

Hourly downward surface UV radiation in J/m2, total ozone column in kg/m2, and mid cloud coverage were 
also downloaded from  ERA541 for London, England (51.5° N, 0° E) and Tokyo, Japan (35.75° N, 139.75° E) from 
5AM to 7PM from January 2011 to December 2019. It should be noted that ERA5 datasets were generated from 
a combination of actual observation (every 3-h) and computational reanalysis. ERA5 downward UV radiation 
data cover the 200–440 nm wavelength range.

Data cleaning and preprocessing. Surface UV radiation exhibits an annual seasonal pattern. We used 
this pattern as a justification for using UV data of the same dates from adjacent years to impute each missing data 
point. This is crucial because missing UV data often arise from sensor malfunction which typically spans multi-
ple days. Also, because the artificial neural network model cannot handle missing values, imputation increases 
the number of data points that can be used to train and test the model. Specifically, we impute each missing 
data point with the average UV radiation from adjacent 10-min time steps, the same time steps from adjacent 
days, and the same dates from adjacent years. The ranges of adjacent time steps, days, and years that were used 
for imputation are 2, 5, and 2, respectively. Imputed data were visually inspected to ensure that the overall UV 
intensity follows the expected bell-shape pattern with a peak at around noon. In Thailand, this bell-shape pattern 
is often observed from October to January where there are few rainy and cloudy days. The Nakhon Pathom UV 
data from 2014 were excluded from further considerations as there is a technical problem with the instrument.

Nakhon Pathom UV data were split into a training set (2009–2017), for optimizing the parameters of artificial 
neural network models, a validation set (2018), for determining when to stop the optimization process, and a 
test set (2019), for evaluating the performance of the final models. We found that using the whole training set, 
i.e., using UV data from all dates and times, to train the models yielded the best performance. For the validation 
and test sets, we further exclude data from days with anomalous UV intensity profiles to prevent them from 
influencing the evaluation of the models. Specifically, we removed data from days whose UV profiles are highly 
skewed (absolute skewness greater than 0.3), disproportional (ratio between maximal and minimal irradiances 
greater than 15), or out of expected range (maximal irradiance above 400 or below 150 mW/m2). The distribu-
tions of cloud coverage in the validation and test datasets are shown in Fig. 1e and f, respectively. Finally, the 
antipsoriatic irradiance at each time point was calculated from 280 to 400 nm UV data based on published 
psoriasis clearance action spectrum  formula17,42,43.

For evaluating the impact of incorporating ozone and AOD500 information as input into SurfUVNet, because 
these data were available only up to 2018, we re-split the dataset by setting data from 2009 to 2016 as the training 
set, data from 2017 as the validation set, and data from 2018 as the test set. The same quality filter for excluding 
data from days with poor UV profiles defined above was also applied to these validation and test sets. SurfUVNet 
model variants with and without ozone and AOD500 as input were then trained and evaluated together on this 
data split.
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SurfUVNet model architecture. Encoder–decoder-based model is a kind of deep learning model that 
have been successfully applied to various applications such as image  captioning44 and machine  translation39. In 
the context of UV forecasting, an encoder–decoder model can be used to translate a sequence of past observed 
UV radiations into a sequence of future UV radiations. The model consists of two parts: encoder and decoder as 
shown in Fig. 2a. Both parts consist of multilayered LSTMs. As the names implied, the LSTMs in the encoder are 
used for encoding information from the input sequence while the LSTMs in the decoder decoded that informa-
tion to generate the output sequence.

As the input to our model, for the main implementation which relies only on UV data, we use a sequence 
of 10-min interval antipsoriatic data from the previous days, denoted as [A1,A2, . . . ,At] and a sequence of 
antipsoriatic data from the previous year, denoted as [B1,B2, . . . ,Bt] . For the model variant which also accepts 
AOD500 and ozone, the inputs Ai ’s and Bi ’s will include these data of the same time-of-day from previous days 
and previous year as well. To handle differences in data resolution for various features (10-min for UV irradi-
ance, hourly for AOD500, and daily for ozone), the values of features with lower resolutions were duplicated to 
match the highest resolution.

Since the antipsoriatic values are seasonal in nature, we also include day-of-year information as the input by 
encoding the day-of-year on a circular index defined as:
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Figure 1.  Characteristics of UV and weather conditions at Nakhon Pathom, Thailand. Daily maximums are 
shown for UV irradiance, total ozone column, and AOD500. Daily averages are shown for cloud coverage. Dark 
lines indicate the average across 2009–2017. Shaded areas indicate the ± 1 standard deviation range. (a) Annual 
surface UV irradiance. (b) Annual cloud coverage. (c) Annual total ozone column. (d) Annual AOD500. (e) 
The distribution of cloud coverage in the validation set (UV data from year 2018). Both Silpakorn University’s 
observations and ERA5 data were shown. (f) The distribution of cloud coverage in test set (UV data from year 
2019). Information from Silpakorn University is unavailable.
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The circular date feature helps the model to learn the seasonal pattern. The model predicts future antipsoriatic 
values, 

[
ỹ1, ỹ2, . . . , ỹt

]
.

Next, we provide detailed information of our model.

Encoder. The decoder takes the previous day sequence [A1,A2, . . . ,At] and the circular date feature as input. 
We use a bi-directional45 LSTM as the first layer to help the model learns the temporal effect in both directions. 

Predicted 

Encoder

Decoder

UV profile of the same date 
from previous year

UV profiles of N previous days up to today 

UV profiles of days 1-14

UV profile of the day 
15 from previous year

UV profile of the day 
16 from previous year

Predicted UV for 
day 15 

Predicted UV for 
day 16 

Predicted UV for day 15

UV profiles of days 2-14

Figure 2.  Schematic of SurfUVNet. (a) The underlying encoder–decoder neural network architecture showing 
the flow of data from the encoder to the decoder via the central connection denoted by  St. LSTM and Dense 
indicates the Long Short-Term Memory and fully connected neural network layers, respectively. UV data from 
days prior to the forecast date are fed into the encoder part while UV data from the same date of previous year 
are fed into the decoder part. The model forecasts next-day UV radiation at 10-min resolution. (b) The auto-
recursive mode for long-term UV forecasting. To forecast UV radiation for the next N days, SurfUVNet first 
forecast next-day’s UV radiation profile and then uses the prediction as input to forecast UV radiation profile for 
the day after. This process is repeated until the forecasts for the next N days are generated.
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The latter layers are uni-directional LSTM that will capture the information and pass the information to the 
decoder via the final cell state, St.

Decoder. The decoder takes [B1,B2, . . . ,Bt] as input and uses it to future predict antipsoriatic values. The 
first layer of the decoder is a LSTM layer which uses St from the decoder as the initial value of the cell state. 
We also add two fully connected layers with sigmoid activation function with the  dropout46 rate of 0.2 after the 
LSTM layer for the final output.

Before feeding the input data to the model, we denoised the input antipsoriatic data with the Savitzky–Golay 
 filter47. Applying the filter, smooth out the input data, removing any possible noise spikes in the data. However, 
we do not apply this processing to the target output data. If we train the model to predict the denoised data, the 
model is learning to predict the unrealistic data and will not be able to handle noises in the UV intensities. Then, 
we normalized the antipsoriatic data into a range of [0, 1].

We trained the model using quantile  loss48 defined as:

where yi is the actual value and ỹi is the predicted value, q is a quantile value which balances the penalties of 
overestimates and underestimates. If q is more than 0.5, the quantile loss gives more penalty to overestimated pre-
dictions and vice versa. In our work, we set q to 0.33 to favor overestimation rather than underestimation because 
underestimated results can cause sunburn to patients due to a prescribed sunbathing time that is too long.

Model training. We used Adaptive Moment Estimation (ADAM)49 as the optimizer. The learning rate was 
initially set to 0.0005 and iteratively reduced linearly by 1e−7 per epoch. Models were trained for 2000 epochs 
with a batch size of 256.

Results
SurfUVNet model architecture. The task of forecasting in general can be formulated as a problem of 
finding the best approximation for the relationship between past and future observations. For surface UV radia-
tion, which exhibits an annual seasonal pattern, the profile of next-day UV radiation can be modeled using not 
only data from previous days but also data from previous years. Here, we adapted an encoder–decoder architec-
ture, which can effectively capture relationship between sequence data, to develop an artificial neural network 
model for forecasting next-day surface UV radiation. Our model, named SurfUVNet, takes in UV radiation 
profiles of the past 7, 14, or 21 days through the encoder and passes the encoded information to the decoder. The 
decoder then takes in the UV radiation profile of the same date as the next day but from last year, combines it 
with information from the encoder, and then generates the next-day forecast (Fig. 2a). Intuitively, because UV 
radiation exhibits annual seasonal pattern, our approach models the next-day UV radiation profile as a trans-
formed version of last year’s data and uses recently observed UV pattern to learn the appropriate transformation. 
Finally, to forecast UV radiation profile further into the future, our approach essentially performs next-day fore-
cast repeatedly via an auto-regressive approach. For example, if we define today as the day N, to predict the UV 
radiation profile for next week, or day N + 7, our model first uses data from days N − 6, N − 5, …, N to forecast 
UV for the day N + 1, and then uses the data from days N − 5, N − 4, …, N, and the forecast for the day N + 1 to 
forecast UV for the day N + 2, and so on (Fig. 2b).

Benchmark procedure. We evaluated the performance of SurfUVNet (also called Seq2Seq-14 here) 
against four alternative models: a simple model that uses the previous day UV radiation pattern as the predic-
tion, an empirical approach that combined physics knowledge to define the interactions between UV-related fac-
tors with regression technique to learn coefficient values, which is currently in used by the Thai Meteorological 
 Department22, a CNN-LSTM neural network model developed for solar power  forecasting27, and an implemen-
tation of bidirectional GRU neural network model which is often used in time series forecasting applications. 
As prior study has shown that the CNN-LSTM model benefits from additional smoothing of UV data from 
rainy  days27, we considered two CNN-LSTM model implementations: one without smoothing and one with 
Savitzky–Golay  filter42 (denoted by CNN-LSTM and CNN-LSTM-SG in Fig. 3a and Table 1). To fairly compare 
model performance, the validation and test datasets were subjected to quality filtering to remove days with 
highly skewed and out-of-range UV irradiance values (see “Methods” section) where all models are expected to 
perform poorly on. However, it should be noted that this does not mean that our validation and test sets consist 
of only clear-sky data. The distribution of cloud coverage shows that both datasets contain many days with cloud 
coverage above 0.2 and up to 0.4 or more (Fig. 1e and f).

Next‑day antipsoriatic irradiance forecast for Nakhon Pathom dataset. All artificial neural net-
work models were trained using the same UV data from 2011 to 2017 and evaluated on the same UV data from 
2018 and 2019 while the regression model based on Earth–Sun distance and total ozone column was fit to UV 
and ozone data of the same year. All models were trained to forecast next-day antipsoriatic irradiance at 10-min 
resolution. Furthermore, as past UV radiation profile is a critical input data for artificial neural network models, 
we tried inputting data from 7, 14, or 21 days prior to the forecast date to explore whether the models benefit 
from seeing data from more distant past.
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Overall, SurfUVNet achieves the best next-day forecasting performance with mean absolute percentage errors 
(MAPE) of 10.41 and 10.51 on the validation and test sets, respectively (Seq2Seq models in Fig. 3a and Table 1). 
It should be noted that while the CNN-LSTM-SG model can also reach similar levels of performance (MAPE of 
11.39 and 11.84), it is highly sensitive to the length of input UV data. Changing the length of input UV data from 
7 days to 14 or 21 days significantly raises the MAPE of CNN-LSTM-SG models to 13.87–17.74. In contrast, the 
performance of SurfUVNet is stable with respect to the length of the input. Furthermore, SurfUVNet achieves 

Figure 3.  SurfUVNet accurately forecast antipsoriatic irradiance throughout the day. Results on Nakhon 
Pathom dataset were shown. (a) Comparison of the mean absolute percentage errors (MAPE) for the next-day 
antipsoriatic irradiance forecast between SurfUVNet (Seq2Seq-14) and four benchmark models (see “Methods” 
section). Previous day model simply predicts next-day’s UV radiation to be the same as today’s. Regression 
model refers to the regression model based on Earth–Sun distance and total ozone column currently in used by 
the Thai Meteorological  Department22. BiGRU is an artificial neural network architecture that is often utilized 
for time series forecasting. CNN-LSTM, and CNN-LSTM-SG are artificial neural network models that were 
recently applied to UV forecasting in the energy  domain27. The tags − 7, − 14, and − 21 designate the length of 
UV data, in days prior to the forecast date, that were input into each model. (b) Distribution of MAPE for the 
validation set (UV data from 2018) throughout the times of the day. Results for the best performing models, 
namely CNN-LSTM-SG-7 and SurfUVNet (Seq2Seq-14), are shown. (c) A similar plot showing distribution of 
MAPE for the test set (UV data from 2019). (d) Comparison of ground truth UV data and forecasts made by 
SurfUVNet for the validation set (UV data from 2018). Error bars indicate one-standard deviation ranges. (e) A 
similar plot for the test set (UV data from 2019).
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consistent forecasting accuracy throughout the day while the CNN-LSTM-SG model produce significantly higher 
forecast error during the morning and afternoon hours (8AM–9AM and 2PM–4PM) compared to the middle 
of the day (Fig. 3b and c). Lastly, comparison of ground truth antipsoriatic irradiance and SurfUVNet’s forecast 
confirmed that SurfUVNet’s prediction closely mimics the expected bell-shaped pattern of daily UV radiation 
in both validation and test sets (Fig. 3d and e).

Next‑day downward solar UV irradiance forecast for Tokyo and London datasets. All models 
were further evaluated on hourly downward solar UV irradiance data obtained from ERA5 for Tokyo, Japan 
and London, England, which represent different weather regimes from Thailand’s. In contrast to the seasonal 
cloud coverage pattern at Nakhon Pathom (Fig. 1b), cloud coverage for Tokyo and London fluctuates around 
0.2–0.4 year-round (Supplementary Figure 1). Furthermore, day-to-day variation in UV radiation profiles are 
much higher in Tokyo and London compared to Nakhon Pathom, as indicated by much higher MAPE between 
today’s and the next day’s UV profiles (Tables 1 and 2, 21.78–35.50 for Tokyo, 18.14–43.57 for London, and 
13.93–14.58 for Nakhon Pathom). Overall, SurfUVNet performs competitively, achieving MAPE of 12.72 and 
17.74 for the next-day forecast for Tokyo and London datasets, respectively (Table 2). The regression model 
based on Earth–Sun distance and total ozone column performs much better on these datasets than on Nakhon 
Pathom’s (Tables 1 and 2, MAPE of 16.52–19.17 on ERA5 compared to 25.52–25.57 on Nakhon Pathom) and 
only slightly worse than the artificial neural network approaches. Again, it should be noted that the validation 
and test sets contain many days with considerable cloud coverage (Supplementary Figure 2).

Adding weather information does not improve forecasting. As atmospheric conditions can reflect 
and scatter UV radiation before it reaches the Earth’s surface, we tried incorporating total ozone column, atmos-
pheric aerosol (AOD500), and cloud coverage data into SurfUVNet. However, cloud coverage data contain many 
missing values that could not be imputed due to the irregularity of the data and had to be excluded from model 
development. Instead, we used cloud coverage data to evaluate whether SurfUVNet overestimates the amount 
of UV radiation when the weather is cloudy. This reveals that SurfUVNet’s forecasting errors weakly correlate 
with cloud condition (Fig. 4, spearman rank correlation = 0.16776, − 0.04546, and 0.20229 for Nakhon Pathom, 

Table 1.  Mean absolute percentage errors (MAPE) of the next-day antipsoriatic irradiance forecasting 
produced by SurfUVNet and benchmark models on Nakhon Pathom dataset.

Model Number of parameters Validation set MAPE (2018, 8AM–4PM) Test set MAPE (2019, 8AM–4PM)

Previous day model – 13.93 14.58

Regression model based on Earth–Sun distance and total ozone 
 column22 6 25.57 25.32

BiGRU-7 39,165,013 13.00 ± 0.16b 22.12 ± 0.33

BiGRU-14 78,158,933 12.66 ± 0.62 21.15 ± 1.20

BiGRU-21 117,152,853 13.07 ± 0.63 20.33 ± 0.47

CNN-LSTM-727

178,077

16.82 ± 0.73 17.67 ± 0.91

CNN-LSTM-1427 17.21 ± 1.15 17.40 ± 0.44

CNN-LSTM-2127 17.02 ± 0.20 17.87 ± 0.24

CNN-LSTM-SG-7 11.39 ± 0.57 11.84 ± 0.63

CNN-LSTM-SG-14 17.14 ± 1.01 17.74 ± 0.70

CNN-LSTM-SG-21 13.87 ± 2.59 14.48 ± 1.96

Seq2Seq-7

1,627,393

10.18 ± 0.53 10.60 ± 0.34

Seq2Seq-14 (SurfUVNet) 10.41 ± 0.43 10.51 ± 0.41

Seq2Seq-21 11.35 ± 1.64 11.19 ± 0.33

Table 2.  Mean absolute percentage errors (MAPE) of the next-day antipsoriatic irradiance forecasting 
produced by SurfUVNet and other models on the ERA5 Tokyo and London datasets.

Model

Tokyo London

Validation set MAPE (2018, 
8AM–4PM)

Test set MAPE (2019, 
8AM–4PM)

Validation set MAPE (2018, 
8AM–4PM) Test set MAPE (2019, 8AM–4PM)

Previous day model 21.78 35.50 18.14 43.57

Regression model based on Earth–
Sun distance and total ozone 
 column22

16.68 16.52 18.68 19.17

CNN-LSTM-SG-7 14.75 ± 0.41 15.77 ± 0.33 13.14 ± 0.35 16.27 ± 0.54

CNN-LSTM-SG-14 13.18 ± 0.28 14.99 ± 0.51 12.19 ± 0.19 17.78 ± 0.19

Seq2Seq-14 (SurfUVNet) 11.83 ± 0.44 12.72 ± 0.67 11.54 ± 0.50 17.74 ± 0.19
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Tokyo, and London 2019 datasets). For Nakhon Pathom dataset, SurfUVNet’s forecast error stays roughly the 
same before shifting upward when cloud coverage goes above 0.7 (Fig. 4a). For Tokyo dataset, SurfUVNet’s error 
is not correlated with cloud coverage at all (Fig. 4b). SurfUVNet’s error shows the clearest correlation with cloud 
coverage in London dataset (Fig. 4c). Addition of ozone and AOD500 data into SurfUVNet does not improve 
the performance of the base model that utilizes only UV data (Supplementary Figure 3). The model with ozone 
and AOD500 data achieves MAPE of 15.33 on the validation set (data from 2017) and MAPE of 13.91 on the 
test set (data from 2018), while the base model achieves MAPE of 14.32 and 13.60, respectively. This may be 
because ozone and AOD500 data were collected at lower frequency (hourly vs every 10 min) and at a shorter 
time period during the day (6AM–6PM vs 5AM–7PM) than UV data. Although data from the early morning 
and late evening hours where the amount of UV radiation is almost nonexistence should not contribute much to 
the forecasting of UV radiation during daylight hours, we found that withholding UV data from 6AM to 8AM 
and 4PM to 6PM from the model slightly raises error from 10.51 to 11.78 MAPE (Wilcoxon signed rank test 
result is not significant with p value = 0.5567). Lastly, to evaluate the impact of uncertainty of next-day ozone 
and AOD500 on the forecast performance, a variant of SurfUVNet was trained with the actual values of next-day 
ozone and AOD500. This does not reduce the forecast error (MAPE of 15.70 and 15.50 on the validation and test 
sets, respectively), indicating that the limitation lies elsewhere.
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Figure 4.  SurfUVNet’s forecast error weakly correlates with cloud coverage. Violin plots showing the 
distribution of SurfUVNet’s forecast error in 1-h interval with various cloud coverage. Errors on the test sets 
(UV data from year 2019) are shown. (a) Nakhon Pathom dataset. (b) Tokyo dataset. (c) London dataset. 
(d) Heliotherapy sunbathing sessions planned by photodermatologist at King Chulalongkorn Memorial 
Hospital. Each data point that constitutes the violin plots correspond to the error between predicted and 
actual antipsoriatic irradiances that a patient would be exposed to if he or she were to sunbath according to 
dermatologist’s planning.
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Long‑term antipsoriatic irradiance forecasting. Long-term UV forecasting is essential for heliother-
apy applications as it allows clinicians and patients to plan sunbathing schedule in advance and make necessary 
adjustments to the schedule to achieve the desire UV radiation dosage. We explored two approaches for forecast-
ing antipsoriatic irradiance for up to a month into the future (Fig. 5a). The first approach is to train a collection 
of artificial neural network models, each making the forecast for a specific date that is a certain number of days 
into the future. In other words, we trained one model for making the next-day forecast, one model for making 
the forecast for the day after that, and so on. The second approach is to train a single model for making the next-
day forecast and then autoregressively use the next-day forecast as in input to make the forecast for the day after 
that. Evaluation on Nakhon Pathom 2018–2019 UV datasets showed that the performance of the autoregressive 
approach is quite stable with average MAPE of 13.70–15.79 for forecasting up to 28 days into the future (Table 3 
and Fig. 5b). On the other hand, developing specific models for specific days performs well on the 2019 dataset 
but poorly on the 2018 dataset (MAPE of 11.46 vs 18.38 for forecasting up to 28 days into the future). We also 
additionally explored the possibility of training a model that can forecast UV profiles of multiple days at once, 
but the performances were much worse than the two methods described above (MAPE of 29.49 and 49.69 for 
forecasting the next 7 days at once on the 2018 and 2019 datasets, respectively). Hence, we decided to choose the 
autoregressive approach for SurfUVNet. It should be noted that the regression approach based on Earth–Sun 
distance and ozone information performed poorly on Nakhon Pathom’s UV data even for next-day forecast 
(Table 1, MAPE of 25.32–25.57). 

Discussion
We have developed SurfUVNet, an artificial neural network model for predicting surface UV radiation that 
achieves around 10% error for next-day forecast and 13–16% error for 7-day up to 4-week forecast. This affirms 
that quantitative UV forecast is appropriate for heliotherapy applications, which tolerate up to 10–25% error level. 
SurfUVNet’s performance is competitive on UV data from multiple regions, Thailand, Japan, and England, and 
on both antipsoriatic and downward irradiance. Hence, SurfUVNet can be adapted for forecasting other useful 
UV action spectra such as vitamin D production and erythemal UV index as well. In fact, our model can even 
be trained to forecast antipsoriatic irradiance from input erythemally-weighted UV data from a UV Biometer 
instrument with a small performance reduction (data now shown). This capability is necessary for establishing 
a national heliotherapy network in Thailand because there is only one full-spectrum UV sensor located in the 
central region of the country while the rest of the country is covered by a network of UV Biometers.

A key limitation of artificial neural network is that it tends to overfit to the training dataset and does not 
generalize well to other datasets that come from different distributions. In the context of UV forecasting, this 
dictates that the model must be retrained with data from particular weather station in order to be usable for that 
geographic region. Indeed, the accuracy of each model varies by 5–6% across the three geographical regions, 
Thailand, Japan, and England and even across 2018 and 2019 in the case of London dataset (Tables 1 and 2). For 
the case of London dataset, comparison of UV profiles between consecutive days in 2019 showed an extremely 

Today N-th day

Forecast

Today N-th day

…

Forecast

(a)

(b)

Forecast date (# of days into the future) Forecast date (# of days into the future)

Seq2Seq (auto-regressive)
Seq2Seq (specific day)
Regression
CNN-LSTM-SG (specific day)

Seq2Seq (auto-regressive)
Seq2Seq (specific day)
Regression
CNN-LSTM-SG (specific day)

Figure 5.  Long-term antipsoriatic irradiance forecasting. Results on Nakhon Pathom dataset were shown. (a) 
Diagram of two approaches for making long-term forecast: developing specific artificial neural network model 
for making forecast for a specific day that is a certain number of days into the future (left) and autoregressively 
using the next-day forecast as input for making forecast for the day after that (right). (b) Long-term antipsoriatic 
irradiance forecasting performance for up to 28 days into the future on the validation set (UV data from 2018) 
and the test set (UV data from 2019). Performance for SurfUVNet, the regression model based on Earth–Sun 
distance and total ozone column, and the best CNN-LSTM models were shown.
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high average variation of 43.57%. The discrepancy in performance of the regression model based on Earth–Sun 
distance and total ozone column developed by the Thai Meteorological  Department22 between Nakhon Pathom 
and ERA5 datasets (25% error on Nakhon Pathom and 16–19% error on  ERA541 datasets) could be attributed 
to the fact that ERA5 data, which contain more detailed ozone measurements (hourly compared to daily) and 
were computationally interpolated, are likely to be more easily fitted by regression.

The fact that SurfUVNet’s forecast error only weakly correlates with cloud coverage (Fig. 4) is unexpected 
but may be explained by the fact that cloud coverage in Nakhon Pathom exhibits clear seasonal pattern (Fig. 1b) 
and that the UV radiation profiles are stable over consecutive days (Table 1, MAPE of 13.94–14.58 for previous 
day model). On a geographical region with highly variable weather condition, such as London in 2019, artificial 
neural network models’ performance drop significantly (Table 2) and the error of SurfUVNet exhibits higher cor-
relation with cloud coverage (Fig. 4c). Hence, artificial neural network models seem to be able to exploit seasonal 
weather pattern and day-to-day variation to achieve good performance without relying on explicit cloud coverage 
information. This capability of the model to extract seasonal patterns may also explain why addition of ozone 
and AOD500 information did not improve the performance of SurfUVNet (Supplementary Figure 3), particu-
larly as AOD500 level at Nakhon Pathom closely follows the same seasonal pattern as cloud coverage (Fig. 1d).

We explored two approaches for forecasting long-term UV radiation. Initially, we expected that developing 
a specific model for making the forecast for a specific date a certain number of days into the future would yield 
better performance than an autoregressive approach which use the next-day forecast as input for making the 
forecast for the day after because forecasting errors would accumulate through autoregressive steps. However, 
the models for specific date seem to overfit the training data, performing well on the 2019 dataset but poorly on 
the 2018 dataset (Table 3, 11.46% vs 18.28% error for forecasting up to 28 days into the future). In contrast, the 
autoregressive approach performs more consistently (13.70% and 15.79% error). An explanation for the over-
fitting of the model trained for specific date may be because the relationship between today’s and next week’s 
UV radiation profiles is so weak that the models learn mostly patterns that are specific to the training dataset. 
The poor performance of models for multi-day forecast (29.49–49.69% error for 7-day forecast) is likely due 
to the sheer number of outputs that the models must optimize. To make a 7-day forecast at 10-min resolution, 
the model has to output 595 values. From these results, we recommend the autoregressive approach for making 
long-term UV forecast with SurfUVNet.

Table 3.  Mean absolute percentage errors (MAPE) for long-term antipsoriatic irradiance forecasting for up to 
28 days into the future on Nakhon Pathom dataset.

Model Target day Validation set MAPE (2018, 8AM–4PM) Test set MAPE (2019, 8AM–4PM)

Regression model based on Earth–Sun 
distance and total ozone  column22

7 25.57 25.07

14 26.10 25.11

21 26.53 25.45

28 26.37 25.53

CNN-LSTM-SG-7
Forecast specific date

7 16.18 ± 0.42 16.68 ± 0.59

14 16.09 ± 1.70 16.60 ± 1.77

21 14.91 ± 1.08 15.24 ± 0.29

28 14.76 ± 1.39 15.09 ± 1.56

CNN-LSTM-SG-7
Auto-regressive

7 18.56 ± 2.65 17.41 ± 2.70

14 20.60 ± 2.31 19.49 ± 2.92

21 22.51 ± 1.97 21.37 ± 1.83

28 24.45 ± 1.60 22.62 ± 0.98

CNN-LSTM-SG-14
Forecast specific date

7 16.69 ± 0.92 16.73 ± 1.16

14 14.82 ± 0.63 15.49 ± 1.43

21 15.96 ± 0.99 16.18 ± 0.46

28 15.46 ± 0.71 15.55 ± 1.14

CNN-LSTM-SG-14
Auto-regressive

7 17.31 ± 0.45 17.77 ± 0.55

14 17.20 ± 0.47 19.16 ± 0.65

21 17.13 ± 0.50 20.71 ± 0.57

28 17.00 ± 0.50 20.83 ± 0.97

Seq2Seq-14 (SurfUVNet)
Forecast specific date

7 12.21 ± 0.65 12.68 ± 0.53

14 16.42 ± 1.40 12.80 ± 1.64

21 16.61 ± 1.29 11.97 ± 0.88

28 18.28 ± 1.57 11.46 ± 0.38

Seq2Seq-14 (SurfUVNet)
Auto-regressive

7 13.13 ± 0.41 13.86 ± 0.91

14 14.03 ± 0.62 14.09 ± 1.49

21 14.22 ± 0.74 13.83 ± 2.20

28 15.79 ± 1.90 13.70 ± 2.65
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To prospectively examine whether SurfUVNet’s performance is sufficient for heliotherapy applications, we 
asked photodermatologist at King Chulalongkorn Memorial Hospital to plan a 3-month sunbathing course based 
on SurfUVNet’s output and then compared their schedule with the ground truth antipsoriatic irradiances of the 
same time interval. This reveals that the error in antipsoriatic dose that the patient would receive by following 
the clinician’s sunbathing protocol remains well within the acceptable 10–25% up to 0.3 cloud coverage (Fig. 4d, 
MAPE of 11.23). A possible solution for accounting for weather effects on UV radiation that we are exploring is 
to have each patient carry a portable UV sensor or a smartphone equipped with light sensor and use that data 
to adjust SurfUVNet’s forecast in real-time.
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